
CS 89.15/189.5, Fall 2015

DOMAIN TRANSFORMS, 
WARPING & MORPHING

Wojciech Jarosz
wojciech.k.jarosz@dartmouth.edu

Most slides stolen from Frédo Durand

mailto:wojciech.k.jarosz@dartmouth.edu

Last time
HDR and tone mapping
- Questions?

Filtering + convolution assignment was due last night
- Questions?

HDR + tone mapping assignment out now, due next Wed
- includes solutions to filtering assignment

- compare yours to the solution

CS 89/189: Computational Photography, Fall 2015 2

Domain, range

Domain vs. range
2D plane: domain of images
color value: range (R3 for us)
- red, green and blue components stored in 

im(x, y, 0), im(x, y, 1), im(x, y, 2), respectively

CS 89/189: Computational Photography, Fall 2015 4After a slide by Frédo Durand

CS 89/189: Computational Photography, Fall 2015

Basic types of operations

5

Point operations:  
range only

Assignment 2

After a slide by Frédo Durand

output(x,y) = f(image(x,y))

image(x,y)

output(x,y)

CS 89/189: Computational Photography, Fall 2015

Basic types of operations

6

Point operations:  
range only

Assignment 2

After a slide by Frédo Durand

Neighborhood operations:  
domain and range

Assignments 3, 4, 5

image(x,y)

output(x,y)

output(x,y) = f(image(x,y))

CS 89/189: Computational Photography, Fall 2015

Basic types of operations

7

Point operations:  
range only

Assignment 2

After a slide by Frédo Durand

Domain  
operations

Assignment 6

Neighborhood operations:  
domain and range

Assignments 3, 4, 5

image(x,y)

output(x,y)

output(x,y) = image(f(x,y))

output(x,y) = f(image(x,y))

Domain
operations

Domain transform
Apply a function f from R2 to R2 to the image domain
if im(x, y) had color c in the input, then im(f(x, y)) should
have color c in the output

CS 89/189: Computational Photography, Fall 2015 9

Transformation
Simple parametric transformations
- linear, affine, perspective, etc

CS 89/189: Computational Photography, Fall 2015 10illustration by Rick Szeliski

Warping
Imagine your image is made of rubber; warp the rubber

CS 89/189: Computational Photography, Fall 2015 11

No prairie dogs were armed when creating this image

Liquify in
photoshop

Application of warping: weight loss

CS 89/189: Computational Photography, Fall 2015 12

Domain transform issues

CS 89/189: Computational Photography, Fall 2015 15

Apply a function f from R2 to R2 to the image domain
looks easy enough

But 2.5 big issues:
- which direction do we transform

- how do we deal with non-integer coordinates?

- And for warping: how do we specify f?

Questions?

CS 89/189: Computational Photography, Fall 2015 16

Basic resampling

Naive scaling
Loop over input pixels and transform them to their output location
- im(x, y) => out(k*x, k*y)

CS 89/189: Computational Photography, Fall 2015 18

Use the inverse transform!!!!!
Main loop on output pixels
- out(x, y) <= im(x/k, y/k)

CS 89/189: Computational Photography, Fall 2015 19

Take-home message
Main loop over OUTPUT pixels
use INVERSE transform

Questions?

CS 89/189: Computational Photography, Fall 2015 20

Remaining problem
A little too “blocky”
Because we round to the nearest integer pixel coord.
- called nearest neighbor 

reconstruction

CS 89/189: Computational Photography, Fall 2015 21

Consider a 1D image/array (im) along x
reconstruct im[1.3]
=0.7*im[1]+0.3*im[2]
lerp function

Linear reconstruction

CS 89/189: Computational Photography, Fall 2015 22

0 1 2 31.3
domain

ra
ng

e

Take 4 nearest neighbors
Weight according to x & y fractional coordinates
Can be done using two 1D linear reconstructions along
x then y (or y then x)

Bilinear reconstruction

CS 89/189: Computational Photography, Fall 2015 23

Bilinear

CS 89/189: Computational Photography, Fall 2015 24

linear interpolation along x: U = lerp(im(5,25), im(6,25), .3)

linear interpolation along y: 
lerp(U, L, .2)

im(5.3, 25.2)

im(5, 25) im(6, 25)

im(6, 26)im(5, 26)
linear interpolation along x: L = lerp(im(5,26), im(6,26), .3)

Recall nearest neighbor

Bilinear

Take home messages
Main loop over OUTPUT pixels
- Makes sure you cover all of them
Use INVERSE transform
Reconstruction makes a 
difference
- Linear much better than  

nearest neighbor

CS 89/189: Computational Photography, Fall 2015 27

Lookup

Questions?

CS 89/189: Computational Photography, Fall 2015 28

Better reconstruction
Consider more than 4 pixels:
- bicubic, Lanczos, etc.

Try to sharpen/preserve edges
Use training database of low-res/high-res pairs
- http://people.csail.mit.edu/billf/superres/index.html

CS 89/189: Computational Photography, Fall 2015 29

http://people.csail.mit.edu/billf/superres/index.html

Bilinear

Bicubic (Photoshop)

Ignore small color issues

Questions?

CS 89/189: Computational Photography, Fall 2015 32

Padding

Sometimes, we try to read outside the image
- e.g. x, y are negative

- For example, we try to rotate an image

???

Padding problems

CS 89/189: Computational Photography, Fall 2015 34

0,0,0

Black Padding

CS 89/189: Computational Photography, Fall 2015 35

Edge Padding

CS 89/189: Computational Photography, Fall 2015 36

Questions?

CS 89/189: Computational Photography, Fall 2015 37

Warping &
Morphing

Important scientific question
How to turn Dr. Jekyll into Mr. Hyde?
How to turn a man into a werewolf?

Powerpoint cross-fading?

CS 89/189: Computational Photography, Fall 2015 39

Angry Fredo

Important scientific question
How to turn Dr. Jekyll into Mr. Hyde?
How to turn a man into a werewolf?

Powerpoint cross-fading?
or
Image Warping & Morphing

CS 89/189: Computational Photography, Fall 2015 40

American Werewolf
in London

Digression: old metamorphoses
http://en.wikipedia.org/wiki/
The_Strange_Case_of_Dr._Jekyll_and_Mr._Hyde
http://www.eatmybrains.com/showtopten.php?id=15
http://www.horror-wood.com/next_gen_jekyll.htm
Unless I’m mistaken, both employ the trick of making
already-applied makeup turn visible via changes in the
color of the lighting, something that works only in black-
and-white cinematography. It’s an interesting alternative to
the more familiar Wolf Man time-lapse dissolves. This
technique was used to great effect on Fredric March in
Rouben Mamoulian’s 1932 film of Dr. Jekyll and Mr. Hyde,
although Spencer Tracy eschewed extreme makeup for his
1941 portrayal.

CS 89/189: Computational Photography, Fall 2015 41

http://en.wikipedia.org/wiki/The_Strange_Case_of_Dr._Jekyll_and_Mr._Hyde
http://www.eatmybrains.com/showtopten.php?id=15
http://www.horror-wood.com/next_gen_jekyll.htm

D
r.

Je
ky

ll
an

d
M

r.
H

yd
e,

 1
93

2

D
r.

Je
ky

ll
an

d
M

r.
H

yd
e,

 1
93

2

D
r.

Je
ky

ll
an

d
M

r.
H

yd
e,

 1
93

2

D
r.

Je
ky

ll
an

d
M

r.
H

yd
e,

 1
94

1

“Smoothly” transform a face into another
Related: slow motion interpolation
- interpolate between key frames

Challenge

46

Cross-fading
- output(x, y) = t * im1(x, y) + (1-t) * im2(x, y)

Averaging images

47

Features (eyes, mouth, etc) are not aligned
It is probably not possible to get a global alignment
We need to interpolate the LOCATION of features

Problem with cross fading

48

Averaging points (location)

CS 89/189: Computational Photography, Fall 2015 49

P

V
Q

P & Q are two 2D points (in the “domain”)
V = t P + (1-t) Q

Move pixel spatially: C’(x,y) = C(f(x,y))
Leave colors unchanged

Warping

50

Warping
Deform the domain of images (not range)
Central to morphing
Also useful for
- Optical aberration correction

- Video stabilization

- Slimming people down

CS 89/189: Computational Photography, Fall 2015 51

Recap & questions
Color (range) interpolation (lerp):
- output(x, y) = t * im1(x, y) + (1-t) * im2(x, y)

Location (domain) interpolation (lerp):
- V= t P + (1-t) Q

Warping: domain transform
- out(x,y)=im(f-1(x,y))

CS 89/189: Computational Photography, Fall 2015 52

For each pixel
- Transform its location like a vector (domain)
- Then linearly interpolate colors (range)

Morphing: combine both

53

Morphing
Input: two images I0 and I1

Expected output:
- image sequence It, with t ∈]0,1[

User specifies sparse
correspondences on the images

CS 89/189: Computational Photography, Fall 2015 54

Morphing

t=0.5

t=0 t=1

For each intermediate frame It
- Interpolate feature locations Pti= (1- t) P0i + t P1i
- Perform two warps: one for I0, one for I1

• Deduce a dense warp field from the pairs of features
• Warp the pixels

- Linearly interpolate the two  
warped images

55

Warping

Before, we saw simple transformations
- linear, affine, perspective

But we want more flexibility

How do we specify the warp?

CS 89/189: Computational Photography, Fall 2015 57illustration by Rick Szeliski

Image Warping – parametric
Move control points to specify a spline warp
Spline produces a smooth vector field

CS 89/189: Computational Photography, Fall 2015 58Slide Alyosha Efros

Warp specification - dense
How can we specify the warp?
- Specify corresponding spline control points

• interpolate to a complete warping function

CS 89/189: Computational Photography, Fall 2015 59

But we want to specify only a few points, not a grid
Slide Alyosha Efros

Warp specification - sparse
How can we specify the warp?
- Specify corresponding points

• interpolate to a complete warping function

CS 89/189: Computational Photography, Fall 2015 60

How do we go from feature points to pixels?
Slide Alyosha Efros

Beier and Neely
Specify warp based on pairs of
segments
- “Feature-Based Metamorphosis”,

SIGGRAPH 1992
- Used in Michael Jackson’s  

“Black and White” music video
- Assignment 6!!

http://dl.acm.org/citation.cfm?id=134003

Questions?

CS 89/189: Computational Photography, Fall 2015 62

Segment-based
warping

Problem statement
Inputs: One image, two lists of segments before and
after, in the image domain
Goal: warp the image “following” the displacement of
the segments

CS 89/189: Computational Photography, Fall 2015 64

SIGGRAPH ’92 Chicago, July 26-31, 1992

vQ2
1

VI x V2

U2

P2
UI

\P,

Destination Image

Figure 3: M

QJ’

P

x
VD

2’

x,’ z

x’ U2

2 P2u, X2’

1P, ‘

Source Image

IIeline pairs

In the above figure, X is the location to sample the source image for
the pixel at X ~n the destination image. That location is a weighted
average of the two pixel locations Xl’ and X2’, computed with
respect to the first and second line pair, respectively.

If the value a is set to zero there is an undefined result if two lines
cross, Each line will have an infinite weight at the intersection point.
We quote the line from Ghostbusters: “Don’t cross the streams.
Why? [t would be bad.” This gets the point across, and in practice
does not seem to be too much of a limitation. The animator’s mental
model when working with the program is that each line has a field
of influence around it, and will force pixels near it to stay in the
corresponding position relative to the line as the line animates. The
closer the pixels are to a line, the more closely they follow the motion
of that line, regardless of the motion of other lines. This mental
model gives the animator a good intuitive feel for what will happen
as he designs a metamorphosis.

Figure 4: Multiple line pair example

With two or more lines, the transformation is not simple. The figure
on the left is the original image, it is distorted by rotating the line
above the F around its first point. The whole image is distotted by
this transformation. It is still not ~ssible to do a uniform scale or a
shear with multiple lines. Almost any pair of lines results in a non-
affine transformation. Still, it is fairly obvious to the user what
happens when lines are added and moved. Pixels near the lines are
moved along with the lines, pixels equally far away from two lines
are influenced by both of them.

3.4 Morphing Between Tkuo Images
A morph operation blends between two images, 10 and 11. To do
this, we define corresponding lines in/0 and 11. Each intermediate
frame /of the metamorphosis is defined by creating anew set of line

segments by interpolating the lines from their positions in 10 to the
positions in 11. Both images 10 and II are distorted toward the
position of the lines in f. These two resulting images are cross-
dissolved throughout the metamorphosis, so that at the beginning,
tbe image is completely IO (undistorted because we have not yet
begun to interpolate away from the line positions associated with
/0). Halfway through the metamorphosis it is halfway between 10
and 11, and finally at the end it is completely 11. Note that there is a
chance that in some of the intermediate frames, two lines may cross
even if they did not cross in the source images.

We have used two different ways of interpolating the lines. The first
way is just to interpolate the endpoints of each line. The second way
is to interpolate the center position and orientation of each line, and
interpolate the length of each line. In the first case, a rotating line
would shrink in the middle of the metamorphosis. On tbe other hand,
the second case is not very obvious to the user, who might be
surprised by how the lines interpolate. In any case, letting the user
see the interpolated position helps him design a good set of begin-
ning and end positions.

3.5 Performance
For video-resolution images (720x486 pixels) with 100 line pairs,
this algorithm takes about 2 minutes per frame on a SGI 4D25. The
runtime is proportional to the number of lines times the number of
pixels in the image. For interactive placement of the lines, low
resolution images are typically used. As is usually the case with any
computer animation, the interactive design time is the dominant
time; it often takes 10 times as long to design a metamorphosis than
to compute the final frames.

4 Advantages and Disadvantages of this Tech-
nique

This technique has one big advantage over the mesh warping tech-
nique described in Wolberg’s book[15]: it is much more expressive.
The only positions that are used in the algorithm are ones the
animator explicitly created. For example, when morphing two faces,
the animator might draw line segments down the middle of the nose,
across the eyes, along the eyebrows, down the edges of the cheeks,
and along the hairline. Everything that is specified is moved exactly
as the animator wants them moved, and everything else is blended
smoothly based on those positions. Adding new line segments in-
creases control in that area without affecting things too much every-
where else.

This feature-based approach contrasts with the mesh warping tech-
nique. In the simplest version of that afgorithm, the animator must
specify in advance how many control points to use to control the
image. The animator must then take those given points and move
them to the correct locations. Points left unmodified by mistake or
points for which the animator could not find an associating feature
are still used by the warping algorithm. Often the animator will find
that he does not have enough control in some places and too much
in others. Every point exerts the same amount of influence as each
of the other points. Often the features that the animator is trying to
match are diagonal, whereas the mesh vertices start out vertical and
horizontal, and it is difficult for the animator to decide which mesh
vertices should be put along the diagonal line.

We have found that trying to position dozens of mesh points around
is like trying to push a rope; something is afways forced where you
don’t want it to go. Wkh our technique the control of the line
segments is very natural. Moving a line around has a very predict-
able effect. Extensions of the mesh warping technique to allow

38

Input Output

before after

before
after

Idea
Each before/after pair of segment implies a planar
transformation
- simple and linear

CS 89/189: Computational Photography, Fall 2015 65

Computer Graphics, 26, 2, July 1992

For each pixel X in the destination image
find the corresponding U,V
find the X’ in the source image for that U,V
destinationlmage(X) = sourcelmage(X’)

Q

bv x

u

P

Destination Imw-ze

Q’

1-V x’

I

Source Image

Figure 1: Single line ptiir

In Figure 1, X’ is the location to sample the source image for the
pixel at X in the destination image. The location is at a distance v
(the distance from the line to the pixel in the source image) from the
line P’Q’. and at a proportion u along that line.

The algorithm transforms each pikel coordinate by a rotation, trans-
lation, itnd/or a scale, thereby transforming the whole image. All of
the pixels along the line in the source image are copied on top of the
line in the destination image. Because the u coordinate is normalized
try the length of the line, and the v coordinate is not (it is always
distance in pixels), the images is scaled along the direction of the
lines by the ratio of the lengths of the lines, The scale is only along
the direction of the line. We have tried scaling the v coordinate by
the length of the line, so that the scaling is always uniform, but found
that the given formulation is more useful.

I I I I I I I I I I I I 1 Ill I I I 1 I I I
I I I]iHtlHtli!llllllllllll lli\l]lL1/11

I

, ,

Figure 2: Single line pair examples

The figure on the upper left is the original image. The line is rotated
inthe upper right image, translated inthelower left image, and
scaled in the lower right image, performing the corresponding trans-
formations to the image.

It is possible to get a pure rotation of an image if the two lines are
the same length. A pair of lines that are the same length and orien-

tation but different positions specifies a translation of an image. All
transformations based on a single line pair are affine, but not all
affine transformations are possible. In particular, uniform scales and
shears are not possible to specify.

3.3 Transformation with Multiple Pairs of Lines
Multiple pairs of lines specify more complex transformations. A
weighting of the coordinate transformations for each line is per-
formed. A position Xi’ is calculated for each pair of lines. The
displacement Di=Xi’ - Xis the difference between the pixel location
inthesource and destination images, anda weighted average of
those displacements is calculated. The weight is determined by the
distance from X to the line, This average displacement is added to
the current pixel location X to determine the position X’ to sample
in the source image. The single Iine case falls out as a special case
of the multiple Iinecase, assuming the weight never goes to zero
anywhere in the image. The weight aisigned to each line should be
strongest when the pixel is exactly on the line, and weaker the further
the pixel is from it. The equation wc use is

(4)

where length is the length of a line. dist is the distancet from the
pixel to the line, and a, b, and p are constants that can be used to
change the relative effect of the lines.

If a is barely greater than zero, then if the distance from the line to
the pixel is zero, the strength is nearly infinite. With this value for
a, the user knows that pixels on the line will go exactly where he
wants them. Values larger than that will yield a more smooth warp
in,g,but with less precise control. The variable b determines how the
relative strength of different lines Falls off with distance. If it is large,
then every pixel will be affected only by the line nearest it. Ifb is
zero, then each pixel will be affected by all lines equally. Values of
bin the range [().5, 2] are the most useful. The value ofp is typically
in the range [0, 1]; if it is zero, then all lines have the same weight.
if it is one, then longer lines have a greater relative weight than
shorter lines,

The multiple line algorithm is as follows:

For each pixel X in the destination
DSUM = (0,0)
rveightsunr = ()
For each line Pi Qi

calculate U,V based on Pi Qi
calculate X’i based on U,V and Pi’Qi’
calculate displacement Di = Xi’ - Xi for this line
rfist = shortest distance from X to Pi Qi
weight = (fengl~ / (a + dist))b
DSUM += Di * weight
weightsum += weight

X’= X + DSUM / weightsum
destinationlmage(X) = sourceImage(X’)

* Note that because these “lines” are directed line segments, the
distance from a line to a point is abs(v) if 0< u <1, the distance from
P to the point if u <O, and the distance from Q to the point if u >1.

37

Single line transforms

Input Output 1

before
after

Idea
Each before/after pair of segment implies a planar
transformation
- simple and linear

CS 89/189: Computational Photography, Fall 2015 66

Computer Graphics, 26, 2, July 1992

For each pixel X in the destination image
find the corresponding U,V
find the X’ in the source image for that U,V
destinationlmage(X) = sourcelmage(X’)

Q

bv x

u

P

Destination Imw-ze

Q’

1-V x’

I

Source Image

Figure 1: Single line ptiir

In Figure 1, X’ is the location to sample the source image for the
pixel at X in the destination image. The location is at a distance v
(the distance from the line to the pixel in the source image) from the
line P’Q’. and at a proportion u along that line.

The algorithm transforms each pikel coordinate by a rotation, trans-
lation, itnd/or a scale, thereby transforming the whole image. All of
the pixels along the line in the source image are copied on top of the
line in the destination image. Because the u coordinate is normalized
try the length of the line, and the v coordinate is not (it is always
distance in pixels), the images is scaled along the direction of the
lines by the ratio of the lengths of the lines, The scale is only along
the direction of the line. We have tried scaling the v coordinate by
the length of the line, so that the scaling is always uniform, but found
that the given formulation is more useful.

I I I I I I I I I I I I 1 Ill I I I 1 I I I
I I I]iHtlHtli!llllllllllll lli\l]lL1/11

I

, ,

Figure 2: Single line pair examples

The figure on the upper left is the original image. The line is rotated
inthe upper right image, translated inthelower left image, and
scaled in the lower right image, performing the corresponding trans-
formations to the image.

It is possible to get a pure rotation of an image if the two lines are
the same length. A pair of lines that are the same length and orien-

tation but different positions specifies a translation of an image. All
transformations based on a single line pair are affine, but not all
affine transformations are possible. In particular, uniform scales and
shears are not possible to specify.

3.3 Transformation with Multiple Pairs of Lines
Multiple pairs of lines specify more complex transformations. A
weighting of the coordinate transformations for each line is per-
formed. A position Xi’ is calculated for each pair of lines. The
displacement Di=Xi’ - Xis the difference between the pixel location
inthesource and destination images, anda weighted average of
those displacements is calculated. The weight is determined by the
distance from X to the line, This average displacement is added to
the current pixel location X to determine the position X’ to sample
in the source image. The single Iine case falls out as a special case
of the multiple Iinecase, assuming the weight never goes to zero
anywhere in the image. The weight aisigned to each line should be
strongest when the pixel is exactly on the line, and weaker the further
the pixel is from it. The equation wc use is

(4)

where length is the length of a line. dist is the distancet from the
pixel to the line, and a, b, and p are constants that can be used to
change the relative effect of the lines.

If a is barely greater than zero, then if the distance from the line to
the pixel is zero, the strength is nearly infinite. With this value for
a, the user knows that pixels on the line will go exactly where he
wants them. Values larger than that will yield a more smooth warp
in,g,but with less precise control. The variable b determines how the
relative strength of different lines Falls off with distance. If it is large,
then every pixel will be affected only by the line nearest it. Ifb is
zero, then each pixel will be affected by all lines equally. Values of
bin the range [().5, 2] are the most useful. The value ofp is typically
in the range [0, 1]; if it is zero, then all lines have the same weight.
if it is one, then longer lines have a greater relative weight than
shorter lines,

The multiple line algorithm is as follows:

For each pixel X in the destination
DSUM = (0,0)
rveightsunr = ()
For each line Pi Qi

calculate U,V based on Pi Qi
calculate X’i based on U,V and Pi’Qi’
calculate displacement Di = Xi’ - Xi for this line
rfist = shortest distance from X to Pi Qi
weight = (fengl~ / (a + dist))b
DSUM += Di * weight
weightsum += weight

X’= X + DSUM / weightsum
destinationlmage(X) = sourceImage(X’)

* Note that because these “lines” are directed line segments, the
distance from a line to a point is abs(v) if 0< u <1, the distance from
P to the point if u <O, and the distance from Q to the point if u >1.

37

Single line transforms

Input

Output 2

Output 1

Output 3

Test

CS 89/189: Computational Photography, Fall 2015 67

my constructor sets the first 2D point as
self.P=numpy.array([x1, y1], dtype=numpy.float64)

Segment transform Consider a pair of segments, corresponding to a before
and after configuration. You need to implement the computation of the u and
v coordinates of a 2D point with respect to a segment as described in the slides
and in the paper. Given these coordinates, you can then compute the new
x, y position of this point given the location of the other segment. Use simple
examples to test your method

Warping Once you are convinced that you can transform 2D points according
to a pair of before/after segments, implement a resampling function that warps
an entire image according to such a pair of segments. Again, use simple examples
to test this function. Once you are done with this, you have completed the
hardest part of the assignment.

The function should be callable according to
warpBy1(im, segmentBefore, segmentAfter)

where the last two arguments are a single segment of the class above. The
output should be a warped image of the same size as the input.

! warpBy1(im, segment(0,0, 10,0), segment(10, 10, 30, 15)) !

You can use the javascript UI to specify the segments, using the same image
on both side for reference.

4.3 Warping according to multiple pairs of segments

Extend the above code to perform transformations according to multiple pairs
of segments. For each pixel, transform its 2D coordinates according to each
pair of segments and take a weighted average according to the length of each
segment and the distance of the pixel to the segments. More specifically, the

5

Idea
Each before/after pair of segment implies a planar transformation
Then take weighted average of transformations

CS 89/189: Computational Photography, Fall 2015 68

SIGGRAPH ’92 Chicago, July 26-31, 1992

vQ2
1

VI x V2

U2

P2
UI

\P,

Destination Image

Figure 3: M

QJ’

P

x
VD

2’

x,’ z

x’ U2

2 P2u, X2’

1P, ‘

Source Image

IIeline pairs

In the above figure, X is the location to sample the source image for
the pixel at X ~n the destination image. That location is a weighted
average of the two pixel locations Xl’ and X2’, computed with
respect to the first and second line pair, respectively.

If the value a is set to zero there is an undefined result if two lines
cross, Each line will have an infinite weight at the intersection point.
We quote the line from Ghostbusters: “Don’t cross the streams.
Why? [t would be bad.” This gets the point across, and in practice
does not seem to be too much of a limitation. The animator’s mental
model when working with the program is that each line has a field
of influence around it, and will force pixels near it to stay in the
corresponding position relative to the line as the line animates. The
closer the pixels are to a line, the more closely they follow the motion
of that line, regardless of the motion of other lines. This mental
model gives the animator a good intuitive feel for what will happen
as he designs a metamorphosis.

Figure 4: Multiple line pair example

With two or more lines, the transformation is not simple. The figure
on the left is the original image, it is distorted by rotating the line
above the F around its first point. The whole image is distotted by
this transformation. It is still not ~ssible to do a uniform scale or a
shear with multiple lines. Almost any pair of lines results in a non-
affine transformation. Still, it is fairly obvious to the user what
happens when lines are added and moved. Pixels near the lines are
moved along with the lines, pixels equally far away from two lines
are influenced by both of them.

3.4 Morphing Between Tkuo Images
A morph operation blends between two images, 10 and 11. To do
this, we define corresponding lines in/0 and 11. Each intermediate
frame /of the metamorphosis is defined by creating anew set of line

segments by interpolating the lines from their positions in 10 to the
positions in 11. Both images 10 and II are distorted toward the
position of the lines in f. These two resulting images are cross-
dissolved throughout the metamorphosis, so that at the beginning,
tbe image is completely IO (undistorted because we have not yet
begun to interpolate away from the line positions associated with
/0). Halfway through the metamorphosis it is halfway between 10
and 11, and finally at the end it is completely 11. Note that there is a
chance that in some of the intermediate frames, two lines may cross
even if they did not cross in the source images.

We have used two different ways of interpolating the lines. The first
way is just to interpolate the endpoints of each line. The second way
is to interpolate the center position and orientation of each line, and
interpolate the length of each line. In the first case, a rotating line
would shrink in the middle of the metamorphosis. On tbe other hand,
the second case is not very obvious to the user, who might be
surprised by how the lines interpolate. In any case, letting the user
see the interpolated position helps him design a good set of begin-
ning and end positions.

3.5 Performance
For video-resolution images (720x486 pixels) with 100 line pairs,
this algorithm takes about 2 minutes per frame on a SGI 4D25. The
runtime is proportional to the number of lines times the number of
pixels in the image. For interactive placement of the lines, low
resolution images are typically used. As is usually the case with any
computer animation, the interactive design time is the dominant
time; it often takes 10 times as long to design a metamorphosis than
to compute the final frames.

4 Advantages and Disadvantages of this Tech-
nique

This technique has one big advantage over the mesh warping tech-
nique described in Wolberg’s book[15]: it is much more expressive.
The only positions that are used in the algorithm are ones the
animator explicitly created. For example, when morphing two faces,
the animator might draw line segments down the middle of the nose,
across the eyes, along the eyebrows, down the edges of the cheeks,
and along the hairline. Everything that is specified is moved exactly
as the animator wants them moved, and everything else is blended
smoothly based on those positions. Adding new line segments in-
creases control in that area without affecting things too much every-
where else.

This feature-based approach contrasts with the mesh warping tech-
nique. In the simplest version of that afgorithm, the animator must
specify in advance how many control points to use to control the
image. The animator must then take those given points and move
them to the correct locations. Points left unmodified by mistake or
points for which the animator could not find an associating feature
are still used by the warping algorithm. Often the animator will find
that he does not have enough control in some places and too much
in others. Every point exerts the same amount of influence as each
of the other points. Often the features that the animator is trying to
match are diagonal, whereas the mesh vertices start out vertical and
horizontal, and it is difficult for the animator to decide which mesh
vertices should be put along the diagonal line.

We have found that trying to position dozens of mesh points around
is like trying to push a rope; something is afways forced where you
don’t want it to go. Wkh our technique the control of the line
segments is very natural. Moving a line around has a very predict-
able effect. Extensions of the mesh warping technique to allow

38

Transform wrt 2 lines

Input Output

Computer Graphics, 26, 2, July 1992

For each pixel X in the destination image
find the corresponding U,V
find the X’ in the source image for that U,V
destinationlmage(X) = sourcelmage(X’)

Q

bv x

u

P

Destination Imw-ze

Q’

1-V x’

I

Source Image

Figure 1: Single line ptiir

In Figure 1, X’ is the location to sample the source image for the
pixel at X in the destination image. The location is at a distance v
(the distance from the line to the pixel in the source image) from the
line P’Q’. and at a proportion u along that line.

The algorithm transforms each pikel coordinate by a rotation, trans-
lation, itnd/or a scale, thereby transforming the whole image. All of
the pixels along the line in the source image are copied on top of the
line in the destination image. Because the u coordinate is normalized
try the length of the line, and the v coordinate is not (it is always
distance in pixels), the images is scaled along the direction of the
lines by the ratio of the lengths of the lines, The scale is only along
the direction of the line. We have tried scaling the v coordinate by
the length of the line, so that the scaling is always uniform, but found
that the given formulation is more useful.

I I I I I I I I I I I I 1 Ill I I I 1 I I I
I I I]iHtlHtli!llllllllllll lli\l]lL1/11

I

, ,

Figure 2: Single line pair examples

The figure on the upper left is the original image. The line is rotated
inthe upper right image, translated inthelower left image, and
scaled in the lower right image, performing the corresponding trans-
formations to the image.

It is possible to get a pure rotation of an image if the two lines are
the same length. A pair of lines that are the same length and orien-

tation but different positions specifies a translation of an image. All
transformations based on a single line pair are affine, but not all
affine transformations are possible. In particular, uniform scales and
shears are not possible to specify.

3.3 Transformation with Multiple Pairs of Lines
Multiple pairs of lines specify more complex transformations. A
weighting of the coordinate transformations for each line is per-
formed. A position Xi’ is calculated for each pair of lines. The
displacement Di=Xi’ - Xis the difference between the pixel location
inthesource and destination images, anda weighted average of
those displacements is calculated. The weight is determined by the
distance from X to the line, This average displacement is added to
the current pixel location X to determine the position X’ to sample
in the source image. The single Iine case falls out as a special case
of the multiple Iinecase, assuming the weight never goes to zero
anywhere in the image. The weight aisigned to each line should be
strongest when the pixel is exactly on the line, and weaker the further
the pixel is from it. The equation wc use is

(4)

where length is the length of a line. dist is the distancet from the
pixel to the line, and a, b, and p are constants that can be used to
change the relative effect of the lines.

If a is barely greater than zero, then if the distance from the line to
the pixel is zero, the strength is nearly infinite. With this value for
a, the user knows that pixels on the line will go exactly where he
wants them. Values larger than that will yield a more smooth warp
in,g,but with less precise control. The variable b determines how the
relative strength of different lines Falls off with distance. If it is large,
then every pixel will be affected only by the line nearest it. Ifb is
zero, then each pixel will be affected by all lines equally. Values of
bin the range [().5, 2] are the most useful. The value ofp is typically
in the range [0, 1]; if it is zero, then all lines have the same weight.
if it is one, then longer lines have a greater relative weight than
shorter lines,

The multiple line algorithm is as follows:

For each pixel X in the destination
DSUM = (0,0)
rveightsunr = ()
For each line Pi Qi

calculate U,V based on Pi Qi
calculate X’i based on U,V and Pi’Qi’
calculate displacement Di = Xi’ - Xi for this line
rfist = shortest distance from X to Pi Qi
weight = (fengl~ / (a + dist))b
DSUM += Di * weight
weightsum += weight

X’= X + DSUM / weightsum
destinationlmage(X) = sourceImage(X’)

* Note that because these “lines” are directed line segments, the
distance from a line to a point is abs(v) if 0< u <1, the distance from
P to the point if u <O, and the distance from Q to the point if u >1.

37

Single line transforms

Input

Output 2

Output 1

Output 3

Transform wrt 1 segment
Define a coordinate system with respect to
segment
- 1 dimension, u, along segment
- 1 dimension, v, orthogonal to segment
Compute u, v in one image
- The after one, because we use the inverse

transform
Compute point corresponding to u, v in
second image

CS 89/189: Computational Photography, Fall 2015 69

Computer Graphics, 26, 2, July 1992

For each pixel X in the destination image
find the corresponding U,V
find the X’ in the source image for that U,V
destinationlmage(X) = sourcelmage(X’)

Q

bv x

u

P

Destination Imw-ze

Q’

1-V x’

I

Source Image

Figure 1: Single line ptiir

In Figure 1, X’ is the location to sample the source image for the
pixel at X in the destination image. The location is at a distance v
(the distance from the line to the pixel in the source image) from the
line P’Q’. and at a proportion u along that line.

The algorithm transforms each pikel coordinate by a rotation, trans-
lation, itnd/or a scale, thereby transforming the whole image. All of
the pixels along the line in the source image are copied on top of the
line in the destination image. Because the u coordinate is normalized
try the length of the line, and the v coordinate is not (it is always
distance in pixels), the images is scaled along the direction of the
lines by the ratio of the lengths of the lines, The scale is only along
the direction of the line. We have tried scaling the v coordinate by
the length of the line, so that the scaling is always uniform, but found
that the given formulation is more useful.

I I I I I I I I I I I I 1 Ill I I I 1 I I I
I I I]iHtlHtli!llllllllllll lli\l]lL1/11

I

, ,

Figure 2: Single line pair examples

The figure on the upper left is the original image. The line is rotated
inthe upper right image, translated inthelower left image, and
scaled in the lower right image, performing the corresponding trans-
formations to the image.

It is possible to get a pure rotation of an image if the two lines are
the same length. A pair of lines that are the same length and orien-

tation but different positions specifies a translation of an image. All
transformations based on a single line pair are affine, but not all
affine transformations are possible. In particular, uniform scales and
shears are not possible to specify.

3.3 Transformation with Multiple Pairs of Lines
Multiple pairs of lines specify more complex transformations. A
weighting of the coordinate transformations for each line is per-
formed. A position Xi’ is calculated for each pair of lines. The
displacement Di=Xi’ - Xis the difference between the pixel location
inthesource and destination images, anda weighted average of
those displacements is calculated. The weight is determined by the
distance from X to the line, This average displacement is added to
the current pixel location X to determine the position X’ to sample
in the source image. The single Iine case falls out as a special case
of the multiple Iinecase, assuming the weight never goes to zero
anywhere in the image. The weight aisigned to each line should be
strongest when the pixel is exactly on the line, and weaker the further
the pixel is from it. The equation wc use is

(4)

where length is the length of a line. dist is the distancet from the
pixel to the line, and a, b, and p are constants that can be used to
change the relative effect of the lines.

If a is barely greater than zero, then if the distance from the line to
the pixel is zero, the strength is nearly infinite. With this value for
a, the user knows that pixels on the line will go exactly where he
wants them. Values larger than that will yield a more smooth warp
in,g,but with less precise control. The variable b determines how the
relative strength of different lines Falls off with distance. If it is large,
then every pixel will be affected only by the line nearest it. Ifb is
zero, then each pixel will be affected by all lines equally. Values of
bin the range [().5, 2] are the most useful. The value ofp is typically
in the range [0, 1]; if it is zero, then all lines have the same weight.
if it is one, then longer lines have a greater relative weight than
shorter lines,

The multiple line algorithm is as follows:

For each pixel X in the destination
DSUM = (0,0)
rveightsunr = ()
For each line Pi Qi

calculate U,V based on Pi Qi
calculate X’i based on U,V and Pi’Qi’
calculate displacement Di = Xi’ - Xi for this line
rfist = shortest distance from X to Pi Qi
weight = (fengl~ / (a + dist))b
DSUM += Di * weight
weightsum += weight

X’= X + DSUM / weightsum
destinationlmage(X) = sourceImage(X’)

* Note that because these “lines” are directed line segments, the
distance from a line to a point is abs(v) if 0< u <1, the distance from
P to the point if u <O, and the distance from Q to the point if u >1.

37

Computer Graphics, 26, 2, July 1992

For each pixel X in the destination image
find the corresponding U,V
find the X’ in the source image for that U,V
destinationlmage(X) = sourcelmage(X’)

Q

bv x

u

P

Destination Imw-ze

Q’

1-V x’

I

Source Image

Figure 1: Single line ptiir

In Figure 1, X’ is the location to sample the source image for the
pixel at X in the destination image. The location is at a distance v
(the distance from the line to the pixel in the source image) from the
line P’Q’. and at a proportion u along that line.

The algorithm transforms each pikel coordinate by a rotation, trans-
lation, itnd/or a scale, thereby transforming the whole image. All of
the pixels along the line in the source image are copied on top of the
line in the destination image. Because the u coordinate is normalized
try the length of the line, and the v coordinate is not (it is always
distance in pixels), the images is scaled along the direction of the
lines by the ratio of the lengths of the lines, The scale is only along
the direction of the line. We have tried scaling the v coordinate by
the length of the line, so that the scaling is always uniform, but found
that the given formulation is more useful.

I I I I I I I I I I I I 1 Ill I I I 1 I I I
I I I]iHtlHtli!llllllllllll lli\l]lL1/11

I

, ,

Figure 2: Single line pair examples

The figure on the upper left is the original image. The line is rotated
inthe upper right image, translated inthelower left image, and
scaled in the lower right image, performing the corresponding trans-
formations to the image.

It is possible to get a pure rotation of an image if the two lines are
the same length. A pair of lines that are the same length and orien-

tation but different positions specifies a translation of an image. All
transformations based on a single line pair are affine, but not all
affine transformations are possible. In particular, uniform scales and
shears are not possible to specify.

3.3 Transformation with Multiple Pairs of Lines
Multiple pairs of lines specify more complex transformations. A
weighting of the coordinate transformations for each line is per-
formed. A position Xi’ is calculated for each pair of lines. The
displacement Di=Xi’ - Xis the difference between the pixel location
inthesource and destination images, anda weighted average of
those displacements is calculated. The weight is determined by the
distance from X to the line, This average displacement is added to
the current pixel location X to determine the position X’ to sample
in the source image. The single Iine case falls out as a special case
of the multiple Iinecase, assuming the weight never goes to zero
anywhere in the image. The weight aisigned to each line should be
strongest when the pixel is exactly on the line, and weaker the further
the pixel is from it. The equation wc use is

(4)

where length is the length of a line. dist is the distancet from the
pixel to the line, and a, b, and p are constants that can be used to
change the relative effect of the lines.

If a is barely greater than zero, then if the distance from the line to
the pixel is zero, the strength is nearly infinite. With this value for
a, the user knows that pixels on the line will go exactly where he
wants them. Values larger than that will yield a more smooth warp
in,g,but with less precise control. The variable b determines how the
relative strength of different lines Falls off with distance. If it is large,
then every pixel will be affected only by the line nearest it. Ifb is
zero, then each pixel will be affected by all lines equally. Values of
bin the range [().5, 2] are the most useful. The value ofp is typically
in the range [0, 1]; if it is zero, then all lines have the same weight.
if it is one, then longer lines have a greater relative weight than
shorter lines,

The multiple line algorithm is as follows:

For each pixel X in the destination
DSUM = (0,0)
rveightsunr = ()
For each line Pi Qi

calculate U,V based on Pi Qi
calculate X’i based on U,V and Pi’Qi’
calculate displacement Di = Xi’ - Xi for this line
rfist = shortest distance from X to Pi Qi
weight = (fengl~ / (a + dist))b
DSUM += Di * weight
weightsum += weight

X’= X + DSUM / weightsum
destinationlmage(X) = sourceImage(X’)

* Note that because these “lines” are directed line segments, the
distance from a line to a point is abs(v) if 0< u <1, the distance from
P to the point if u <O, and the distance from Q to the point if u >1.

37

Computing u, v
u = PX.PQ/||PQ||2
- this way u is 0 at P and 1 at Q
v = PX.perpendicular(PQ)/||PQ||
- where perpendicular(PQ) is PQ rotated by  

90 degrees, and has length ||PQ||
- unlike u which is normalized, v is in distance units

CS 89/189: Computational Photography, Fall 2015 70

Computer Graphics, 26, 2, July 1992

For each pixel X in the destination image
find the corresponding U,V
find the X’ in the source image for that U,V
destinationlmage(X) = sourcelmage(X’)

Q

bv x

u

P

Destination Imw-ze

Q’

1-V x’

I

Source Image

Figure 1: Single line ptiir

In Figure 1, X’ is the location to sample the source image for the
pixel at X in the destination image. The location is at a distance v
(the distance from the line to the pixel in the source image) from the
line P’Q’. and at a proportion u along that line.

The algorithm transforms each pikel coordinate by a rotation, trans-
lation, itnd/or a scale, thereby transforming the whole image. All of
the pixels along the line in the source image are copied on top of the
line in the destination image. Because the u coordinate is normalized
try the length of the line, and the v coordinate is not (it is always
distance in pixels), the images is scaled along the direction of the
lines by the ratio of the lengths of the lines, The scale is only along
the direction of the line. We have tried scaling the v coordinate by
the length of the line, so that the scaling is always uniform, but found
that the given formulation is more useful.

I I I I I I I I I I I I 1 Ill I I I 1 I I I
I I I]iHtlHtli!llllllllllll lli\l]lL1/11

I

, ,

Figure 2: Single line pair examples

The figure on the upper left is the original image. The line is rotated
inthe upper right image, translated inthelower left image, and
scaled in the lower right image, performing the corresponding trans-
formations to the image.

It is possible to get a pure rotation of an image if the two lines are
the same length. A pair of lines that are the same length and orien-

tation but different positions specifies a translation of an image. All
transformations based on a single line pair are affine, but not all
affine transformations are possible. In particular, uniform scales and
shears are not possible to specify.

3.3 Transformation with Multiple Pairs of Lines
Multiple pairs of lines specify more complex transformations. A
weighting of the coordinate transformations for each line is per-
formed. A position Xi’ is calculated for each pair of lines. The
displacement Di=Xi’ - Xis the difference between the pixel location
inthesource and destination images, anda weighted average of
those displacements is calculated. The weight is determined by the
distance from X to the line, This average displacement is added to
the current pixel location X to determine the position X’ to sample
in the source image. The single Iine case falls out as a special case
of the multiple Iinecase, assuming the weight never goes to zero
anywhere in the image. The weight aisigned to each line should be
strongest when the pixel is exactly on the line, and weaker the further
the pixel is from it. The equation wc use is

(4)

where length is the length of a line. dist is the distancet from the
pixel to the line, and a, b, and p are constants that can be used to
change the relative effect of the lines.

If a is barely greater than zero, then if the distance from the line to
the pixel is zero, the strength is nearly infinite. With this value for
a, the user knows that pixels on the line will go exactly where he
wants them. Values larger than that will yield a more smooth warp
in,g,but with less precise control. The variable b determines how the
relative strength of different lines Falls off with distance. If it is large,
then every pixel will be affected only by the line nearest it. Ifb is
zero, then each pixel will be affected by all lines equally. Values of
bin the range [().5, 2] are the most useful. The value ofp is typically
in the range [0, 1]; if it is zero, then all lines have the same weight.
if it is one, then longer lines have a greater relative weight than
shorter lines,

The multiple line algorithm is as follows:

For each pixel X in the destination
DSUM = (0,0)
rveightsunr = ()
For each line Pi Qi

calculate U,V based on Pi Qi
calculate X’i based on U,V and Pi’Qi’
calculate displacement Di = Xi’ - Xi for this line
rfist = shortest distance from X to Pi Qi
weight = (fengl~ / (a + dist))b
DSUM += Di * weight
weightsum += weight

X’= X + DSUM / weightsum
destinationlmage(X) = sourceImage(X’)

* Note that because these “lines” are directed line segments, the
distance from a line to a point is abs(v) if 0< u <1, the distance from
P to the point if u <O, and the distance from Q to the point if u >1.

37

Transforming a point given u, v
X’ = P’ + u*P’Q + v*perpendicular(P’Q’)/||P’Q’||
The u component is scaled according to segment
scaling
But v is absolute (see output3)
- They say they tried to scale v as well but it 

didn’t work as well

CS 89/189: Computational Photography, Fall 2015 71

Computer Graphics, 26, 2, July 1992

For each pixel X in the destination image
find the corresponding U,V
find the X’ in the source image for that U,V
destinationlmage(X) = sourcelmage(X’)

Q

bv x

u

P

Destination Imw-ze

Q’

1-V x’

I

Source Image

Figure 1: Single line ptiir

In Figure 1, X’ is the location to sample the source image for the
pixel at X in the destination image. The location is at a distance v
(the distance from the line to the pixel in the source image) from the
line P’Q’. and at a proportion u along that line.

The algorithm transforms each pikel coordinate by a rotation, trans-
lation, itnd/or a scale, thereby transforming the whole image. All of
the pixels along the line in the source image are copied on top of the
line in the destination image. Because the u coordinate is normalized
try the length of the line, and the v coordinate is not (it is always
distance in pixels), the images is scaled along the direction of the
lines by the ratio of the lengths of the lines, The scale is only along
the direction of the line. We have tried scaling the v coordinate by
the length of the line, so that the scaling is always uniform, but found
that the given formulation is more useful.

I I I I I I I I I I I I 1 Ill I I I 1 I I I
I I I]iHtlHtli!llllllllllll lli\l]lL1/11

I

, ,

Figure 2: Single line pair examples

The figure on the upper left is the original image. The line is rotated
inthe upper right image, translated inthelower left image, and
scaled in the lower right image, performing the corresponding trans-
formations to the image.

It is possible to get a pure rotation of an image if the two lines are
the same length. A pair of lines that are the same length and orien-

tation but different positions specifies a translation of an image. All
transformations based on a single line pair are affine, but not all
affine transformations are possible. In particular, uniform scales and
shears are not possible to specify.

3.3 Transformation with Multiple Pairs of Lines
Multiple pairs of lines specify more complex transformations. A
weighting of the coordinate transformations for each line is per-
formed. A position Xi’ is calculated for each pair of lines. The
displacement Di=Xi’ - Xis the difference between the pixel location
inthesource and destination images, anda weighted average of
those displacements is calculated. The weight is determined by the
distance from X to the line, This average displacement is added to
the current pixel location X to determine the position X’ to sample
in the source image. The single Iine case falls out as a special case
of the multiple Iinecase, assuming the weight never goes to zero
anywhere in the image. The weight aisigned to each line should be
strongest when the pixel is exactly on the line, and weaker the further
the pixel is from it. The equation wc use is

(4)

where length is the length of a line. dist is the distancet from the
pixel to the line, and a, b, and p are constants that can be used to
change the relative effect of the lines.

If a is barely greater than zero, then if the distance from the line to
the pixel is zero, the strength is nearly infinite. With this value for
a, the user knows that pixels on the line will go exactly where he
wants them. Values larger than that will yield a more smooth warp
in,g,but with less precise control. The variable b determines how the
relative strength of different lines Falls off with distance. If it is large,
then every pixel will be affected only by the line nearest it. Ifb is
zero, then each pixel will be affected by all lines equally. Values of
bin the range [().5, 2] are the most useful. The value ofp is typically
in the range [0, 1]; if it is zero, then all lines have the same weight.
if it is one, then longer lines have a greater relative weight than
shorter lines,

The multiple line algorithm is as follows:

For each pixel X in the destination
DSUM = (0,0)
rveightsunr = ()
For each line Pi Qi

calculate U,V based on Pi Qi
calculate X’i based on U,V and Pi’Qi’
calculate displacement Di = Xi’ - Xi for this line
rfist = shortest distance from X to Pi Qi
weight = (fengl~ / (a + dist))b
DSUM += Di * weight
weightsum += weight

X’= X + DSUM / weightsum
destinationlmage(X) = sourceImage(X’)

* Note that because these “lines” are directed line segments, the
distance from a line to a point is abs(v) if 0< u <1, the distance from
P to the point if u <O, and the distance from Q to the point if u >1.

37

Computer Graphics, 26, 2, July 1992

For each pixel X in the destination image
find the corresponding U,V
find the X’ in the source image for that U,V
destinationlmage(X) = sourcelmage(X’)

Q

bv x

u

P

Destination Imw-ze

Q’

1-V x’

I

Source Image

Figure 1: Single line ptiir

In Figure 1, X’ is the location to sample the source image for the
pixel at X in the destination image. The location is at a distance v
(the distance from the line to the pixel in the source image) from the
line P’Q’. and at a proportion u along that line.

The algorithm transforms each pikel coordinate by a rotation, trans-
lation, itnd/or a scale, thereby transforming the whole image. All of
the pixels along the line in the source image are copied on top of the
line in the destination image. Because the u coordinate is normalized
try the length of the line, and the v coordinate is not (it is always
distance in pixels), the images is scaled along the direction of the
lines by the ratio of the lengths of the lines, The scale is only along
the direction of the line. We have tried scaling the v coordinate by
the length of the line, so that the scaling is always uniform, but found
that the given formulation is more useful.

I I I I I I I I I I I I 1 Ill I I I 1 I I I
I I I]iHtlHtli!llllllllllll lli\l]lL1/11

I

, ,

Figure 2: Single line pair examples

The figure on the upper left is the original image. The line is rotated
inthe upper right image, translated inthelower left image, and
scaled in the lower right image, performing the corresponding trans-
formations to the image.

It is possible to get a pure rotation of an image if the two lines are
the same length. A pair of lines that are the same length and orien-

tation but different positions specifies a translation of an image. All
transformations based on a single line pair are affine, but not all
affine transformations are possible. In particular, uniform scales and
shears are not possible to specify.

3.3 Transformation with Multiple Pairs of Lines
Multiple pairs of lines specify more complex transformations. A
weighting of the coordinate transformations for each line is per-
formed. A position Xi’ is calculated for each pair of lines. The
displacement Di=Xi’ - Xis the difference between the pixel location
inthesource and destination images, anda weighted average of
those displacements is calculated. The weight is determined by the
distance from X to the line, This average displacement is added to
the current pixel location X to determine the position X’ to sample
in the source image. The single Iine case falls out as a special case
of the multiple Iinecase, assuming the weight never goes to zero
anywhere in the image. The weight aisigned to each line should be
strongest when the pixel is exactly on the line, and weaker the further
the pixel is from it. The equation wc use is

(4)

where length is the length of a line. dist is the distancet from the
pixel to the line, and a, b, and p are constants that can be used to
change the relative effect of the lines.

If a is barely greater than zero, then if the distance from the line to
the pixel is zero, the strength is nearly infinite. With this value for
a, the user knows that pixels on the line will go exactly where he
wants them. Values larger than that will yield a more smooth warp
in,g,but with less precise control. The variable b determines how the
relative strength of different lines Falls off with distance. If it is large,
then every pixel will be affected only by the line nearest it. Ifb is
zero, then each pixel will be affected by all lines equally. Values of
bin the range [().5, 2] are the most useful. The value ofp is typically
in the range [0, 1]; if it is zero, then all lines have the same weight.
if it is one, then longer lines have a greater relative weight than
shorter lines,

The multiple line algorithm is as follows:

For each pixel X in the destination
DSUM = (0,0)
rveightsunr = ()
For each line Pi Qi

calculate U,V based on Pi Qi
calculate X’i based on U,V and Pi’Qi’
calculate displacement Di = Xi’ - Xi for this line
rfist = shortest distance from X to Pi Qi
weight = (fengl~ / (a + dist))b
DSUM += Di * weight
weightsum += weight

X’= X + DSUM / weightsum
destinationlmage(X) = sourceImage(X’)

* Note that because these “lines” are directed line segments, the
distance from a line to a point is abs(v) if 0< u <1, the distance from
P to the point if u <O, and the distance from Q to the point if u >1.

37

Input

Output 2

Output 1

Output 3

Questions?

CS 89/189: Computational Photography, Fall 2015 72

Multiple segments
For each point X
- For each segment pair sbefore[i], safter[i]

• Transform X into X’i

- Compute weighted average of all transformed X’i

• weight according to distance to 
segments

CS 89/189: Computational Photography, Fall 2015 73

4 Warping and morphing

In what follows, you will implement image warping and morphing according to
Beier and Neely’s method, which was used for special e↵ects such as those of
Michael Jackson’s Black or WHite music vide http://www.youtube.com/watch?v=bBAiZcNWecw.
We highly recommend that you read the original article, which is well written
and includes important references such as Ghost Busters.

The full method for warping and morphing includes a number of techni-
cal components and it is critical that you debug them as you implement each
individual one.

4.1 Warping according to one pair of segments

The core component is a method to transform an image according to the dis-
placement of a segment. We recommend that you implement a segment class
with a constructor that takes 4 floating point values x1, y1, x2, y2 because
this is what our (hacky) UI provides. We also highly recommend to represent
2D points as bumpy arrays of size 2. Be careful with the order of x and y. 2D
coordinates are most often represented in the order x, y, but our images follow
y, x. It is up to you to decide how you will represent your points, but make sure
things reordered correctly.

Consider a pair of segments, corresponding to a before and after configura-
tion. You need to implement the computation of the u and v coordinates of a
2D point with respect to a segment as described in the slides and in the paper.
Given these coordinates, you can then compute the new x, y position of this
point given the location of the other segment. Use simple examples to test your
method

Once you are convinced that you can transform 2D points according to a
pair of before/after segments, implement a resampling function that warps an
entire image according to such a pair of segments. Again, use simple examples
to test this function. Once you are done with this, you have completed the
hardest part of the assignment.

4.2 Warping according to multiple pairs of segments

Extend the above code to perform transformations according to multiple pairs
of segments. For each pixel, transform its 2D coordinates according to each
pair of segments and take a weighted average according to the length of each
segment and the distance of the pixel to the segments. More specifically, the
weight is given according to Beier and Neely:

weight =
✓

length

p

a + dist

◆b

where a, b, p are parameters that control the interpolation. In our test, we have
used b = p = 1 and a equal to roughly 10% of the image.

3

where a, b, p control the influence

SIGGRAPH ’92 Chicago, July 26-31, 1992

vQ2
1

VI x V2

U2

P2
UI

\P,

Destination Image

Figure 3: M

QJ’

P

x
VD

2’

x,’ z

x’ U2

2 P2u, X2’

1P, ‘

Source Image

IIeline pairs

In the above figure, X is the location to sample the source image for
the pixel at X ~n the destination image. That location is a weighted
average of the two pixel locations Xl’ and X2’, computed with
respect to the first and second line pair, respectively.

If the value a is set to zero there is an undefined result if two lines
cross, Each line will have an infinite weight at the intersection point.
We quote the line from Ghostbusters: “Don’t cross the streams.
Why? [t would be bad.” This gets the point across, and in practice
does not seem to be too much of a limitation. The animator’s mental
model when working with the program is that each line has a field
of influence around it, and will force pixels near it to stay in the
corresponding position relative to the line as the line animates. The
closer the pixels are to a line, the more closely they follow the motion
of that line, regardless of the motion of other lines. This mental
model gives the animator a good intuitive feel for what will happen
as he designs a metamorphosis.

Figure 4: Multiple line pair example

With two or more lines, the transformation is not simple. The figure
on the left is the original image, it is distorted by rotating the line
above the F around its first point. The whole image is distotted by
this transformation. It is still not ~ssible to do a uniform scale or a
shear with multiple lines. Almost any pair of lines results in a non-
affine transformation. Still, it is fairly obvious to the user what
happens when lines are added and moved. Pixels near the lines are
moved along with the lines, pixels equally far away from two lines
are influenced by both of them.

3.4 Morphing Between Tkuo Images
A morph operation blends between two images, 10 and 11. To do
this, we define corresponding lines in/0 and 11. Each intermediate
frame /of the metamorphosis is defined by creating anew set of line

segments by interpolating the lines from their positions in 10 to the
positions in 11. Both images 10 and II are distorted toward the
position of the lines in f. These two resulting images are cross-
dissolved throughout the metamorphosis, so that at the beginning,
tbe image is completely IO (undistorted because we have not yet
begun to interpolate away from the line positions associated with
/0). Halfway through the metamorphosis it is halfway between 10
and 11, and finally at the end it is completely 11. Note that there is a
chance that in some of the intermediate frames, two lines may cross
even if they did not cross in the source images.

We have used two different ways of interpolating the lines. The first
way is just to interpolate the endpoints of each line. The second way
is to interpolate the center position and orientation of each line, and
interpolate the length of each line. In the first case, a rotating line
would shrink in the middle of the metamorphosis. On tbe other hand,
the second case is not very obvious to the user, who might be
surprised by how the lines interpolate. In any case, letting the user
see the interpolated position helps him design a good set of begin-
ning and end positions.

3.5 Performance
For video-resolution images (720x486 pixels) with 100 line pairs,
this algorithm takes about 2 minutes per frame on a SGI 4D25. The
runtime is proportional to the number of lines times the number of
pixels in the image. For interactive placement of the lines, low
resolution images are typically used. As is usually the case with any
computer animation, the interactive design time is the dominant
time; it often takes 10 times as long to design a metamorphosis than
to compute the final frames.

4 Advantages and Disadvantages of this Tech-
nique

This technique has one big advantage over the mesh warping tech-
nique described in Wolberg’s book[15]: it is much more expressive.
The only positions that are used in the algorithm are ones the
animator explicitly created. For example, when morphing two faces,
the animator might draw line segments down the middle of the nose,
across the eyes, along the eyebrows, down the edges of the cheeks,
and along the hairline. Everything that is specified is moved exactly
as the animator wants them moved, and everything else is blended
smoothly based on those positions. Adding new line segments in-
creases control in that area without affecting things too much every-
where else.

This feature-based approach contrasts with the mesh warping tech-
nique. In the simplest version of that afgorithm, the animator must
specify in advance how many control points to use to control the
image. The animator must then take those given points and move
them to the correct locations. Points left unmodified by mistake or
points for which the animator could not find an associating feature
are still used by the warping algorithm. Often the animator will find
that he does not have enough control in some places and too much
in others. Every point exerts the same amount of influence as each
of the other points. Often the features that the animator is trying to
match are diagonal, whereas the mesh vertices start out vertical and
horizontal, and it is difficult for the animator to decide which mesh
vertices should be put along the diagonal line.

We have found that trying to position dozens of mesh points around
is like trying to push a rope; something is afways forced where you
don’t want it to go. Wkh our technique the control of the line
segments is very natural. Moving a line around has a very predict-
able effect. Extensions of the mesh warping technique to allow

38

Transform wrt 2 lines

Input Output

Distance to a segment
Multiple cases…
- dot product, test > 0, < 1

CS 89/189: Computational Photography, Fall 2015 74

Debugging: example
Debugging my distance function

CS 89/189: Computational Photography, Fall 2015 75

Morphing

CS 89/189: Computational Photography, Fall 2015

Input images

77

CS 89/189: Computational Photography, Fall 2015

Segments

78

CS 89/189: Computational Photography, Fall 2015

Interpolate segments

79

t=0.5

CS 89/189: Computational Photography, Fall 2015

Warp images to segments[t]

80

The red segments are at the
same location in both images
Image features such as eyes

are aligned

CS 89/189: Computational Photography, Fall 2015

Interpolate color

81

Result

Recap
For each intermediate frame It
- Interpolate segment locations yti= (1- t) x0i + t x1i

- Perform two warps: one for I0, one for I1

• Deduce a dense warp field from the pairs of features

• Warp the pixels

- Linearly interpolate the two warped images

CS 89/189: Computational Photography, Fall 2015 83

Uses the very technique we just studied

Michael Jackson’ BW

84

Gondry’s Rolling Stones video

More morphing madness

85

Women in Art video
http://youtube.com/watch?v=nUDIoN-_Hxs

CS 89/189: Computational Photography, Fall 2015 86Slide Alyosha Efros

http://youtube.com/watch?v=nUDIoN-_Hxs

1988, special effects by ILM (first use of morphing)

Willow

87

Slide credits
Frédo Durand
Marc Levoy

CS 89/189: Computational Photography, Fall 2015 90

