
B
Spherical Harmonics

SPHERICAL harmonics are a frequency-space basis for representing functions defined over

the sphere. They are the spherical analogue of the 1D Fourier series. Spherical harmonics

arise in many physical problems ranging from the computation of atomic electron configurations

to the representation of gravitational and magnetic fields of planetary bodies. They also appear

in the solutions of the Schrödinger equation in spherical coordinates. Spherical harmonics are

therefore often covered in textbooks from these fields [MacRobert and Sneddon, 1967; Tinkham,

2003].

Spherical harmonics also have direct applicability in computer graphics. Light transport

involves many quantities defined over the spherical and hemispherical domains, making spherical

harmonics a natural basis for representing these functions. Early applications of spherical har-

monics to computer graphics include the work by Cabral et al. [1987] and Sillion et al. [1991]. More

recently, several in-depth introductions have appeared in the graphics literature [Ramamoorthi,

2002; Green, 2003; Wyman, 2004; Sloan, 2008].

In this appendix, we briefly review the spherical harmonics as they relate to computer

graphics. We define the basis and examine several important properties arising from this defini-

tion.
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B.1 Definition

A harmonic is a function that satisfies Laplace’s equation:

∇2 f = 0. (B.1)

As their name suggests, the spherical harmonics are an infinite set of harmonic functions defined

on the sphere. They arise from solving the angular portion of Laplace’s equation in spherical

coordinates using separation of variables. The spherical harmonic basis functions derived in this

fashion take on complex values, but a complementary, strictly real-valued, set of harmonics can

also be defined. Since in computer graphics we typically only encounter real-valued functions,

we restrict our discussion to the real-valued basis.

If we represent a direction vector ~ω using the standard spherical parameterization,

~ω= (
sinθcosφ, sinθ sinφ,cosθ

)
, (B.2)

then the real spherical harmonic basis functions are defined as:

ym
l (θ,φ) =


p

2K m
l cos(mφ)P m

l (cosθ) if m > 0,

K 0
l P 0

l (cosθ) if m = 0,
p

2K m
l sin(−mφ)P−m

l (cosθ) if m < 0.

(B.3)

where K m
l are the normalization constants

K m
l =

√
(2l +1)

4π

(l −|m|)!

(l +|m|)!
, (B.4)

and P m
l are the associated Legendre polynomials. There are many ways to define the associated

Legendre polynomials but the most numerically robust way to evaluate them is using a set of
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recurrence relations [Press et al., 1992]1:

P 0
0 (z) = 1, (B.5)

P m
m (z) = (2m −1)!!(1− z2)m/2, (B.6)

P m
m+1(z) = z(2m +1)P m

m (z), (B.7)

P m
l (z) = z(2l −1)

l −m
P m

l−1(z)− (l +m −1)

l −m
P m

l−2(z). (B.8)

The basis functions are indexed according to two integer constants, the order, l , and the

degree, m2. These satisfy the constraint that l ∈ N and −l ≤ m ≤ l ; thus, there are 2l +1 basis

functions of order l .

The order l determines the frequency of the basis functions over the sphere. The spherical

harmonics may be written either as trigonometric functions of the spherical coordinates θ and

φ as above, or alternately as polynomials of the cartesian coordinates x, y , and z. Using the

cartesian representation, each ym
l for a fixed l corresponds to a polynomial of maximum order l

in x, y , and z.

1We omit the Condon-Shortley phase factor [Condon and Shortley, 1951] of (−1)m which is sometimes includes in
the definition of P m

l or ym
l since this simplifies our notation.

2The order l is also sometimes refered to as the band index, and in quantum mechanics, l and m are refered to as
“quantum numbers” and the spherical harmonics “states.”



170

The first few spherical harmonics, in both spherical and cartesian coordinates, expand to:

Spherical Cartesian

l = 0 y0
0(θ,φ) =

√
1

4π

√
1

4π
,

l = 1



y−1
1 (θ,φ) =

√
3

4π
sinφsinθ

y0
1(θ,φ) =

√
3

4π
cosθ

y1
1(θ,φ) =

√
3

4π
cosφsinθ

√
3

4π
x,√

3

4π
z,√

3

4π
y,

l = 2



y−2
2 (θ,φ) =

√
15

4π
sinφcosφsin2θ

y−1
2 (θ,φ) =

√
15

4π
sinφsinθcosθ

y0
2(θ,φ) =

√
5

16π
(3cos2θ−1)

y1
2(θ,φ) =

√
15

4π
cosφsinθcosθ

y2
2(θ,φ) =

√
15

16π
(cos2φ− sin2φ)sin2θ

√
15

4π
x y,√

15

4π
y z,√

5

16π
(3z2 −1),√

15

8π
xz,√

15

32π
(x2 − y2).

We illustrate the first basis functions in Figure B.1.

B.2 Projection and Expansion

The spherical harmonics define a complete basis over the sphere. Thus, any real-valued

spherical function f may be expanded as a linear combination of the basis functions

f (~ω) =
∞∑

l=0

l∑
m=−l

ym
l (~ω) f m

l , (B.9)

where the coefficients f m
l are computed by projecting f onto each basis function ym

l

f m
l =

∫
Ω4π

ym
l (~ω) f (~ω)d~ω. (B.10)

Just as with the Fourier series, this expansion is exact as long as l goes to infinity; however, this

requires an infinite number of coefficients. By limiting the number of bands to l = n −1 we retain
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Figure B.1: Plots of the real-valued spherical harmonic basis functions. Green indicates positive values and
red indicates negative values.

only the frequencies of the function up to some threshold, obtaining an nth order band-limited

approximation f̃ of the original function f :

f̃ (~ω) =
n−1∑
l=0

l∑
m=−l

ym
l (~ω) f m

l . (B.11)

Low-frequency functions can be well approximated using only a few bands, and as the number of

coefficients increases, higher frequency signals can be approximated more accurately.

It is often convenient to reformulate the indexing scheme to use a single parameter

i = l (l +1)+m. With this convension it is easy to see that an nth order approximation can be

reconstructed using n2 coefficients,

f̃ (~ω) =
n2−1∑
i=0

yi (~ω) fi . (B.12)
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B.3 Properties

The spherical harmonic functions have many basic properties that make them particularly

convenient for use in computer graphics.

1. Convolution. Since the spherical harmonic basis is effectively a Fourier domain basis

defined over the sphere, it inherits a similar frequency space convolution property. If

h(z) is a circularly symmetric kernel, then the convolution h? f is equivalent to weighted

multiplication in the SH domain

(h? f )m
l =

√
4π

2l +1
h0

l f m
l . (B.13)

The convolution property allows for efficient computation of prefiltered environment maps

and irradiance environment maps [Ramamoorthi and Hanrahan, 2001].

2. Orthonormality. The spherical harmonics are orthogonal for different l and different m.

This means that the inner product of any two distinct basis functions is zero. Furthermore,

the normalization constant K m
l ensures that the inner product of a basis function with itself

is one. This can be expressed mathematically as

∫
Ω4π

yi (~ω) y j (~ω)d~ω= δi j , (B.14)

where δi j is the Kronecker delta function.

The efficient projection and expansion operations described above are made possible by

the fact that the SH basis is orthonormal. Many other useful and efficient operations also

result from this important property.

3. Double Product Integral. The orthonormality property provides for a very simple expres-

sion to compute the integrated product of two functions represented in the SH basis. The
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integral product of two SH functions ã(~ω) and b̃(~ω) can be expanded as

∫
Ω4π

ã(~ω) b̃(~ω)d~ω=
∫
Ω4π

(∑
i

ai yi (~ω)

) (∑
j

b j y j (~ω)

)
d~ω, (B.15)

=∑
i

∑
j

ai b j

∫
Ω4π

yi (~ω) y j (~ω)d~ω︸ ︷︷ ︸
Ci j

, (B.16)

where Ci j are called the coupling coefficients, which, due to the definition of orthonormal-

ity in Equation B.14, are simply Ci j = δi j . This simple form for the coupling coefficients

introduces significant sparsity in the expression above, leading to the simplification:

∫
Ω4π

ã(~ω) b̃(~ω)d~ω=∑
i

∑
j

ai b j Ci j , (B.17)

=∑
i

∑
j

ai b j δi j , (B.18)

=∑
i

ai bi . (B.19)

This expression states that the integrated product of two SH functions is simply the dot

product of their coefficient vectors. The double product integral is of particular interest in

computer graphics since it means lighting can be computed very efficiently in the frequency

domain. If both the lighting and the cosine-weighted BRDF are represented in the SH basis,

then the lighting integral can be computed using a simple dot product. This property is

exploited by many PRT techniques [Sloan et al., 2002; Kautz et al., 2002].

4. Triple Product Integral. In many applications, the product integral of not just two, but

three SH functions is of particular interest. This product can be expanded as

∫
Ω4π

ã(~ω) b̃(~ω) c̃(~ω)d~ω=
∫
Ω4π

(∑
i

ai yi (~ω)

) (∑
j

b j y j (~ω)

) (∑
k

ck yk (~ω)

)
d~ω, (B.20)

=∑
i

∑
j

∑
k

ai b j ck

∫
Ω4π

yi (~ω) y j (~ω) yk (~ω)d~ω, (B.21)

=∑
i

∑
j

∑
k

ai b j ck Ci j k , (B.22)
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which gives rise to the tripling coefficients, Ci j k . Unlike double product integrals, which

have an incredibly simple form and reduce to a single dot product, the triple product integral

is seemingly much more complicated. Fortunately, the set of tripling coefficients is also

sparse, so not all the individual coefficients need to be explicitly computed and stored. For

spherical harmonics, the Ci j k correspond to Clebsch-Gordan coefficients, whose analytic

values and properties are well studied [Tinkham, 2003].

5. Double Product Projection. The tripling coefficients also arise when computing the prod-

uct of two spherical harmonic functions directly in the SH basis. We can compute the i th

coefficient of the SH projection of the product c(~ω) = a(~ω)b(~ω) as

ci =
∫
Ω4π

yi (~ω)c(~ω)d~ω, (B.23)

=
∫
Ω4π

yi (~ω) a(~ω)b(~ω)d~ω, (B.24)

=
∫
Ω4π

yi (~ω)

(∑
j

a j y j (~ω)

) (∑
k

bk yk (~ω)

)
d~ω, (B.25)

=∑
j

∑
k

a j bk

∫
Ω4π

yi (~ω) y j (~ω) yk (~ω)d~ω, (B.26)

=∑
j

∑
k

a j bk Ci j k . (B.27)

This expression states that the i th coefficient of c is a linear combination of the, up to,

j ×k coefficients from a and b. The weighting of these terms is determined by the triping

coefficients, which are independent of the particular choice of a and b. In effect, if we wish

to efficiently compute the product projection of many pairs of functions, we only need to

compute the tripling coefficients once.

The product projection simplifies further if we know one of the functions beforehand.

For instance, if b(~ω) is fixed, then we can construct a transfer matrix, M, which directly

transforms coefficients of any arbitrary function ã into the coefficients of the product c̃
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using a single vector-matrix multiplication:

ci =
∫
Ω4π

yi (~ω) a(~ω)b(~ω)d~ω, (B.28)

=
∫
Ω4π

yi (~ω)

(∑
j

a j y j (~ω)

)
b(~ω)d~ω, (B.29)

=∑
j

a j

∫
Ω4π

yi (~ω) y j (~ω)b(~ω)d~ω, (B.30)

=∑
j

a j Mi j . (B.31)

6. Rotational Invariance. The SH basis functions are rotationally invariant, which means

that if g is a rotated copy of f , i.e.,

g (~ω) = f (R~ω), (B.32)

for any 3×3 rotation matrix R, then

g̃ (~ω) = f̃ (R~ω). (B.33)

This property means that, in order to evaluate a rotated SH function g̃ , we can either

rotate the lookup into the unrotated approximation f̃ or lookup directly into the rotated

approximation g̃ . This property implies that spherical harmonic projection produces no

aliasing.

7. Rotation. Spherical harmonics also support efficient rotation. This means that if we know

f̃ , we can compute the SH coefficients of the rotated function g̃ exactly by just applying a

linear transformation to the projection coefficients of f̃ . This linear transformation is itself

a higher-dimensional rotation matrix, R̃, where the i th coefficient of the rotated function g
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is simply:

gi =
∑

j
f j R̃i j . (B.34)

Due to the rotation invariance property, the coefficients in one band of f only influence

the same band of coefficients in the rotated representation g . This leads to the following

block-sparse structure:

R̃ =



1 0 0 0 0 0 0 0 0 · · ·
0 X X X 0 0 0 0 0 · · ·
0 X X X 0 0 0 0 0 · · ·
0 X X X 0 0 0 0 0 · · ·
0 0 0 0 X X X X X · · ·
0 0 0 0 X X X X X · · ·
0 0 0 0 X X X X X · · ·
0 0 0 0 X X X X X · · ·
0 0 0 0 X X X X X · · ·
...

...
...

...
...

...
...

...
...

. . .



. (B.35)

Several methods have been proposed for efficiently computing this coefficient transforma-

tion. Analytic forms can be derived for axis-aligned rotations, which can then be combined

using Euler angle decomposition to construct rotations about arbitrary axes [Kautz et al.,

2002]. This approach is only practical for low-order coefficients, and rotations of higher

order SH functions are more efficiently implemented using recurrence relations [Ivanic

and Ruedenberg, 1996, 1998; Blanco et al., 1997; Choi et al., 1999; Pinchon and Hoggan,

2007]. Křivánek et al. [2005c] instead proposed a fast approximate SH rotation method for

small angles, which uses a truncated Taylor expansion of the rotation matrix. Green [2003]

provides a more detailed summary of available methods.

If the function f has circular symmetry about the z-axis, then its projection consists only

of zonal harmonics (only the m = 0 SH basis functions). Zonal harmonics (ZH) are an

important subset of the full set of SH basis functions since they often lead to more efficient
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operations. Furthermore, circularly symmetric functions are common in graphics. Most

phase functions discussed in Chapter 4, for instance, exhibit circular symmetry.

Since ZH functions only have one non-zero coefficient per band, they can be rotated much

more efficiently. This means that only one column of each band-matrix is needed:

R̃ =



1 0 0 0 0 0 0 0 0 · · ·
0 0 X 0 0 0 0 0 0 · · ·
0 0 X 0 0 0 0 0 0 · · ·
0 0 X 0 0 0 0 0 0 · · ·
0 0 0 0 0 0 X 0 0 · · ·
0 0 0 0 0 0 X 0 0 · · ·
0 0 0 0 0 0 X 0 0 · · ·
0 0 0 0 0 0 X 0 0 · · ·
0 0 0 0 0 0 X 0 0 · · ·
...

...
...

...
...

...
...

...
...

. . .



. (B.36)

The non-zero elements in this matrix have an easy analytic form. To rotate a zonal harmonic

function into direction ~d we simply need to apply the formula:

g m
l =

√
4π

2l +1
f 0

l ym
l (~d). (B.37)

Note the similarity of this equation to the convolution in Equation B.13. In effect, rotation

of a circularly symmetric function is the same as convolving a kernel with a delta function

at the desired rotation axis.


