

DOMAIN TRANSFORMS, WARPING & MORPHING

Wojciech Jarosz wojciech.k.jarosz@dartmouth.edu

Most slides stolen from Frédo Durand

Dartmouth

CS 89.15/189.5, Fall 2015

Last time

HDR and tone mapping

- Questions?
- Questions?
- includes solutions to filtering assignment
- compare yours to the solution

Filtering + convolution assignment was due last night

HDR + tone mapping assignment out now, due next Wed

Domain, range

Domain vs. range

2D plane: domain of images

color value: range (R³ for us)

- red, green and blue components stored in im(x, y, 0), im(x, y, 1), im(x, y, 2), respectively

After a slide by Frédo Durand

Basic types of operations

image(x,y)

After a slide by Frédo Durand

CS 89/189: Computational Photography, Fall 2015

output(x,y) = f(image(x,y))Point operations: range only **Assignment 2**

Basic types of operations

image(x,y)

After a slide by Frédo Durand

CS 89/189: Computational Photography, Fall 2015

output(x,y) = f(image(x,y))Point operations: range only **Assignment 2**

Neighborhood operations: domain and range Assignments 3, 4, 5

Basic types of operations

image(x,y)

outpu

After a slide by Frédo Durand

Neighborhood operations: domain and range Assignments 3, 4, 5

Domain operations

Domain transform

have color c in the output

Apply a function f from R^2 to R^2 to the image domain if im(x, y) had color c in the input, then im(f(x, y)) should

Transformation

Simple parametric transformations

- linear, affine, perspective, etc

translatio

n

CS 89/189: Computational Photography, Fall 2015

rotation

aspect

perspective

cylindrical

illustration by Rick Szeliski

Warping

Imagine your image is made of rubber; warp the rubber

No prairie dogs were armed when creating this image

Application of warping: weight loss

Liquify in photoshop

The Liquify filter's Warp tool pushes pixels forward as you drag.

Step Three:

Get the Push Left tool from the Toolbar (as shown here). It was called the Shift Pixels tool in Photoshop 6 and 7, but Adobe realized that you were getting used to the name, so they changed it, just to keep you off balance.

Step Four:

Choose a relatively small brush size (like the one shown here) using the Brush Size field near the top-right of the Liquify dialog. With it, paint a downward stroke starting just above and outside the love handle and continuing downward. The pixels shifts back in toward the body, removing the love handle as you paint. (Note: If you need to remove love handles on the left side of the body, paint upward rather than downward. Why? That's just the way it works.) When you click OK, the love handle repair is complete.

Domain transform issues

Apply a function f from R^2 to R^2 to the image domain looks easy enough

But 2.5 big issues:

- which direction do we transform
- how do we deal with non-integer coordinates?

- And for warping: how do we specify f?

Questions?

Basic resampling

Naive scaling

Loop over input pixels and transform them to their output location - im(x, y) => out(k*x, k*y)

																		-	H	-	H	-	-				-						
						-													н			-											-
						-	-	-					-			::			н			-					-						-
																											-						
																											-	-					
												1															-	ш					
																											-						H
																																	-
									-																								
									-	-																							
									-	-	-		-	: :																			
											н		н	: :																			:::
														::		11												-					
																												-					
																									-								
																											-						•••
																:	:										-						
														: :																			
																	::																::
		-	-												-																		:
																														:::			•••
: :			: ::																														
							:																										

Use the inverse transform!!!!!

Main loop on output pixels - $out(x, y) \le im(x/k, y/k)$

Take-home message

Main loop over OUTPUT pixels use INVERSE transform

Questions?

CS 89/189: Computational Photography, Fall 2015

ge ixels

Remaining problem

A little too "blocky"

- called nearest neighbor reconstruction

Because we round to the nearest integer pixel coord.

Linear reconstruction

Consider a 1D image/array (im) along x reconstruct im[1.3] =0.7*im[1]+0.3*im[2] lerp function Φ

rang

Bilinear reconstruction

Take 4 nearest neighbors Weight according to x & y fractional coordinates x then y (or y then x)

CS 89/189: Computational Photography, Fall 2015

Can be done using two 1D linear reconstructions along

Bilinear linear interpolation along x: U = lerp(im(5,25), im(6,25), .3)im(5, 25)im(6, 25)linear interpolation along y: im(5.3, 25.2) lerp(U, L, .2) im(5, 26)im(6, 26)linear interpolation along x: L = lerp(im(5,26), im(6,26), .3)

Recall nearest neighbor

Bilinear

Take home messages

- Main loop over OUTPUT pixels
- Makes sure you cover all of them
- Use INVERSE transform
- Reconstruction makes a difference
- Linear much better than nearest neighbor

Questions?

Better reconstruction

Consider more than 4 pixels:

- bicubic, Lanczos, etc.
- Try to sharpen/preserve edges
- Use training database of low-res/high-res pairs
- http://people.csail.mit.edu/billf/superres/index.html

Bilinear

Bicubic (Photoshop)

Questions?

Padding

Padding problems

Sometimes, we try to read outside the image

- e.g. x, y are negative
- For example, we try to rotate an image

Black Padding

Edge Padding

Questions?

Warping & Norphing

Important scientific question Angry Fredo

How to turn Dr. Jekyll into Mr. Hyde?

How to turn a man into a werewolf?

Powerpoint cross-fading?

American Werewolf Important scientific question in London

How to turn Dr. Jekyll into Mr. Hyde?

How to turn a man into a werewolf?

Powerpoint cross-fading? or

Image Warping & Morphing

Digression: old metamorphoses

http://en.wikipedia.org/wiki/ The Strange Case of Dr. Jekyll and Mr. Hyde

http://www.eatmybrains.com/showtopten.php?id=15

http://www.horror-wood.com/next_gen_jekyll.htm

Unless I'm mistaken, both employ the trick of making already-applied makeup turn visible via changes in the color of the lighting, something that works only in blackand-white cinematography. It's an interesting alternative to the more familiar Wolf Man time-lapse dissolves. This technique was used to great effect on Fredric March in Rouben Mamoulian's 1932 film of Dr. Jekyll and Mr. Hyde, although Spencer Tracy eschewed extreme makeup for his 1941 portrayal.

ekyll and Mr. Hyde, 1932

1932 Mr. Hyde, o n e e ky \mathbf{D}

and Mr. Hyde, 1932 eky \mathbf{Z} Dr.

194 and Mr. Hyde, e <>

Challenge

"Smoothly" transform a face into another Related: slow motion interpolation - interpolate between key frames

Averaging images

Cross-fading output(x, y) = t * im1(x, y) + (1-t) * im2(x, y)

Problem with cross fading

Features (eyes, mouth, etc) are not aligned It is probably not possible to get a global alignment We need to interpolate the LOCATION of features

Averaging points (location)

P & Q are two 2D points (in the "domain")

V = t P + (1-t) Q

Warping

Move pixel spatially: C'(x,y) = C(f(x,y))Leave colors unchanged

Warping

- Deform the domain of images (not range)
- Central to morphing Also useful for
- Optical aberration correction
- Video stabilization
- Slimming people down

original image

DxO Optics Pro correction

Recap & questions

Color (range) interpolation (lerp):

- output(x, y) = t * im1(x, y) + (1-t) * im2(x, y)
- Location (domain) interpolation (lerp):
- -V = tP + (1-t)Q
- Warping: domain transform
- out(x,y)=im(f-1(x,y))

Morphing: combine both

For each pixel

- Transform its location like a vector (domain)
- Then linearly interpolate colors (range)

vector (domain) olors (range)

CS 89/189: Computational Photography, Fall 2015

User specifies sparse correspondences on the images

- image sequence I_t , with $t \in [0, 1[$

Expected output:

Input: two images I_0 and I_1

Morphing

Morphing

For each intermediate frame I_t

- Interpolate feature locations $P_i^t = (1 t) P_i^0 + t P_i^1$
- Perform two warps: one for I_0 , one for I_1
 - Deduce a dense warp field from the pairs of features
 - Warp the pixels
- Linearly interpolate the two warped images

Warping

How do we specify the warp?

Before, we saw simple transformations

- linear, affine, perspective

translatio n

But we want more flexibility

CS 89/189: Computational Photography, Fall 2015

rotation

perspective

aspect

cylindrical

affine

illustration by Rick Szeliski

Image Warping - parametric

Move control points to specify a spline warp Spline produces a smooth vector field

Slide Alyosha Efros

Warp specification - dense

How can we specify the warp?

- Specify corresponding spline control points
 - interpolate to a complete warping function

But we want to specify only a few points, not a grid

Slide Alyosha Efros

Warp specification - sparse

How can we specify the warp?

- Specify corresponding points
 - interpolate to a complete warping function

How do we go from feature points to pixels?

Slide Alyosha Efros

Beier and Neely

Specify warp based on pairs of segments

- "Feature-Based Metamorphosis", SIGGRAPH 1992
- Used in Michael Jackson's "Black and White" music video
- Assignment 6!!

Questions?

Segment-based warping

Problem statement

Inputs: One image, two lists of segments before and after, in the image domain the segments

Goal: warp the image "following" the displacement of

Idea

Each before/after pair of segment implies a planar transformation

- simple and linear

CS 89/189: Computational Photography, Fall 2015

Single line transforms

Idea

Each before/after pair of segment implies a planar transformation

- simple and linear

CS 89/189: Computational Photography, Fall 2015

Single line transforms

Test

 \rightarrow warpBy1(im, segment(0,0, 10,0), segment(10, 10, 30, 15)) \rightarrow

Idea

Each before/after pair of segment implies a planar transformation Then take weighted average of transformations

Single line transforms

CS 89/189: Computational Photography, Fall 2015

Transform wrt 2 lines

Transform wrt 1 segment

Define a coordinate system with respect to segment

- 1 dimension, u, along segment
- 1 dimension, v, orthogonal to segment
- Compute u, v in one image
- The after one, because we use the inverse transform
- Compute point corresponding to u, v in second image

Computing u, v

- $u = PX.PQ/||PQ||^2$
- this way u is 0 at P and 1 at Q
- v = PX.perpendicular(PQ)/||PQ||
- where perpendicular(PQ) is PQ rotated by 90 degrees, and has length ||PQ||
- unlike u which is normalized, v is in distance units

Transforming a point given u, v

- X' = P' + u*P'Q + v*perpendicular(P'Q')/||P'Q'||The u component is scaled according to segment
- The u component is scaled scaling
- But v is absolute (see output3)
- They say they tried to scale v as well but it didn't work as well it

Questions?

Multiple segments

For each point X

- For each segment pair sbefore[i], safter[i]
 - Transform X into X'i
- Compute weighted average of all transformed X'i
 - weight according to distance to segments $- \dots h$

$$weight = \left(\frac{length^p}{a+dist}\right)^\circ$$

where a, b, p control the influence

Distance to a segment

Multiple cases...

- dot product, test > 0, < 1

Debugging: example

Debugging my distance function

Norphing

Input images

Segments

Interpolate segments

t=0.5

Warp images to segments[t]

Image features such as eyes are aligned

CS 89/189: Computational Photography, Fall 2015

The red segments are at the same location in both images

Interpolate color

Result

Recap

For each intermediate frame I_t

- Interpolate segment locations $y_i^t = (1 t) x_i^0 + t x_i^1$
- Perform two warps: one for I_0 , one for I_1
 - Deduce a dense warp field from the pairs of features
 - Warp the pixels
- Linearly interpolate the two warped images

Michael Jackson' BW

Uses the very technique we just studied

More morphing madness

Gondry's Rolling Stones video

Women in Art video

http://youtube.com/watch?v=nUDloN-_Hxs

Willow

1988, special effects by ILM (first use of morphing)

Slide credits

Frédo Durand

Marc Levoy

