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f Problems with direct copy/paste

http://www.irisa.fr/vista/Papers/2003_siggraph_perez.pdf

cloning
sources/destinations
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http://www.irisa.fr/vista/Papers/2003_siggraph_perez.pdf

Solution: paste gradient

http://www.irisa.fr/vista/Papers/2003_siggraph_perez.pdf

seamless cloning

sources/destinations — hacky visualization of gradient
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http://fstoppers.com/proof-viral-hurricane-shark-photo-in-street-is-fake

SITTNS 1IN a L.5-NX | o
kayak and watching

a four-metre great
white approach you is

1 faurly ense exper
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¥ Photoshop healing brush

Slightly smarter version of what we learn today
- higher-order derivative in particular

- See also
http://www.petapixel.com/2011/03/02/how-to-use-
the-healing-brush-and-patch-tool-in-photoshop/
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¥ What is a gradient?

Derivative of a multivariate function; for

example, for f(x,y) df df
vf — d_ZE’ d_y

For a discrete image, can be approximated
with finite differences

df

%%f(x_l_l?y)_f(x?y)

af

d—y%f(%y*‘l)—f(%y)

CS 89/189: Computational Photography, Fall 2015



Gradient: intuition
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I Gradients and grayscale images

Grayscale image: nxn scalars
Gradient: nxn 2D vectors
Two many numbers!

What's up with this?

- Not all vector fields are the gradient of an
image!

- Only if they are curl-free (a.k.a. conservative)

- But we'll see it does not matter for us
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Escher, Maurits Cornelis

Ascending and Descending

1960

Lithograph

355x285cm (14x111/4in.)
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§ Color images

3 gradients, one for each channel
We'll sweep this under the rug for this lecture

In practice, treat each channel independently
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¥ Questions?
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) Key gradient domain idea

1. Construct a vector field that we wish was
the gradient of our output image

2. Look for an image that has that gradient

3. That won’t work, so look for an image that
has approximately the desired gradient

Gradient domain image processing is all
about clever choices for (1) and efficient
algorithms for (3)
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Solution: paste gradient

http://www.irisa.fr/vista/Papers/2003_siggraph_perez.pdf

seamless cloning

sources/destinations — hacky visualization of gradient
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§ Seamless Poisson cloning

Paste source gradient into target image
inside a selected region

Make the new gradient as close as possible
to the source gradient while respecting
pixel values at the boundary
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§ Seamless Poisson cloning

Given vector field v (pasted gradient), find the
value of f in unknown region that optimizes:

mfm / /Q V= v|* with fly0 = f*[a0

Pasted gradient nagk S e

region
Q

\\/v\’*“ dQ

v g Background

Figure 1: Guided interpolation notations. Unknown function f
interpolates in domain € the destination function f™, under guid-
ance of vector field v, which might be or not the gradient field of a
source function g.
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Discrete 1D example: minimizatiort....

. Copy ¢ to : boundary
> 5
4 4
3 3
“ 2 unknow
| O 1 23456 7 001 2 345 6 7

orange: pixel outside the mask
red: source pixel to be pasted
blue: boundary conditions (in background)



m T = . « [ Ao
Discrete 1D example: minimization:...

° Copy o to 6
5 +2 -1 -
4 +1 -1 -1 .
3 3
2 2
0 0

O 1 23456 7 O 1 23456 7

+ [(f5-1,)-(-1)]*

+ [(f4-13)-2]° With
+ [(f5-f)-(-1)]* f,=6

+ [(fo-f5)-(-1)]° fe=1




1D example: minimization

« Copy 6 to 6
5 +2 -1 c
4 4
3 3
2 2 ,
1 1 ?2 2 7 ?f
; ; 2?7
01234567 01234567
Min [(f,-f;)-1]? ==>f,2+49-14f,
+ [(f5-1,)-(-1)]? ==>f2+f,>+1-21,f, +21;-2f,
+ [(f,-15)-2])? ==>f2+£,2+4-21,f, -4f,+4f,
+ [(fs-£9)-(-D] ==>f{*+,>+1-21:f, +21-21,

H(ef)-(D)E ==>E24-4f



1D example: big quadratic

* Copys to 6
5 +2 -1

5

4 4

3 3

2 2

0 0

O 1 23456 7 O 1 23456 7
. Min (f,2+49-14f,

+ £,2+1,2+1-21,f, +21,-2f,
+ £, 2+1,2+4-21,f, -4f,+4f,
+ £ 2+ 2+1-21f, +2f.-2f,
+ £ 2+4-41.)
Denote it Q



1D example: derivatives it

. 6
Copy5 o - to 6
S
4 4
3 3
2 2
0 0
01234567 01234567
Min (f,2+49-14f, 3765 = 2fo + 2fy — 2f3 — 16

- RN, 22,
AL, A, g = 2f3 —2fa 24+ 2f3 - 2f4+4

HIPHM IS 22U, dQ _or  op 4 of _of o
+ £2+4-4f,) df 4 fa—2fs +2f4—2fs

Denote it Q %_2:2f5_2f4+2+2f5_4



1D example: set derivatives to zeré:.

¢ COpy6 to A
5 +2 -1
S
) 4
> 3
° 2
0 0

O 1 23456 7 O 1 23456 7
372:2f2+2f2—2f3—16 —()
372=2f3—2f2+2--2f3—2f4+4 =
%:2f4—2f3—4--2f4—2f5—2 =()

372:2f5_2f4+2+2f5—4:()

4 =2 0 0 /2 16
-2 4 =20 fs | | -6
—— ( 0 -2 4 -2 f1 || 6

0 -2 4 I5 2



1D example recap

* Copy

O - N W b~ U1 O

O - N W ph U1 O

2 34 5 6 7
f2 6
fa | _| 4
fa 3
s 3
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Membrane interpolation Sesait

 What if v is null?
* Laplace equation (a.k.a. membrane equation )

min [/ [V with fl50, = f*lag




1D example: minimization

 Minimize derivatives to interpolate ¢

O —_, N W N U

O 1 2345606 7

Min (f,-f,)?

+ (f5-1,)?
+ (f4-13)? With
+ (fs-1,)? ;=6

f=1
+ (fo-15)> 0



1D example: derivatives

 Minimize derivatives to interpolate

o
S
4
3
2
0
O 1 23456 7
Min (f,2+36-12f, gf_cz = 2fy 4+ 2fy — 2f3 — 12
+ £,2+Hf,2-21f, 0 ) ) ot _ o
£ 2220, 7. =23 —2f2+2f3 - 2f4
+ £2+f,2- 211, dQ _ B B
+ £2+1-2f5) dfs 2fa = 2f3+2fa = 2Js
Denote it Q @:2f5—2f4+2f5—2

dfs



1D example: set derivatives to zerg..

 Minimize derivatives to interpolate

O - N W h U1 O

O 1 2345606 7

%=2f2+2f2—2f3—12
7 =2f3—2f2+2f; - 2f4
G =2fs—2fs+2f1—2fs

4 -2 0 0 I 12

372:2f5—2f4+2f5_2 —2 4 -2 0 fi _ 0
N 0 -2 4 =2 fa ] | O

=== 0O -2 4 s 2



1D example

 Minimize derivatives to interpolate

* Pretty much says that second

derivative should be zero

(-12-1)

1s a second derivative filter

f2 )
/i

fs )

(12 )
0
0

\ 2 )

O - N W h 01 O

O1 234567

- CSAILL



Intuition

* In 1D; just linear interpolation!

* Locally, if the second derivative was not zero, this
would mean that the first derivative is varying, which

is bad since we want (V f)? to be minimized

* Note that, in 1D: by setting {'', we leave two degrees of
freedom. This is exactly what we need to control the
boundary condition at x; and x,
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sources/destinations




What if v is not null?

* 1D case target P*

source g

Seamlessly paste W/\ onto

Just add a linear function so that the boundary condition 1s respected

X X

solution f=f\+g

VAN
gap correction f

f(x2)-g(x2)

g
f(x1)-g(x1)




B Matrix structure

4 -2 0 07 Tf 16
2 4 =2 0| |f| |-6
0 -2 4 2| || |6
0 0 —2 4| |fs] |2

denote this matrix A

Ais large!

- (# cols = num pixels) x (# rows = num pixels)
but system is sparse!

- most coefficients will be zero
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§ Solution methods

Direct solve (pseudoinverse)

- can be numerically unstable and inefticient for
large systems

Orthogonal decomposition methods

- more stable, but can be slower. e.g. QR decomp.
lterative methods

- e.g. steepest descent, conjugate gradients

- efficient for sparse matrices

- needs to be symmetric, positive-definite

CS 89/189: Computational Photography, Fall 2015 35



} Convergence

gradient
descent

conjugate
gradients
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Bells and
whistles




Contrast problem

 Contrast is a multiplicative quantity

* With Poisson, we try to reproduce linear
differences

* Loss of contrast if pasting from dark to bright




Contrast preservation: use the log

Poisson in linear color space Poisson in log color space

 see A Perception-based Color Space for
lllumination-invariant Image Processing

http://www.eecs.harvard.edu/~hchong/thesis/color siggraph08.pdf

 Or use covariant derivatives (next slides)



http://www.eecs.harvard.edu/~hchong/thesis/color_siggraph08.pdf

=ty

Covariant derivatives & Photoshop .

* Photoshop Healing brush

* Developed independently from Poisson editing by
Todor Georgiev (Adobe)




Eye candy
e .




CSAIL

L ‘loni eamless cloning
source/destination cloning seamless cloning



Sources

destinations

cloning

seamless cloning



Figure 2: Concealment. By importing seamlessly a piece of the
background, complete objects, parts of objects, and undesirable ar-

tifacts can easily be hidden. In both examples, multiple strokes (not
shown) were used.




Manipulate the gradient S

* Mix gradients of g & f: take the max

source/destination seamless cloning mixed seamless cloning

Figure 8: Inserting one object close to another. With seamless
cloning, an object in the destination image touching the selected
region £2 bleeds into it. Bleeding 1s inhibited by using mixed gradi-
ents as the guidance field.



(c) seamless cloning and destination av-
eraged

(d) mixed seamless cloning

Figure 6: Inserting objects with holes. (a) The classic method,
color-based selection and alpha masking might be time consuming
and often leaves an undesirable halo; (b-c) seamless cloning, even
averaged with the original image, 1s not effective; (d) mixed seam-
less cloning based on a loose selection proves effective.
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source destination

Figure 7: Inserting transparent objects. Mixed seamless cloning
facilitates the transfer of partly transparent objects, such as the rain-
bow in this example. The non-linear mixing of gradient fields picks
out whichever of source or destination structure 1s the more salient
at each location.
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d Slide credits
Frédo Durand

Steve Marschner

Matthias Zwicker
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