
6
Irradiance Gradients in the Presence of

Participating Media and Occlusions

“Write a wise saying and your name will live forever.”

—Unknown

THE irradiance caching [Ward et al., 1988] algorithm described in Chapter 3 is one of the most

successful acceleration strategies for solving the rendering equation using Monte Carlo

ray tracing. In the previous chapter we developed a complementary radiance caching algorithm

to efficiently solve the volume rendering equation within participating media by accounting

for surface-volume and volume-volume interactions of light. These two approaches can easily

be coupled to simulate all light transport by caching both on surfaces and within the medium.

However, irradiance caching and volumetric radiance caching both rely on accurate gradient

computations to improve the accuracy of interpolation. Participating media, unfortunately, affects

not only the irradiance but also the irradiance gradient on surfaces embedded within media.

6.1 Contributions

In Table 6.1 we summarize the most important previous techniques for computing il-

lumination gradients for irradiance caching. Unfortunately, none of these methods take into

account the full radiative transport equation, which leads to increased interpolation artifacts in

the presence of participating media. In this chapter we present extensions to these techniques

to reduce these problems. We develop novel gradients that consider absorption, emission, and

scattering in volumetric media, and the effect of surfaces occluding media. In particular, we
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present the following contributions:

1. We derive gradients to handle indirect illumination from surfaces in the presence of absorb-

ing media and occlusions. This generalization also allows us to handle non-Lambertian

reflectors.

2. We derive gradients of irradiance in the presence of scattering or emissive media and

account for surface-medium occlusion changes.

These two contributions enable, for the first time, the accurate computation of illumina-

tion gradients in the context of the full radiative transport equation. Without tracing any addi-

tional rays, the gradients described in this chapter are more accurate and contain significantly less

noise than gradients computed using expensive numerical techniques such as finite differencing.

The resulting gradient computations are easy to implement and straightforward to incorporate

into an irradiance caching framework. We show that the new gradients produce higher-quality

interpolation than previous techniques, which do not take into account full radiative transport.

Table 6.1: A comparison of the capabilities of illumination gradient techniques. The gradients derived
in this chapter take into account the full radiative transport equation, including the effects of absorbing,
emissive, and scattering participating media (PM). We support cache points on glossy surfaces (GCP), and
we consider effects of glossy indirect reflectors (GIR), visibility changes (V), indirect illumination (II), and
curved objects (CO).

Method PM GCP GIR V II CO

Ward and Heckbert [1992] X X X
Arvo [1994] X X
Křivánek et al. [2005b] X X X
Křivánek et al. [2005a] X X X X
Ramamoorthi et al. [2007] X X X X
Chapter 5 X X X X X
This Chapter X X X X X X
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6.2 Overview

As we saw in Chapter 2, irradiance E at a surface location x can be written as the cosine-

weighted integral of incident radiance,

E(x) =
∫
Ω

L(x←~ω) (~n ·~ω)d~ω. (6.1)

We are interested in computing the gradient ∇E(x) with respect to a translation of x.

In the presence of participating media, light transport obeys the radiative transfer equa-

tion from Equation 4.27. In this case we can interpret the incident radiance L(x←~ω) as the sum of

two separate contributions: the radiance Ls coming from surfaces that reflect illumination, and

the radiance Lm contributed by the participating medium, i.e.,

L(x←~ω) =Tr (x↔xs)L(xs →−~ω)︸ ︷︷ ︸
Ls (x←~ω)

+
∫ s

0
Tr (x↔xt )σs(xt )Li (xt →−~ω)d t︸ ︷︷ ︸

Lm (x←~ω)

, (6.2)

where xt = x+ t~ω with t ∈ (0, s), and s is the distance through the medium to the nearest surface at

xs = x+ s~ω. The outgoing radiance L(xs →−~ω) is computed by integrating the lighting and BRDF

at xs , and Tr (x↔xs) is the transmittance of the medium between x and xs .

To improve the clarity of our derivations, we split up the total irradiance in Equation 6.1

into irradiance from surfaces Es and irradiance from the medium Em such that

Es(x) =
∫
Ω

Ls(x←~ω) (~n ·~ω)d~ω, (6.3)

Em(x) =
∫
Ω

Lm(x←~ω) (~n ·~ω)d~ω, (6.4)

and E (x) = Es(x)+Em(x). The total gradient is simply ∇E =∇Es +∇Em . We derive gradients for the

irradiance from surfaces in Section 6.3 and for irradiance from participating media in Section 6.4.

We illustrate this process in Figure 6.1.

Note that in the following sections we only consider irradiance gradients for brevity, but all

of these computations could easily be projected onto spherical harmonics to obtain full radiance

gradients, as done in the previous chapter. Also, for clarity, we do not include media emission in
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Irradiance from Surfaces (Section 4) Irradiance from Media (Section 5)

Figure 6.1: Irradiance caching approximates irradiance by tracing rays in a hemisphere (a) and calculating
the radiance and distance to each hitpoint (b). Ward and Heckbert express irradiance gradients (c) by
computing ∇A j ,k (grey) of each cell under a translation of x, where the rate of motion of a cell boundary
is determined by the distance (blue) to the closer surface. Our method accounts for absorbing media by
additionally considering ∇L j ,k (red). We use ray marching (d) by sampling the in-scattered radiance at
discrete points xt . For each discrete “shell” we compute both a radiance gradient and a visibility gradient
(e) to account for surfaces occluding the medium. Conceptually, ∇V reduces the contribution of radiance
from shells (highlighted) beyond the occluder (blue).

our derivations. This can be trivially included since the emission and in-scattered terms are nearly

identical. We also restrict our derivations to translational gradients. We account for gradients on

curved surfaces by including a rotational gradient computed as described by Ward and Heckbert

[1992]. Unlike the translational gradient, participating media does not influence the computation

of the rotational gradient.

6.3 Irradiance Gradients for Surfaces

In this section we present a generalization of Ward and Heckbert [1992] and Křivánek

et al. [2005a] irradiance gradients. Our generalization relaxes the restriction that radiance arriving

at x from an indirect light source at x′ is constant under translation of x. This generalization

allows us to correctly handle scenes where the radiance may change due either to absorption by

participating media or glossy reflectors.

6.3.1 Irradiance Gradients

In the irradiance gradient computations of Ward and Heckbert [1992] and Křivánek et al.

[2005a], the irradiance integral from Equation 6.3 is estimated using the stratified Monte Carlo
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estimator introduced in Chapter 3,

Es(x) ≈
M−1∑
j=0

N−1∑
k=0

A j ,k Ls(x←~ω j ,k ) (~n ·~ω j ,k ), (6.5)

where we defined the relevant quantities in Table 3.1 and illustrated the stratified geometry in

Figure 3.4.

The contribution of each sample is the product of the radiance through the cell, Ls(x←
~ω j ,k ), and the area of the cell, A j ,k , and this contribution is weighted by the cosine term (~n ·
~ω j ,k ). The irradiance gradient considers how these terms change when translating the center of

projection by an infinitesimal amount. By differentiating Equation 6.5 we get:

∇Es(x) ≈
M−1∑
j=0

N−1∑
k=0

∇(A j ,k Ls(x←~ω j ,k ) (~n ·~ω j ,k )) (6.6)

=
M−1∑
j=0

N−1∑
k=0

(∇A j ,k Ls
j ,k + A j ,k ∇Ls

j ,k ) (~n ·~ω j ,k ),

where we have used Ls
j ,k = Ls(x←~ω j ,k ) for brevity. Translation in the tangent plane may induce

both a change in the area of a cell ∇A j ,k and a change in the radiance seen through a cell ∇Ls
j ,k .

Note that the cosine term does not change under translation, so the ∇(~n ·~ω j ,k ) term drops out.

The total surface irradiance gradient can be expressed as a sum of two terms,

∇Es(x) ≈∇AEs(x)+∇LEs(x), (6.7)

where ∇AEs(x) includes the gradient terms containing changing cell area ∇A j ,k , and ∇LEs(x)

incorporates the terms with changing cell radiance ∇Ls
j ,k .

Previous work on irradiance and radiance gradients only considers the rate of change of

each cell area, ∇A j ,k , but assumes that ∇Ls
j ,k = 0. In Section 3.6.2 we provided detailed derivations

of the cell area gradient contribution. In this chapter we consider the effects of ∇LEs(x), for which

we derive expressions in the following section.
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6.3.2 Gradient of Cell Radiance

By allowing the cell radiances to change with translation, we can include attenuation due

to participating media as well as glossy reflectors in the gradients. We additionally compute a

gradient ∇LEs that incorporates changes in cell radiance,

∇LEs(x) ≈
M−1∑
j=0

N−1∑
k=0

A j ,k ∇Ls
j ,k (~n ·~ω j ,k ), (6.8)

where the area of each cell is

A j ,k =
∫ φk+

φk-

∫ θ j+

θ j-

sinθdθdφ =⇒ (cosθ j-−cosθ j+ )(φk+−φk- ). (6.9)

For a cosine-weighted distribution, this gradient term reduces to the average of the cell gradients,

∇LEs(x) ≈ π

M N

M−1∑
j=0

N−1∑
k=0

∇Ls
j ,k . (6.10)

Using the definition of surface radiance from Equation 6.2, the gradient ∇Ls
j ,k is

∇Ls
j ,k =∇Tr (x↔xs)L(xs ,−~ω j ,k )+Tr (x↔xs)∇L(xs ,−~ω j ,k ). (6.11)

We compute the gradient of the transmittance term using the techniques described in the previous

chapter. Though we do not demonstrate this in our results, glossy reflectors can easily be handled

in our framework by computing the radiance gradient using the gradient of the BRDF at xs .

The final irradiance gradient is simply the sum of Ward and Heckbert’s original gradient

∇AEs(x) and our additional cell radiance gradient term ∇LEs(x) as expressed in Equation 6.7. In

Figure 6.2 we demonstrate the impact of adding the gradients of cell radiance. The resulting

irradiance gradients are more accurate, and the quality of interpolation in irradiance caching is

significantly improved.
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Chapter 5This Chapter Ward and Heckbert '92Scene with
Absorbing Medium
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Figure 6.2: We compare irradiance caching and extrapolation using different gradient computation
techniques in a scene with an absorbing medium. The top row shows irradiance extrapolated over the
ground plane from a few cache points. The improved gradients from this chapter consider changes of
visibility and absorption by the medium. Our method from Chapter 5 ignores visibility and Ward and
Heckbert [1992] ignore absorption by the medium, which leads to increased artifacts. In the bottom row
we visualize the irradiance gradients computed per-pixel. The red and blue color coding shows absolute
values of the x and y components of the gradient, respectively. We computed gradients for each technique
using 1.8K gather rays per pixel and also a “ground truth” gradient using finite differences (FD). Since finite
difference gradients are extremely noisy, our reference uses 100 times more rays (180K rays/pixel). Our
method produces accurate gradients with few gather rays and converges to the reference solution using
finite differencing.

6.4 Irradiance Gradients for Media

In this section we consider the contribution of scattering media to the irradiance gradient.

Our derivation is based on a reformulation of the radiance from the medium, Lm , in Equation 6.2.

Instead of integrating to the closest visible surface, we introduce a visibility function and integrate

to infinity. We rewrite the media irradiance, Equation 6.4, as

Em(x) =
∫
Ω

∫ ∞

0
Tr (x↔xt )σs(xt )Li (xt →−~ω)V (x↔xt ) (~n ·~ω)dtd~ω, (6.12)

where we ignore the emission terms. The visibility function V returns one if the two arguments

are mutually visible, and zero otherwise. If we collect all factors except visibility in a new term

LV (x,xt ,~ω) = Tr (x↔xt )σs(xt )Li (xt ,−~ω)(~n ·~ω), which we call unshadowed radiance, the media
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Figure 6.3: This modification of the scene from Figure 6.2 contains an emissive medium. The improved
gradient formulation obtains accurate results by taking into account the medium and surface-medium
occlusions, whereas previous methods ignore these effects and suffer from artifacts.

irradiance reduces to a product of unshadowed radiance and visibility,

Em(x) =
∫
Ω

∫ ∞

0
LV (x,xt ,~ω)V (x↔xt )dtd~ω. (6.13)

Differentiation using the product rule leads to the gradient of media irradiance,

∇Em(x) =
∫
Ω

∫ ∞

0
∇LV V +LV ∇V d td~ω, (6.14)

where we have omitted the function arguments for brevity.

In the previous chapter, we derived gradients of multiple scattering within participating

media in a similar manner. In those derivations, however, we assumed visibility was constant,

and the gradient of V was ignored. In effect, we only considered the first term of Equation 6.14. In

order to obtain the full gradient, we now also compute the gradient of visibility, as described in

the following section.



109

6.4.1 Visibility Gradient

In order to account for the visibility gradient, we need to compute the following quantity:

∇V Em(x) =
∫ ∞

0

∫
Ω

LV ∇V d~ωd t , (6.15)

=
∫ ∞

0
ṼΩ(x, t )d t , (6.16)

where we use ∇V to denote that this is a gradient only of the visibility component, and we swap

the order of integration to make the derivation more convenient. Additionally, we introduce the

shorthand ṼΩ for the hemispherical integral of LV ∇V .

If we consider a fixed t , ṼΩ computes the gradient of the weighted visibility integral over

the hemisphere. This is similar to Ward and Heckbert, except they compute the gradient of a

weighted radiance integral over the hemisphere. Therefore, by substituting the radiance function

with visibility, and replacing the weighting functions, we can compute this weighted visibility

gradient using Ward and Heckbert’s formulation. Intuitively, we are computing an irradiance

gradient in a scene where the radiance function encodes V as black occluders in front of a distant

environment map, LV . Applying these modifications to Equation 3.32 results in

ṼΩ ≈
N−1∑
k=0

(
ûk

M−1∑
j=1

∇ûk A j-,k (V j ,k −V j -1,k )LV ( j-,k)+ v̂k-

M−1∑
j=0

∇v̂k-
A j ,k- (V j ,k −V j ,k-1)LV ( j ,k-)

)
,

where the directional derivatives ∇ûk A j-,k and ∇v̂k-
A j ,k- are computed using Equations 3.42 and

3.46 and utilize the distance to occluders in their denominators. V j ,k is a binary function indicating

for each direction ~ω j ,k whether the distance s to the nearest surface is less than or greater than t :

V j ,k (t , s) =
{

0 if t ≥ s,

1 if t < s.
. (6.17)

In order to integrate over t we perform ray marching, which discretizes the medium into

“shells” as illustrated in Figure 6.1(d,e). Conceptually, we consider radiance from the medium as

coming from expanding shells of radius t about the evaluation point x and compute the visibility
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Figure 6.4: This modification of the scene from Figure 6.2 contains a spotlight and a scattering medium.
The improved gradient formulation obtains accurate results by taking into account the medium and
surface-medium occlusions, whereas previous methods ignore these effects.

gradient in Equation 6.16 as

∇V Em(x) ≈
S−1∑
t=0

ṼΩ∆t . (6.18)

In practice, however, ray marching is performed independently for each hemispherical direction,

which swaps the order of the summations back again.

In summary, for a fixed distance t , we compute LV , ∇LV as in Chapter 5, and we compute

a Ward and Heckbert-style gradient for LV ∇V by evaluating the unshadowed radiance along

visibility boundaries.

6.5 Implementation

Our new irradiance gradients can easily be added to a Monte Carlo renderer, which uses

irradiance caching and supports participating media. The irradiance caching algorithm stays

the same; just the gradient computation needs to be modified to account for the medium. Our

procedure is illustrated in Figure 6.1. We provide pseudo-code for computing Es and Em and the

gradients ∇Es and ∇Em in Algorithm 6.1 and describe the procedure in the following sections.



111

Algorithm 6.1: COMPUTEGRADIENT(x,~n)

Data: x is the position and~n is the normal at the evaluation location.
Result: Es , Em , ∇Es , and ∇Em

begin1

foreach cell ( j ,k) do2

Determine distance s by tracing ray towards ~ω j ,k ;3

Compute L(xs ,−~ω j ,k ) and ∇L(xs ,−~ω j ,k );4

Ls(j,k)= L(xs ,−~ω j ,k );5

gLs(j,k)=∇L(xs ,−~ω j ,k );6

A ⇐ π
M ·N ;7

foreach cell ( j ,k) do8

Tr ⇐ 1;9

∇Tr ⇐ 0;10

foreach ray-marching step through the medium do11

Update Tr and ∇Tr ;12

Compute LV , and ∇LV as in Chapter 5;13

Compute LV∇V using Equation 6.17;14

Lm(j,k)+= LV A∆t ;15

gLm(j,k)+= (LV∇V +∇LV A)∆t ;16

gLs(j,k)= gLs(j,k)Tr +Ls(j,k)∇Tr ;17

Ls(j,k)*= Tr ;18

return Es = A
∑

j ,k Ls(j,k);19

return ∇Es = Equation 3.47+ A
∑

j ,k gLs(j,k);20

return Em =∑
j ,k Lm(j,k);21

return ∇Em =∑
j ,k gLm(j,k);22

end23

Initialization. The irradiance and gradient computation starts by creating a M ×N array, where

each element stores a HemiSample. This array is used to store the hemispherical samples needed

to compute the irradiance and the irradiance gradient. Each HemiSample stores the distance s,

the surface radiance and gradient Ls and gLs, and the media radiance and gradient Lm and gLm.

All these values are initialized to zero.

Sampling Surfaces. The algorithm starts by looping over each cell ( j ,k) and tracing a ray in

the ~ω j ,k direction, generated using a cosine-weighted distribution [Ward and Heckbert, 1992].

We save the hit distance to the nearest surface, s, within the HemiSample and store the radiance

L(xs ,−~ω j ,k ) in Ls. If the intersected surface at xs is glossy, we also compute a gradient∇L(xs ,−~ω j ,k )

and store this in gLs. At the end of this stage we have a full hemispherical discretization of the
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Figure 6.5: Visualizations of the gradient magnitude, (left) along a scanline in Figure 6.2, and (right) along
a scanline in Figure 6.4. Our new gradient formulation correctly matches the profile of the finite difference
gradient but with significantly less noise. Since it ignores participating media, the original Ward and
Heckbert formulation does not produce the correct gradient in either of these situations.

scene, with a radiance, gradient, and distance to the nearest surface in each cell. The cell radiances

and gradients do not yet take into account participating media.

Sampling Media. In order to account for the media, we perform ray marching individually for

each cell ( j ,k). As mentioned in Section 6.4, the integration over the hemisphere is the outer loop.

For each cell, at each step in the medium we compute LV (xt ) and ∇LV (xt ) using the techniques

developed in Chapter 5. We also compute LV (xt )∇V (xt ) by evaluating Equation 6.17 for the (up

to) four boundaries of the current cell: ( j-,k-), ( j-,k+), ( j+,k-), and ( j+,k+). We then multiply the

terms by the cell area A j ,k and accumulate their contributions into Lm and gLm.

At each step through the medium we maintain the current value of the transmittance Tr

and its gradient ∇Tr . Once ray marching terminates, these values correspond to the transmittance

Tr (x↔xs) and transmittance gradient ∇Tr (x↔xs) from the evaluation location x to the surface at

xs . We use these transmittance values to augment the Ls and gLs values computed in the previous

stage in order to properly account for absorption by applying Equations 6.2 and 6.11.

Integrating. At the end of this process we integrate the irradiance and its gradient by summing

over all the HemiSamples. Additionally, we add Equation 3.47 to the surface irradiance gradient

to account for the changing cell areas.
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Figure 6.6: Relative errors for computing the irradiance and irradiance gradient for a single pixel in the
scene from Figure 6.3. The x-axis plots M , the number of divisions in elevation angle, and N is set to 2M .
Previous gradient methods converge to incorrect values, leading to high error even with many samples.

6.6 Results

We implemented our irradiance gradients within a global illumination renderer written in

C++. We compare our gradient method to Ward and Heckbert [1992] for a number of scenes. We

also compare to a modification of Chapter 5’s gradients, where we compute irradiance gradients

on surfaces by integrating over the hemisphere (instead of the whole sphere) and consider the

cosine-weighted BRDF (instead of the phase function). In all of our results comparing irradiance

caching, we only change the gradient method used. All other parameters, including the number

of evaluation rays and the resulting cache point locations, are kept exactly the same. All timings

are for an Intel Core 2 Duo 2.4 GHz machine using one core.

In Figures 6.2, 6.3, and 6.4 we demonstrate the importance of considering effects from

the medium for variations of a scene containing absorbing, emitting, and scattering media,

respectively. We directly visualize the x, y gradient components in these figures and compare

them to “reference” solutions computed using finite differences. These renderings were computed

at a resolution of 256×256 using 30×60 = 1,800 rays per evaluation. Our gradients match the

reference solutions more faithfully than previous techniques and contain less noise than finite

difference gradients computed using 180,000 evaluation rays per pixel. We demonstrate the

accuracy of our gradients in Figures 6.5 and 6.6. Figure 6.5 plots the gradient magnitude along a

scanline in the scenes from Figures 6.2 and 6.4. In Figure 6.6 we visualize the convergence rate

for the irradiance and gradient computed at a single pixel in the scene from Figure 6.3. Previous



114

This Chapter Ward and Heckbert '92 Chapter 5

In
iti

al
 P

as
s

O
ve

rtu
re

 P
as

s

(3:25) (3:17) (3:24)

Figure 6.7: All the illumination on the walls of this room has first scattered off the floor or the bright
beam of light through the window. Our improved gradient computation significantly reduces extrapolation
artifacts (top). Using an “overture” pass, where the scene is re-rendered once all cache points are computed,
previous techniques still suffer from interpolation artifacts (bottom), while our method produces smooth
reconstruction.

techniques do not correctly capture the true gradient. The technique described in this chapter

matches the finite difference gradient and quickly converges to the correct solution.

Figure 6.7 features a room with a strong volumetric light beam entering an open window.

The walls and most of the floor in this scene are indirectly illuminated by this single beam of

light. Using Ward and Heckbert’s gradient computation, this scene renders in 3:17 minutes at a

horizontal resolution of 1K. Since this gradient method ignores the media, all light is incorrectly

assumed to come from surfaces during gradient computation. This results in significant artifacts.

Performing an “overture” re-rendering of the image is a common technique for improving the

quality of irradiance cache renderings. This allows for interpolation, instead of extrapolation, to

be used for the entire image. Even though the overture pass improves the quality of the rendering

by reducing sudden discontinuities, the inaccurate gradients result in distracting “ripples” on

the walls and floor. The gradients from Chapter 5 do account for the medium but fail to handle

visibility changes, which also leads to significant artifacts. The gradients from this chapter, on

the other hand, can correctly handle this scene and produce noticeably smoother reconstruction

of the indirect illumination. The overhead of the improved gradients is fairly negligible, and we

are able to render the same image in 3:25 minutes. The overture pass takes a fraction of the total

render time for each method, and completes in under four seconds.
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Figure 6.8: The classic Cornell box scene with a scattering medium. We compare the quality of irradiance
caching and provide two zoomed-in regions for each result. Ward’s gradient formulation does not consider
the medium, which results in inaccurate gradients and significant extrapolation artifacts. Our participating
media gradients from Chapter 5 do a much better job, but still suffer from artifacts due to occlusion
changes. The gradients from this chapter obtain the smoothest results by taking into account the media
and occlusions.

Figure 6.8 contains a modification of the classic Cornell box rendered at a resolution of

1K. Ward’s method produces distracting artifacts even after an overture pass. Gradients computed

using the techniques from Chapter 5 do a much better job in this scene, but still contain artifacts

in areas with occlusion changes. The gradients derived in this chapter produce smooth results

even in the initial pass. The overture pass takes less than five seconds for each method.

The disco light scene in Figure 6.9 presents a particular challenge for conventional gradi-

ent methods, since all lighting on surfaces is indirect lighting from the scattering medium. Due

to this, Ward and Heckbert’s gradients suffer from significant artifacts both on the surface of the

sphere and the ground plane. The gradients from Chapter 5, since they ignore visibility changes,

also suffer from artifacts. This is particularly noticeable on the ground near the base of the disco

light, where visibility changes are most prominent. The improved gradients are able to obtain

a smooth reconstruction of the irradiance on the first pass and we can render this scene at 1K

resolution in 10:33 minutes. This is only a slight overhead on top of the 10:30 minute render time

using Ward and Heckbert’s gradients. The overture pass takes less than seven seconds to compute

for each method.
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Figure 6.9: This disco light scene contains 21 light sources, but all lighting on surfaces is indirect. Ward’s
gradient formulation assumes all lighting (even from the media) arrives from surfaces, which results
in inaccurate gradients and significant extrapolation artifacts. The participating media gradients from
Chapter 5, however, do not take the visibility term into account. The gradients developed in this chapter
obtain the smoothest results by taking into account the media and occlusions.

6.7 Summary and Discussion

Our work on computing accurate irradiance gradients in scenes containing participating

media exposes a number of limitations of current techniques and, in the process, suggests several

exciting possibilities for future work.

Error Metric. In this chapter we were only concerned with improving the quality of interpolation

by computing more accurate gradients. However, another significant contributor to the efficiency

and quality of the irradiance caching method is the error metric used to compute valid radii of

cache points. The split-sphere model, which drives the error metric, is geometry-driven and

completely ignores lighting and all effects from participating media. This can lead to suboptimal

cache point distributions. A more general error metric is desirable, but it is not immediately clear

how to extend the split-sphere model to incorporate these effects. In Chapter 5 we derived an

error metric specifically for participating media, and Křivánek et al. [2006] introduced a neighbor

clamping technique. Creating a robust error metric that takes into account the local geometry as

well as lighting from surfaces and media is a difficult problem which warrants further work.
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Radiance Gradients. Though we presented all of our derivations within the context of irradiance,

it is trivial to apply our approach to radiance caching on surfaces. Křivánek et al. [2005a] showed

that, to compute radiance gradients, the cosine terms in Equations 6.5 and 6.6 can be replaced by

a set of basis functions. This projection enables efficiently storing the full radiance function as a

vector of coefficients and the radiance gradient as a corresponding set of gradient coefficients.

Radiance Gradients in Participating Media. In Chapter 5 we compute radiance gradients of

single scattering from lights, single scattering from surfaces, and multiple scattering, but ignore

visibility in all of these computations. This chapter provides the first step in computing visibility-

aware radiance gradients for caching within participating media.

Computing single scattering from surfaces is very similar to the surface irradiance pre-

sented in Section 6.3. Ward and Heckbert, however, only consider gradients in 2D along the

tangent plane. Our surface irradiance gradients could be extended to work in participating media

by additionally deriving expressions for the gradients of cell area with respect to motion along a

third axis.

Similarly, the definition of media irradiance in Equation 6.12 is nearly identical to the

computation of multiple scattering. Extending Ward and Heckbert’s stratified gradients to consider

motion along all three dimensions would also enable the use of a visibility gradient within the

multiple scattering gradient.

Gradients of single scattering from light sources cannot be handled using Ward and

Heckbert’s stratified gradients since these effects are typically not computed using hemispherical

integration. For point light sources, however, visibility gradients can be efficiently approximated

without tracing additional rays by using shadow maps and performing finite differencing. We,

in fact, implemented this extension and use it when computing the gradient of single-scattered

radiance embedded within the ∇LV term of Equation 6.14.

Visibility Gradient. Ward and Heckbert’s stratified gradient formulation is intuitive and works

well in practice; however, it is difficult to quantify its mathematical correctness since the gradient

is performed after discretization. More recently, Ramamoorthi et al. [2007] presented an elegant
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new visibility gradient formulation. Their approach is more mathematically rigorous since it

presents an analytic expression for the gradients and only then performs discretization of this

analytic expression. In Section 6.4.1 we modify Ward and Heckbert’s gradients to estimate visibility

gradients; however, an obvious alternative to this approach would be to directly use the gradients

presented by Ramamoorthi et al. This approach would allow for a completely analytic expression

for the media irradiance gradient. We explored this avenue, but Ramamoorthi’s visibility integra-

tion suffers from a weak singularity. Though this singularity can be avoided by using adaptive

sampling over the hemisphere, it makes it more cumbersome to integrate into the stratified ray

marching process needed within our context. Nevertheless, we still believe this is a promising

alternative and plan to investigate this approach further.

6.8 Conclusion

In this chapter we presented a method for accurately computing irradiance gradients

on surfaces in the presence of participating media and occlusions. We applied our gradient

derivations to the irradiance caching method and demonstrated that incorporating participating

media and visibility information within the gradient is important for high quality irradiance

interpolation in scenes containing these effects.
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