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Abstract
We address the problem of denoising Monte Carlo renderings by studying existing approaches and proposing a new algorithm
that yields state-of-the-art performance on a wide range of scenes. We analyze existing approaches from a theoretical and em-
pirical point of view, relating the strengths and limitations of their corresponding components with an emphasis on production
requirements. The observations of our analysis instruct the design of our new filter that offers high-quality results and stable
performance. A key observation of our analysis is that using auxiliary buffers (normal, albedo, etc.) to compute the regression
weights greatly improves the robustness of zero-order models, but can be detrimental to first-order models. Consequently, our
filter performs a first-order regression leveraging a rich set of auxiliary buffers only when fitting the data, and, unlike recent
works, considers the pixel color alone when computing the regression weights. We further improve the quality of our output by
using a collaborative denoising scheme. Lastly, we introduce a general mean squared error estimator, which can handle the
collaborative nature of our filter and its nonlinear weights, to automatically set the bandwidth of our regression kernel.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism—Raytracing; I.4.3 [Computer Graphics]: Enhancement—Filtering

1. Introduction

In the last few years, rendering in movie production has experi-
enced a dramatic shift [KFF⇤15], as evidenced by recent develop-
ments in production renderers like Renderman, Arnold, Hyperion,
and Manuka. Methods based on rasterization and micropolygon
rendering—the dominant rendering techniques for decades—are
being displaced by variants of path tracing. The potential benefits
of this transition are particularly appealing for production, not only
due to the increased flexibility and generality of the (quasi) Monte
Carlo (MC) integration, but also due to native support for progres-
sive rendering that allows for quick turnaround for rough previews
while easily scaling to final quality with more render time.

Unfortunately, MC rendering comes with the drawback that ren-
dered images are noisy, and, moreover, the level of noise decreases
only with the square-root of the number of samples, making synthe-
sis of perceptually noise-free images prohibitively costly for movie
production. This has made image-based denoising methods a vir-
tual necessity in production, and images are only rendered up until
the remaining noise can be eliminated safely (i.e. without introduc-
ing artifacts) using less expensive image-based denoising.

Graphics researchers have developed and adapted many denois-
ing techniques from the signal-processing community; see the com-
prehensive survey by Zwicker and colleagues [ZJL⇤15]. While

these approaches have gained considerable traction in recent years,
based on our analysis, none of them seems capable of outperform-
ing its rivals at all fronts.

An ideal, production-ready denoising algorithm should posses
the following essential characteristics:

Effectiveness. Produce significant noise reduction without intro-
ducing disturbing artifacts or overblurring.

Predictability. Perform consistently well without requiring per-
shot parameter tuning or other manual intervention and degrade
gracefully when assumptions are not met.

Temporal stability. Produce flicker-free results across frames
rendered with varying random samples, camera positions, object
positions, or other scene changes.

In addition, the following are required if denoising is to integrate
into a production environment:

Ease of adoption. The filter should be easy to integrate into the
production pipeline. Generating the filter’s inputs should not re-
quire renderer changes which are difficult to implement or expen-
sive to run.
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Speed. The filter should run significantly faster than the time to
render equivalent additional samples. Ideally, filtering would be
much faster than a typical render so that it can be performed mul-
tiple times during a render for adaptive sampling and for viewing
denoised progressive rendering.

Memory. Use significantly less memory than the renderer itself to
minimize memory cost of adaptive sampling.

In this paper, we pick the small subset of existing algorithms
(Table 1) that represent the state of the art with respect to the afore-
mentioned criteria and compare their performance on a diverse set
of test scenes. Based on our findings, we then propose a new prac-
tical algorithm that combines individual elements of the algorithms
in a novel way, yielding comparable or higher-quality results than
attainable before.

Our Nonlinearly weighted First-Order Regression (NFOR) le-
verages the correlation between auxiliary buffers and ground truth
images. We additionally incorporate a patch-based weighting ker-
nel into our regression framework to robustly preserve fine details
even when features do not provide enough correlation.

2. Previous Work

In the following, we briefly review image-space denoising algo-
rithms that are relevant to our work; a more thorough theoretical
and comparative analysis follows in Sections 3 and 4. We focus on
a posteriori techniques that rely on empirical (and often statistical)
analysis of sampled data without requiring prior knowledge of how
the samples were generated. A thorough review of the alternative—
a priori methods—can be found in a recent survey [ZJL⇤15].

Algorithms for denoising MC renderings often build upon tech-
niques developed for processing natural images, such as the bilat-
eral [TM98, PKTD08], cross bilateral [ED04, PSA⇤04], and NL-
Means [BCM05] filters, or wavelet thresholding [Don95]. Exam-
ples include a cross bilateral filter that utilizes a Gaussian blurred
image as an edge-stopping function [XP05], non-local means fil-
ters which employs a dual-buffer variance estimation [RKZ12], or a
histogram-based distance metric [DMB⇤14], and soft thresholding
methods driven by the estimated local variance [ODR09, KS13]. A
common adaptation in denoising rendered images is to fully utilize
auxiliary buffers as edge-stopping functions such as normals, albe-
dos, depths [McC99,DSHL10,LWC12,SD12,KBS15], virtual flash
image [MJL⇤13], or ambient occlusion map [RMZ13, KBS15].

As we will show in Section 3, all the aforementioned techniques
can be formulated as zero-order regressions. The theoretically more
powerful first-order regression has also been considered in previ-
ous work, ranging from edge-preserving smoothing [HST10], de-
noising MC renderings using constant [BEM11] or per-pixel re-
gression weights [MCY14], sparse reconstructions [MIGYM15],
or combined with a Poisson reconstruction using sampled gra-
dients [MVZ16]. Recently, higher-order regression was also ex-
plored [MMMG16]. Our algorithm is based on a first-order regres-
sion, but uses the NL-Means filter to shape the regression kernel.

Different approaches have been used for estimating the optimal
bandwidth of the regression kernel, all of which strive to minimize

the mean squared error (MSE), i.e. the sum of variance and squared
bias. While directly quantifying the variance is trivial for filters
with constant [RKZ11] or noise-free [MCY14] weights, which also
allow reasoning about the bias [MCY14], estimating the MSE of
a non-linear (e.g. bilateral or NL-Means) filter is challenging as
the weights are both noisy and correlated with the input. Follow-
ing the work of Van de Ville and Kocher [VdVK09], both Li et
al. [LWC12] and Rousselle et al. [RMZ13] estimate the MSE using
Stein’s Unbiased Risk Estimate [Ste81] (SURE), a powerful tech-
nique that can be used to estimate the MSE of non-linear filters.
Kalantari et al. [KBS15] proposed an interesting alternative to con-
ventional bandwidth estimation; they used a neural network trained
on a diverse set of scenes to set the parameters of cross bilateral
and cross NL-Means filters.

3. Theoretical Background

Image-space denoising estimates the value of a pixel p as a
weighted average of its neighborhood:

ĉp =
1

Cp
Â

q2Np

cq w(p,q), (1)

where cp and ĉp are the (noisy) input and filtered color values of
a pixel p, Np is the (typically square) neighborhood centered on
p, w(p,q) is the weight of the contribution of pixel q to the esti-
mate, and Cp = Âq2Np w(p,q) is a normalization factor. We now
describe existing approaches for setting w(p,q) that have been used
for denoising MC renderings, in order of increasing complexity.

3.1. Zero-order Models

Bilateral Filtering. The bilateral filter [TM98, Ela02] is a popu-
lar edge-preserving smoothing filter that leverages a conventional
filtering kernel (typically a Gaussian), and applies it to both the
spatial and range (i.e. color, also referred to as radiometric) com-
ponents of the image:

wbf(p,q) = exp
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where s2
s and s2

r are parameters to adjust distance across image
and color space, respectively. For example, the above weight will
be small if p and q are far from each other spatially or have dif-
ferent colors; the latter ensures that edges are well preserved in the
filtered image. A key issue with the bilateral filter, however, is that
the range-distance estimation can be sensitive to noise. To make it
more stable, one can either compute the range distances on a low-
pass-filtered version of the image [XP05], or average them over
small neighborhoods around pixels, as described next.

Non-Local Means. The non-local means (NL-Means) fil-
ter [BCM05] is a generalization of the bilateral filter where the
range distance is computed using small patches P(·) around the
pixels:

wnlm(p,q) = exp
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where k is a user parameter controlling the strength of the filter. The
squared patch-based range distance is defined as:

kPp �Pqk2 = max

 
0,

1
|P| Â

n2P0

d(p+n,q+n)

!
, (4)

where Pp is a square patch of size |P| (usually 7⇥ 7 pixels) cen-
tered on p, and P0 enumerates the offsets to the pixels within
a patch. The range distance d(p,q) between two pixels is esti-
mated using the squared difference of their respective colors, i.e.
d(p,q) = kcp � cqk2. It is worth noting that since the colors are
noisy, the estimate tends to overestimate the true squared distance;
this is referred to as the noise bias. Buades et al. [BCM05] propose
to counter the overestimation by subtracting twice the variance of
the input colors s2

r :

d(p,q) = kcp � cqk2 �2s2
r . (5)

When the pixel variance changes spatially, which is often the case
in MC rendering, the previous distance estimate can be further im-
proved by considering the per-pixel color variance as proposed by
Rousselle at al. [RKZ12]:

d(p,q) =
kcp � cqk2 � (Varp+Varp,q)

e+Varp +Varq
2s2

r

, (6)

where Varp is the variance at p, Varp,q = min(Varp,Varq), and e is
a small offset to prevent dividing by zero.

Joint Filtering. If additional per-pixel information is available,
the quality of bilateral or NL-Means filtering can be further im-
proved by factoring the information into the weight—the so-called
joint filtering:

wjbf(p,q) = wbf(p,q) waux(p,q), (7)
wjnlm(p,q) = wnlm(p,q) waux(p,q), (8)

where waux(p,q) is a weight derived from the additional informa-
tion. Given a vector of k auxiliary feature buffers, f = ( f1, ..., fk),
we can compute the weight as:

waux(p,q) =
k

’
i=1

exp(�d f ,i(p,q)), (9)

where:

d f ,i(p,q) =
k fi,p � fi,qk2

2s2
i,p

, (10)

and s2
i is the bandwidth of feature i. Joint filtering is typical for de-

noising MC renderings where feature buffers (e.g. normal, albedo,
depth) can be obtained inexpensively as a byproduct of rendering
the image.

Zero Order Regression. It can be shown that all the aforemen-
tioned filters are solutions to a weighted, local, zero-order regres-
sion, i.e. they model the pixel neighborhood as a constant function.
Consider the following general formulation of zero-order regres-
sion:

ĉp = argmin
ĉp

Â
q2Np

(cq � ĉp)
2 w̃x(p,q) (11)

Table 1: Acronyms for the previous works considered in this anal-
ysis, and corresponding regression order.

Tag Algorithm Order Reference

LBF Learning-Based filter 0 [KBS15]
NLM Non-Local Means 0 [RKZ12]
RDFC Robust Denoising – Features & Color 0 [RMZ13]
RHF Ray Histogram Fusion 0 [DMB⇤14]
WLR Weighted Linear Regression 1 [MCY14]

where x = (x1, ...,xD) is a D-dimensional feature vector storing the
spatial, radiometric, and auxiliary features; and w̃x is the weight
calculated from x. Takeda et al. [TFM07, Eq. 45], show that if
the feature space consists of pixel coordinates and pixel colors,
i.e. w̃x(p,q) = wbf(p,q), then the solution to Equation (11) is the
bilateral filter. By extension, the joint bilateral and NL-Means fil-
ters are also solutions of weighted, zero-order regressions, but us-
ing a higher dimensional feature vector x to set the weights. In the
case of the joint NL-Means filter, the feature vector x contains the
coordinates of pixel p, the colors of the pixels in the patch Pp, and
the auxiliary feature buffers.

3.2. First-order Models

A natural extension to zero-order models is to consider a first-order
regression:

[ĉp,rĉp]= argmin
ĉ(p),rĉ(p)

Â
q2Np

(cq � ĉp �rĉp·(yq �yp))
2 w̃x(p,q)

(12)

where y is, similarly to x, a 1D vector corresponding to a point
in the high dimensional feature space. While we may have y = x,
it is not a requirement, that is, we may choose to use a different
set of features to define the regression weights, than to perform the
regression itself. We will detail the algorithms which use first-order
regression [BEM11, MCY14] in the next section.

4. Comparative Analysis

In the previous section, we showed how various methods for de-
noising MC renderings can be formulated as either a zero- or first-
order regression. Besides the order, the main differentiating char-
acteristic is how these methods compute the regression weights w̃x.
There are three elements involved in this computation: the kernel
function (uniform, Gaussian, Epanechnikov, etc.), the pixel features
considered (color, normal, albedo, etc.), and the kernel bandwidth
along each dimension of the feature space.

In this section we cover techniques used in recent works to in-
crease the robustness of the regression weights computation. For
the purpose of our comparative analysis, we consider recent meth-
ods, listed in Table 1, that encompass the current state of the art
for denoising Monte Carlo renderings. We use a test bench com-
posed of 21 scenes covering a wide range of light transport effects,
and provide full resolution results and error metrics (MSE, relative
MSE, PSNR, and SSIM) for all methods in our supplemental mate-
rial, along with a web-based interactive viewer that allows for close
inspection of the results.
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Input (256 spp) NLM RHF Reference

Figure 1: Results of NLM and RHF on the STAIRCASE scene. RHF
robustly preserves the details of the illustration in the top row, de-
spite the low signal-to-noise ratio. NLM, however, better preserves
the details in the second row, since the histogram is highly skewed
in this region, with 95% or more of the samples contained in the
first bin.

We first present the recently proposed histogram-based distance,
then the use of auxiliary buffers in joint filtering schemes, and the
approaches used to automatically set kernel bandwidths. We will
then consider the specific case of first-order regressions, and finally
conclude with some observations that will instruct the design of our
proposed filter.

4.1. Mean- vs. Histogram-based Distance

Denoising techniques generally define a pixel feature as the mean
of all the corresponding samples. For instance, the pixel color is
the sum of all radiance samples, weighted by the pixel filter func-
tion. RHF builds on the observation that considering only the sam-
ple mean and variance implicitly discards a wealth of information,
and instead considers the actual sample distributions. Since storing
individual samples is prohibitively expensive, the algorithm bins
them in per-pixel histograms, and the distance between two pix-
els is computed as the chi-square distance of their histograms. This
amounts to replacing the 3d feature space of the color mean, with
the 60d space of the color histogram (using 20 bins for the his-
togram), with the hope that it is easier to discriminate neighbors in
this high-dimensional space.

Discussion. In our experiments, we have found that the histogram-
based distance can indeed allow for discriminating pixels, even
when the color-mean difference is within the noise range. Also,
an outlier sample can greatly affect the sample mean, but can
only offset the sample count of a histogram bin by one, making
the histogram-based distance more robust to fireflies. In practice,
however, these improvements are not consistent; we illustrate this
in Figure 1 by comparing the outputs of NLM, which consid-
ers the sample mean and variance, to RHF. The reliability of the
histogram-based metric largely depends on having a good binning
strategy, which is not known a priori, and the metric degenerates if
all samples are concentrated in one or two bins.

Input (256 spp) NLM JNLM Reference

Figure 2: Comparison of NLM to a Joint NL-Means (JNLM) filter,
which also considers auxiliary buffers when computing the regres-
sion weights. NLM produces a smooth output, but only captures
the lower frequencies of the signal. JNLM better preserves the de-
tails, such as the wall texture captured in the albedo buffer, but has
banding artifacts on the lamp shade, aligned with the isolines of the
normal buffer. The figure shows a crop from the STAIRCASE scene.

4.2. Joint Filtering

With the notable exception of RHF, all recent denoising methods
leverage auxiliary buffers to define the regression weights. Auxil-
iary buffers allow for a more robust discrimination since they are
generally significantly less noisy than the color buffer. As illus-
trated in Figure 2 using a Joint NL-Means filter (JNLM), zero-order
methods [SD12,LWC12,RMZ13,KBS15] greatly benefit from this
improved discrimination.

Discussion. The main drawback of using auxiliary buffers to de-
fine the regression weights lies in the ill-defined relation between
the feature distance and the filtered output MSE, which makes it
difficult to set the feature bandwidths. Consider the case in Fig-
ure 2: the tight kernel bandwidth robustly preserves the geometric
edges, but leaves distracting banding artifacts on the lamp shade.
In the next section, we present common approaches for estimating
appropriate bandwidths on a per-pixel basis.

4.3. Bandwidth Estimation

The kernel bandwidth has to balance two conflicting goals: reduc-
ing the variance and preventing bias (over-blurring). A larger band-
width increases the effective size of the neighborhood Np, which
reduces the variance, but tends to increase the bias. The kernel
bandwidth must therefore strike a good balance between residual
variance and bias, which amounts to minimizing the MSE.

As outlined in the introduction, requiring the user to manually
tune the bandwidth is not acceptable in production environments.
Furthermore, a global bandwidth is likely to be sub-optimal locally;
see the lamp in Figure 2 for an illustration of resulting artifacts.
Thus, most methods automatically adjust the bandwidth locally,
using one of the following two approaches: 1) a selection-based
estimate, where the filter is run using different predefined band-
widths, and the one resulting in the lowest estimated MSE is used
on a per-pixel basis [RKZ11,RKZ12,RMZ13,BEEM15]; 2) a direct
estimate, using either statistical analysis [SD12], or machine learn-
ing [KBS15]. Moon et al. [MCY14] combine both approaches: they
factor the feature bandwidth as the product of a shared bandwidth,
h, and a per-feature bandwidth, bi, and use a selection-based esti-
mate for the shared bandwidth, and a direct estimate for the per-
feature bandwidth.
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Candidate 1 Candidate 2 Candidate 3 Combined Selection

Figure 3: Bandwidth estimation of RDFC in the BATHROOM scene.
The first two candidates (red and green in the selection map) bet-
ter preserve details in the color buffer, in particular shadows, while
the third candidate (blue) better preserves the geometric edges cap-
tured in the auxiliary buffers. The combined reconstruction offers a
reasonable compromise on a per-pixel basis.

Discussion. While setting the bandwidth automatically on per-
pixel level is crucial for good performance, as we illustrate in Fig-
ure 3, the high dimensionality of the feature space makes the prob-
lem challenging and error-prone, and all existing methods have
some limitations. For instance, LBF uses a neural network trained
in an offline process to harness the potential of their regression ker-
nel, but their solution does not extend to adaptive sampling. The
selection algorithm of Bauszat et al. [BEEM15] can be applied to
any filter, but their approach also cannot handle adaptive sampling.
The main nuisance of RDFC, which employs SURE [Ste81] to es-
timate the MSE, is the requirement of knowing the derivative of
the filter. WLR directly estimates the output variance and bias, but
their approach assumes a filter with noise-free regression weights.

4.4. Zero- vs. First-order Regression

First-order regression uses a linear approximation instead of a con-
stant to represent the pixel neighborhood, solving for both the cen-
ter pixel value and its first partial derivatives. In practice, this addi-
tional degree of freedom is significant, since we have many auxil-
iary buffers that can be linearly combined, allowing for a far richer
model of the pixel neighborhood than a single constant.

Discussion. For zero-order regressions, the kernel bandwidth
must sometimes be drastically reduced to enforce the uniformity as-
sumption of the model. A first-order regression is less constrained,
since it directly leverages the correlation between the auxiliary
buffers and the color buffer, which allows for a better use of the
neighborhood data. We illustrate this in Figure 4 by filtering the
curved surface of a teapot using RDFC (zero-order) and WLR
(first-order). The improved model of first-order regressions can of-
fer a reasonable prediction of the whole pixel neighborhood, a fact
that was exploited by Moon et al. [MIGYM15] to perform a sparse
reconstruction in order to achieve interactive filtering performance.

4.5. Observations and Proposed Method

From a theoretical point of view, we would have expected WLR
to be a clear winner in these tests, since it is the only method to
perform a first-order regression. However, filters performing a zero-
order regression often produced better results, both subjectively and

Input (256 spp) RDFC WLR Reference

Figure 4: Comparison of RDFC and WLR on the DINING ROOM
scene. The Joint NL-Means filter used by RDFC can only com-
bine pixels with similar values, which leaves residual noise on the
curved teapot surface, where the normals change rapidly. In con-
trast, WLR uses a first-order regression that better models the data,
leading to smoother results.

numerically. We believe there are three key reasons for this result.
First, RDFC and LBF prefilter the auxiliary buffers to ensure they
are nearly noise-free, whereas WLR relies on a Truncated Singular
Value Decomposition to handle noisy features. This truncation is
less robust in practice, since it can only remove noisy features; in
contrast, prefiltering can extract useful information even when the
features are noisy.

Second, WLR uses only the auxiliary features to shape the re-
gression kernel and does not utilize the color buffer, and can pro-
vide suboptimal results when the auxiliary features have low cor-
relation with the input. In contrast, the NL-Means kernel used by
RDFC provides reasonable results even when no useful auxiliary
features are present.

Third, WLR needs to estimate bandwidths for each feature, and
does so on a continuous scale, a challenging problem given the di-
mensionality of the reduced feature space. In contrast, RDFC only
considers three bandwidth configurations known to give generally
useful results, and solves the simpler problem of picking between
these three configurations. While this approach has less potential,
its restricted scope makes it more robust.

Solving the first problem is trivial, since WLR can use prefiltered
features. We show in Figure 5 that this can greatly improve the filter
behavior. For the second problem, we propose to use the weights of
a standard NL-Means filter as the regression kernel. The NL-Means
kernel provides two advantages: 1) it provides a reasonable base
when the auxiliary buffers do not provide any useful information; 2)
it has only one bandwidth parameter to set. While the NLM result
in Figure 2 suggests that the NL-Means kernel is a poor choice,
we show in Figure 6 that, when paired with a first-order model,
it can produce results of very high quality. Using the NL-Means
kernel also allows us to use a similar selection-based bandwidth
estimation as RDFC.

Based on these observations, our proposed method uses:

• feature prefiltering,
• a first order regression,
• NL-Means to compute the regression weights,
• collaborative filtering,
• and a selection-based bandwidth estimation.
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WLR w/o WLR w/
Input (256 spp) prefiltering prefiltering Reference

Figure 5: The WLR output for the MUSEUM scene, without and
with prefiltering of the auxiliary buffers. With prefiltering, WLR can
better leverage the feature buffers.

Zero-order w/ First-order w/ First-order w/
NLM weights NLM weights WLR weights Reference

Figure 6: Using the same NL-Means regression kernel as in Fig-
ure 2 with zero- and first-order regressions. Even though this kernel
gives a poor result in a zero-order regression, it produces a high-
quality result when paired with a first-order regression, comparable
to the WLR output, despite using a much simpler weighting scheme.

5. Algorithm Overview

The aim of our algorithm is to achieve the ideal filter properties
outlined in the introduction. To this end, we build upon the conclu-
sions of our comparative analysis: our filter employs a first-order
model, enriched by the commonly used set of auxiliary buffers
(normal, albedo, depth, and visibility), and a nonlinear regression
kernel, namely the NL-Means filter. The first-order model allows
us to better exploit any existing correlation between the auxiliary
buffers and the pixel color, while the NL-Means kernel offers a
robust baseline in the absence of such correlation. Following pre-
vious work [RKZ12], we evenly split all samples between two sta-
tistically independent image buffers, which we utilize in a cross-
filtering scheme to minimize residual filtering artifacts, and to per-
form a simple but effective MSE estimation, needed to automati-
cally set the bandwidth of our regression kernel.

In the following sections, we describe the main steps of our filter
in order: Section 5.1, auxiliary buffers prefiltering; Section 5.2, col-
laborative first-order regression; Section 5.3, bandwidth selection;
Section 5.4, second filtering pass. We also provide the complete
pseudocode of our filter in the supplemental material, including all
parameter settings we used to produce our results.

5.1. Auxiliary Buffer Prefiltering

Our regression model assumes that the input auxiliary buffers are
noise-free, which is generally not the case. In particular, the visibil-
ity buffer is often quite noisy; see Figure 7. As proposed by Rous-
selle et al. [RMZ13], we therefore prefilter all auxiliary buffers us-
ing an NL-Means filter. Because we use a first-order model, any

Input Direct Two-step

Input Direct Two-step

Figure 7: Prefiltering of the visibility buffer (here a shadow on a
wall of the LIVING ROOM scene) using a single-step NL-Means
filter, and our two-step cross-filtering. Our scheme minimizes the
amount of residual noise artifacts, which are otherwise directly
propagated to the regression output.

residual filtering artifacts in the feature buffers propagate directly
to the filtered output, and we have found it beneficial to employ a
two-step filtering scheme to minimize residual noise.

Our prefiltering scheme leverages the two statistically indepen-
dent half buffers in a cross-filtering scheme, which was proposed
in an earlier work by Rousselle et al. [RKZ12]. We use the NL-
Means weights computed from one half buffer to filter the other
and vice-versa, which has the advantage of decorrelating the noise
of the weights from the noise of the data. The squared difference
of the two filtered half buffers gives an estimate of their residual
variance, which we use in a second filtering pass to further remove
residual noise. In Figure 7, we compare the outputs of single-pass
filtering to our two-step cross-filtering, and show the improvement
on the resulting regression output.

5.2. Collaborative First-order Regression

Our filter builds upon a first-order model, using the auxiliary buffer
data to predict the denoised color output. To this end, we consider
the following 10-dimensional feature space: pixel coordinates (2D),
normal (3D), albedo (3D), visibility (1D), and depth (1D). We can
further enrich this set of features as needed. For instance, LBF uses
a secondary albedo buffer that encodes the albedo of the second ray
intersection, and when running our filter on the LBF input data, we
also include this secondary albedo in our feature set.

Feature Cross-Filtering. Our prefiltering of the auxiliary buffers
is effective at addressing the mid to high frequencies of the noise,
but not its low frequencies. Since the noise in the feature buffers is
generally correlated with the noise in the color buffer, the regres-
sion will tend to reconstruct the low frequency noise of the color
buffer in the filtered output. To address this issue, we again take
advantage of the two half buffers. We filter the two half buffers
separately, and use the feature vector of the first buffer when fitting
the second buffer and vice-versa. This decorrelates the noise in the
features from the noise in the color buffer during the regression.
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First-Order Regression. Having established the feature space of
our regression model, we now turn to the computation of the regres-
sion weights, w̃x(p,q), of Equation 12. Since the auxiliary buffers
are already accounted for in our regression model, we opted to com-
pute the regression weights only on the pixel color. In this sense,
the regression model and weights are complementary: the color-
based regression weights can capture elements not encoded in our
feature set (e.g. indirect shadows, caustics, etc.), while the model
preserves the high-frequency elements captured by our feature set
(e.g. texture details, high-frequency normal map, etc.). Using the
NL-Means kernel for our regression weights also has the conve-
nient advantage of having only a single bandwidth parameter, k in
Equation 3, to set.

In contrast, WLR considers the auxiliary buffers to shape its re-
gression kernel, and must then estimate appropriate bandwidths for
different types of features on their reduced feature space. In addi-
tion, unlike our method, WLR does not consider the color infor-
mation when computing the regression weights, and therefore falls
back on a simple isotropic kernel when the features are uncorre-
lated with the color.

Collaborative Filtering. It is worth noting that through the use
of a first-order regression, the entire filter window is denoised at
once, not only the center pixel. In other words, each pixel in the
image is denoised multiple times, once for each filter window it
appears in. We utilize this fact in a collaborative filtering scheme,
and compute the filtered output as a weighted average of denoised
filter windows, each weighted by its regression kernel. This further
reduces the variance of the output and tends to give smoother and
more homogeneous results. Moon et al. [MIGYM15] previously
used collaborative filtering in a sparse reconstruction scheme to de-
crease the computational cost of denoising. However, they use an
unweighted average of filter windows; in contrast, we can leverage
the NL-Means regression kernel to robustly average them. Because
of their sparse reconstruction and variable window size, filter win-
dows in Moon et al.’s method also overlap much less than in our
method, which reconstructs densely and always uses the full filter
window size. As such, their collaborative scheme targets perfor-
mance, whereas ours targets higher quality output.

5.3. Bandwidth Selection

In our experiments, we found using NL-Means regression weights
to be surprisingly robust, and that setting its bandwidth parame-
ter to k = 0.5 gives reasonable results on a wide range of scenes.
In many cases however, a larger bandwidth is preferable. Conse-
quently, we perform a selection-based bandwidth estimation (see
Section 4.3) using the parameter set k = {0.5,1.0}.

An estimate of each candidate bandwidth MSE is needed to per-
form the selection. We considered using SURE [Ste81], but this
approach requires the filter derivative to be known, which is chal-
lenging to do for our collaborative filter. The direct variance and
bias estimation used by WLR is also not an option in our case,
since its variance estimate assumes the filter weights to be noise-
free, which is not the case for our method. Instead we propose a
more general scheme leveraging our two half buffers.

Consider the squared difference between the filtered output, F ,
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Figure 8: Comparison of our MSE estimate for the first candi-
date bandwidth (k = 0.5) and the ground truth MSE in the HORSE
ROOM scene. The middle and right columns show the correspond-
ing selection maps (red where k = 0.5 is used, green where k = 1.0
is used) and filtered outputs, respectively.

and the noisy input, C, minus the variance of the input. Its expected
value is

E[(C�F)2 �VarC] = Bias2
F +VarF �2CovC,F .

If the input and the filtered result are uncorrelated, then we can triv-
ially use this result to create an unbiased estimator of the true MSE.
This is not the case for our filter, but we can again leverage the two
uncorrelated half buffers to sidestep this problem: We compute the
squared difference of the filtered first half buffer to the second input
half buffer and vice-versa, and subtract the variance of the input. If
the two filtered half buffers are uncorrelated, this gives an unbiased
estimator of the MSEs of each half buffer with

MSEF1 = (F1 �C2)
2 �VarC2 ,

MSEF2 = (F2 �C1)
2 �VarC1 ,

where VarC1 = VarC2 = 2VarC, where VarC is the sample mean
variance of all color samples. After the MSE estimation, we av-
erage the two filtered half buffers to obtain F = (F1 +F2)/2. The
expected bias of F remains unaffected, but its variance is halved;
consequently, we estimate the MSE of the averaged half buffers,

MSEF =
MSEF1 +MSEF2

2
�VarF .

This estimator is unbiased under the assumption that our fil-
tered half buffers are statistically independent. Our cross-filtering
scheme introduces some correlation, but in practice, this correlation
is sufficiently weak to produce a useful MSE estimate. Similar to
Rousselle et al. [RMZ13], we then filter the estimated MSE and use
it to generate selection maps for each filter bandwidth. We compare
our filtered MSE and selection map to ground truth in Figure 8.

5.4. Second Regression Pass

Similarly to Rousselle et al. [RMZ13], we perform a second filter-
ing pass on the color buffer to remove residual noise artifacts. We
need the variance of the first pass output to compute our regres-
sion weights, which we estimate as the variance across our filtered
half buffers. We do not perform cross-filtering for the second pass
however, but directly refilter the average of the filtered half buffers.
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6. Implementation Details

We implemented our algorithm on the CPU using C++11 and the
Eigen 3 library for efficient matrix operations.

Feature Normalization. In order to improve numerical condition-
ing, we locally normalize the auxiliary features to occupy the same
range, similarly to Moon et al. [MCY14]. Specifically, we offset
and scale each feature within our filtering window such that it oc-
cupies the [�1,1] interval.

Space-Time Filtering. Residual low-frequency noise in the fil-
tered output causes disturbing flickering artifacts in animations.
Similarly to WLR, we mitigate these artifacts by exploiting tem-
poral coherence. We expand our regression window to the spatio-
temporal domain by including noisy pixels and features from the
two previous and the two next frames. We include the frame in-
dex as an additional auxiliary vector, and compute the regres-
sion weights using a spatio-temporal NL-Means kernel [BCM07,
RKZ12]. The rest of our algorithm remains the same. We include
a video demonstrating the temporal stability of our spatio-temporal
filter in our supplementary material.

7. Results

We use a test bench composed of 21 scenes (see Figure 9) to eval-
uate our method, and compare its output to four state-of-the-art
methods: RDFC [RMZ13], RHF [DMB⇤14], WLR [MCY14], and
LBF [KBS15]. All results were obtained with a fixed set of param-
eters for all denoisers. Our set of scenes feature volumes, hair and
fur, interiors lit by an environment map, as well as diffuse, glossy,
and specular reflections. Full resolution images at 16, 64, 256, and
1024 spp can be found in the supplemental material. Additionally,
we provide denoised outputs using the standard NL-Means filter,
as well as a multiscale NL-Means variant using the hierarchical
scheme used by Delbracio et al. [DMB⇤14] in the RHF algorithm.
Lastly, our supplemental material also provides a comparison with
the RenderMan denoiser, which is used in production.

Some of these previous methods (RDFC, WLR) are integrated
into the PBRT code base, which we did not use for rendering. Con-
sequently, we modified the public implementation of these meth-
ods to inject our own data in their pipeline. For RHF, we output
the required color histograms from our renderer and use the pub-
lic implementation to process it. For LBF, we similarly modified
the public implementation to inject our own data. We note how-
ever that our auxiliary buffers differ from those used by Kalantari
et al. [KBS15]: we use depth instead of world positions, and we
do not export a secondary albedo, but instead have a buffer that
stores the albedo of the first non-specular surface along the path.
Since LBF employs a trained neural network to set its filter param-
eters, it is not clear how it can generalize to our data set. For a fair
comparison to LBF, we rendered the SAN MIGUEL scene using the
LBF code base, and passed its input data (including the secondary
albedo) to the other denoisers. The SAN MIGUEL scene uses low
discrepancy sampling, while all the other scenes were rendered us-
ing independent samples. For low discrepancy samples, we use the
variance across the pairs of half buffers as an estimate of the sam-
ple mean variance. To clearly verify denoising performance of all

BATHROOM HORSE ROOM DINING ROOM

BEDROOM LIVING ROOM RED ROOM

HOUSE MUSEUM FOG

SPACESHIP CAR SAN MIGUEL

DRAGON LAMP STAIRCASE SHAVING KIT

CURL CURLY HAIR FUR BALL RISING SMOKE BUNNY CLOUD

Figure 9: Our test bench consists of 21 scenes used to col-
lect metrics for NL-Means [BCM05], NL-Means with multiscale,
RDFC [RMZ13], RHF [DMB⇤14], WLR [MCY14], LBF [KBS15],
and for our approach. Please refer to the supplementary material
for a complete evaluation.

tested methods, we have used the same input color and auxiliary
buffers for all denoisers. Since the WLR method does not perform
any prefiltering of the auxiliary buffers, we ran it twice, once with
the noisy buffers (WLR), and once with the prefiltered buffers pro-
duced by our filter (WLR-PF). Results with both filtered and unfil-
tered inputs are provided in our supplemental material.

We used four different metrics to evaluate the output of the var-
ious denoisers: MSE, relative MSE, SSIM and PSNR, and provide
the relative MSE and SSIM heatmaps for all results in our sup-
plemental material. In Figure 10, we show the overall statistics of
these denoisers on our test scenes. The thin blue lines correspond
to the metric on a given scene, while the dots indicate the average
metric value over all scenes. The error bars show the standard de-
viation of each method to the best performing technique for each
scene. Therefore, a large error bar suggests that a method output
quality varies greatly from scene to scene. In the case of RHF, the
large error bars are due partly to the fact that this method relies on
hand-tuning of its parameter, whereas we used a constant setting of
k = 0.7, which we found to be a good compromise over all scenes.
Our filter exhibits both the best average and the smallest error bars
across all metrics, indicating that it is consistently on par with the
best alternative approach, and often substantially better.

In Figure 11, we show results from all denoisers on a selection
of our test scenes rendered at 256 samples per pixel (BATHROOM,
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Figure 10: Means and standard deviations of four metrics (MSE and rMSE; lower means better, PSNR and SSIM; higher means better)
computed over 64, 256, and 1024 spp renderings of our test scenes; each blue line corresponds to one scene/spp configuration, all values
are expressed relative to the best denosing technique thereof.

HORSE ROOM, LIVING ROOM, RED ROOM) and 64 samples per
pixel (SAN MIGUEL). On these scenes, RHF yields blurry results
(although it performs better on hair data, shown in our supplemen-
tal material). LBF tends to be quite aggressive in its filtering, re-
sulting in a loss of local details, but robustly preserves geometric
and texture edges. RDFC and WLR give overall good results, but
still suffer from noticeable artifacts. In contrast, our filter reliably
preserves input detail without overblurring, while still effectively
removing noise and introducing few to no artifacts.

8. Discussion

In its current state, our filter offers a good match for the character-
istics of the ideal production denoiser outlined in the introduction.
In particular, our filter offers a significant and stable improvement
across a wide range of scenes, as demonstrated in our supplemental
material. Similar to previous works, we leverage common auxil-
iary buffers that most renderers can readily provide, and operate in
a post-process, allowing for a straightforward inclusion in the pro-
duction pipeline. There are however a number of limitations with
our filter, which we will now cover.

Computational overhead. Our current implementation is CPU-
based and significantly slower than previous works; see timings in
Table 2. While we would expect a GPU implementation to drasti-
cally reduce these timings, it remains that our filter is only suitable
for offline rendering. We note however that rendering times of mul-
tiple core hours per frame are common in production, and that our
filter can offer substantial improvements in this context. The main

Table 2: Average timings and memory consumption across all
tested scenes. For this comparison, we implemented the listed algo-
rithms in our CPU framework using the same set of optimizations;
all other results use the implementations provided by the authors.

Algorithm Avg. Runtime Avg. Memory Usage

RDFC 41s 349 MB
RHF 18s 460 MB
WLR 72s 309 MB
WLR-PF 91s 311 MB
NFOR (ours) 223s 3248 MB

cost of our filter is the regression itself, which we perform three
times (twice when filtering the half buffers in the first pass and
once in the second pass), and the overall cost of our filter could be
greatly reduced by a sparse collaborative reconstruction, instead of
the dense one we currently use.

Memory overhead. In order to better parallelize the filtering op-
erations, we compute the full set of regression weights for the en-
tire image buffer before fitting the data using our first-order model.
Given that we use a window of 19⇥19 pixels, this represents a sig-
nificant amount of memory, which could prove problematic for 4k
renderings; see Table 2. As with the computational overhead, using
a sparse collaborative reconstruction would drastically reduce the
memory consumption of our technique.

Adaptive sampling. While our filter does not assume a uniform
sampling distribution, we currently do not provide a way of guiding
sampling based on the estimated MSE of our filter output.

Residual low-frequency noise. Large-scale temporal flickering
due to residual low-frequency noise is a major challenge for image-
space denoising techniques. While our spatio-temporal filtering re-
sults are on par with the current state of the art, they still leave
room for improvement. We do not use motion vector to align frames
temporally in our current implementation, which should offer some
improvement. We have however experimented with the multiscale
reconstruction proposed by Delbracio et al. [DMB⇤14], but have
not been able to get consistently good results with it. In our supple-
mental material, we provide results using a standard NL-Means fil-
ter both without and with a multiscale reconstruction, which show
the type of improvement this reconstruction can provide.

9. Conclusion

We have presented a comparative analysis of recent denoising
methods, in order to assess their respective strength and weak-
nesses in the context of high-end production requirements. Based
on this analysis, we identified a set of useful techniques that we
combined in a novel filter, that consistently produces results on par
with the current state of the art, and often provides substantial im-
provements. In its current implementation, our filter has a signifi-
cant computational cost that restricts its use to high-quality off-line
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Figure 11: We show results from our technique (large image) compared to four baseline methods. For each technique, we show two zoom-in
locations and the rMSE (in parenthesis) to the reference; please refer to the supplemental material for full-resolution images and compre-
hensive comparison across all test scenes.
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rendering, and we have performed some promising early experi-
ments using sparse reconstruction, which we intend to pursue fur-
ther. Lastly, our work has not considered the important question of
adaptive sampling, and we expect that a similar study of existing
techniques could lead to interesting developments.
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