
8
The Beam Radiance Estimate

“Scattering is easier than gathering.”

—Irish Proverb

THE volumetric photon mapping [Jensen and Christensen, 1998] technique described in

the previous chapter can efficiently simulate scattering in participating media without

making simplifying assumptions about the properties of the medium being rendered. Similar to

the volumetric radiance caching technique developed in Chapter 5, photon mapping handles

isotropic, anisotropic, homogeneous, and heterogeneous media of arbitrary albedo. Photon

mapping gains efficiency by reusing a small collection of photons to estimate in-scattered radiance

at all locations in the scene using density estimation.

Just like in volumetric radiance caching, a ray marching process is used to integrate the

contribution of radiance directly seen by the camera. In volumetric photon mapping, however,

the radiance estimate, which is evaluated at each step during ray marching, requires costly range

queries within the photon map. Minimizing the number of queries is desirable; however, if not

enough sample points are used, the result is likely to be noisy. On the other hand, increasing the

number of sample points is very costly and can slow down rendering significantly. Even with a

fixed number of samples, finding an optimal distribution of sample points along the ray is difficult.

Moreover, the ray marching formulation is suboptimal, firstly because it may gather the same

photons more than once if the spherical neighborhoods overlap and, secondly, because it can

lead to noise if the step size is too large and photons are omitted (see Figure 8.1).

In this chapter we develop a novel radiance estimate technique for participating me-
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Conventional Gathering Beam Gathering

Gathered Other photonsMissedDouble-counted

Figure 8.1: Conventional gathering (left) searches for photons in a sphere around numerous samples along
the ray. This is inefficient because it can double-count photons if the searches overlap (blue) and it can
miss important photons (orange) if the step-size becomes too large. The method described in this chapter
(right) assigns a radius to each photon and performs a single range search to find all photons along the
length of the entire ray.

dia, which eliminates this problem. To accomplish this, we use a theoretical reformulation of

volumetric photon mapping. The technique developed in this chapter replaces the multiple

point-queries performed during ray marching with a single beam-query, which explicitly gathers

all photons along the length of an entire ray. These photons are used to estimate the accumulated

in-scattered radiance arriving from a particular direction and need to be gathered only once per

ray. This method handles both fixed and adaptive kernels, is significantly faster than conventional

volumetric photon mapping, and produces images with less noise.

8.1 Contributions

In this chapter, we propose a novel approach for computing the contribution of in-

scattered radiance. We gather photons along viewing rays and analytically compute their contri-

butions, without point sampling. We present the following contributions:

• We combine the theory from Veach [1997] and Pauly et al. [2000] to derive a reformulation

of volumetric photon mapping as a solution to the measurement equation. This theory

allows for arbitrary measurements of radiance to be computed within participating media,

where a measurement is simply an integral of the radiance multiplied with a weighting
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function.

• Using this new theory, we present an improved radiance estimate for volumetric photon

mapping based on “beam gathering.” This technique eliminates the need for stepping

through the medium to find photons. Instead, it gathers all photons along a ray. We show

how to efficiently implement this new gathering technique for both fixed and adaptive

smoothing kernels and demonstrate that our method produces images with less noise than

conventional photon mapping.

The rest of this chapter is organized as follows. In Section 8.2, we reformulate volumetric

photon mapping in terms of the measurement equation and show how the photon map can be

used to estimate any measurement of radiance within the scene. In Section 8.3, we present our

new beam radiance estimate using this theory and describe the data structures needed to evaluate

it efficiently. Finally, we show comparisons of our approach to conventional photon mapping in

Section 8.4 and discuss avenues of future work in Section 8.5.

8.2 Reformulation of Volumetric Photon Mapping

Our technique queries once for photons along the length of an entire ray, instead of

multiple times near points along the ray (see Figure 8.1). More formally, whereas regular photon

mapping estimates Li at discrete points using Equation 7.10, our main contribution is to directly

estimate

∫ s

0
Tr (x↔xt )σs(xt )Li (xt →~ω)dt (8.1)

along rays.

Though the explanation of photon mapping from the previous chapter is appealing at

an intuitive level, it does not rigorously present the algorithm as a numerical solution to the RTE.

Furthermore, this explanation is heavily tied to the geometric interpretation of gathering photons

within a disc (on surfaces) or within a sphere (in participating media). In order to avoid these

limitations and use the photon map to estimate general radiometric quantities in the volume,
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such as Equation 8.1, we use a more flexible derivation of particle tracing methods presented

by Veach [1997]. We extend this derivation to handle participating media by combining it with

the generalized path integral formulation of the radiative transport equation [Pauly et al., 2000]

(Section 8.2.1) and show how to represent particle tracing algorithms like volumetric photon

mapping in terms of the measurement equation (Sections 8.2.2 and 8.2.3). Finally, we show how

to use the same photon maps to estimate more general quantities of radiance (Section 8.2.4).

8.2.1 Generalized Path Integral Formulation

We use the path integral formulation of the RTE, which arises by recursively expanding

the right hand side of Equation 4.27. Instead of expressing the radiance equilibrium recursively,

the resulting path integral formulation is a sum over light-carrying paths of different lengths. In

order to do this, we define the path space, the corresponding differential measure, and generalized

radiometric terms using notation inspired by Pauly et al. [2000].

A light path x̄l
k is a set of k +1 vertices xi . Each path is classified according to its path

characteristic l ∈N, which determines for each vertex whether it is in the volume or on a surface.

This allows us to integrate over different measures for scattering events at surfaces and within the

volume. We define the path characteristic l of a path x̄l
k such that the ith bit of l , bi (l ), equals 1 if

vertex xi is on a surface and bi (l ) = 0 if it is in the volume. The space of all paths of length k with

characteristic l is therefore:

Xl
k =

{
x̄l

k = x0,x1, . . . ,xk

∣∣∣xi ∈
{
V, if bi (l ) = 0

A, if bi (l ) = 1

}
, (8.2)

for 1 ≤ k < ∞ and 0 ≤ l < 2k+1, and where V and A are the media volume and surface area,

respectively (see Figure 8.2 for an illustration of this notation). We define the corresponding

differential measure at a path vertex xi as:

dµl (xi ) =
{

dV(xi ), if xi ∈V, i.e. when bi (l ) = 0

dA(xi ), if xi ∈A, i.e. when bi (l ) = 1
. (8.3)

Additionally, in order to express Equation 4.27 in terms of paths we need to transform the
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integration domain from solid angle (Ω andΩ4π), to area or volume (A and V) depending on the

type of scattering event. This transformation is achieved using the generalized geometry term:

Ĝ(x↔y) = V (x↔y)Dx(y)Dy(x)σ(x)Tr (x↔y)∥∥x−y
∥∥2 (8.4)

where

Dx(y) =
{

1, if x ∈V
~n(x) ·~ωxy, if x ∈A . (8.5)

We define ~ωxy to be the unit direction vector from x to y, and Dy(x) is defined symmetrically to

Dx(y) for both cases. The visibility function, V , is defined in Equation 2.191. The σ(x) function

returns the scattering coefficient σs(x) if x ∈V and 1 otherwise. Note that Equation 8.4 simplifies

to the regular geometry term if no participating media is present.

Similarly, we generalize scattering events and emitted radiance. We define f̂ to be the

generalized scattering function combining the phase function and the surface BRDF

f̂ (xi ) =
{

p(xi+1→xi →xi−1), if xi ∈V
fr (xi+1→xi →xi−1), if xi ∈A

, (8.6)

and L̂e is the generalized emitted radiance

L̂e (xi →xi−1) =
{
σa (xi )
σs (xi ) Le (xi →xi−1), xi ∈V
Le (xi →xi−1), xi ∈A

, (8.7)

where we multiply by σa
σs

because the emitted radiance in a volume needs to be multiplied by the

absorption, not the scattering, coefficient.

Given this notation, the generalized path integral formulation expresses the outgoing

radiance at x1 towards x0 as a sum over all possible light paths arriving at x1. This includes light

paths of all lengths k, as well as all possible characteristics l for each length

L(x1→x0) =
∞∑

k=1

2k+1−1∑
l=0

L̄(x̄l
k ). (8.8)

1Note that unlike G , to simplify notation we include the visibility function in Ĝ .
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Figure 8.2: An example path, x̄13
3 , with length k = 3. The path characteristic, l = 1101b = 13, concatenates

the type of scattering event from each path vertex. The radiance transported along the path L̄(x̄13
3 ) is the

emitted radiance at the light multiplied by a series of scattering events (blue) and geometry terms (green).

L̄(x̄l
k ) measures the amount of radiance transported along a path x̄l

k and is defined as

L̄(x̄l
k ) =

∫
µl (xk )

· · ·
∫
µl (x2)

L̂e (xk →xk−1)

(
k−1∏
j=1

f̂ (x j )Ĝ(x j+1↔x j )

)
dµl (x2) · · ·dµl (xk ). (8.9)

The radiance transported along an example path is shown in Figure 8.2.

8.2.2 The Measurement Equation

Many global illumination algorithms can be described in terms of the measurement

equation. The measurement equation describes an abstract measurement of incident radiance

taken over some set of rays in a scene:

I = 〈We ,L〉 =
∫
V

∫
Ω4π

We (x→~ω)L(x←~ω)d~ωdV(x). (8.10)

The importance function We represents an abstract measuring sensor and is defined over the

whole ray space V×Ω4π (though typically We is non-zero for only a small subset of this domain).

Path tracing, for instance, measures the contribution of radiance arriving over the area of

a pixel. Radiosity algorithms integrate the contribution of radiance over basis functions defined

on the scene geometry. Both of these approaches can be described using Equation 8.10 with an

appropriate importance function.

In his dissertation, Veach [1997] showed how particle tracing methods for surface illu-
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mination can also be expressed as a solution to the measurement equation by using the path

integral form of the rendering equation. We extend this idea and use the generalized path integral

formulation to describe volumetric photon tracing in the same way.

8.2.3 Volumetric Photon Tracing

Photon tracing methods can be thought of as a way of generating samples from the scene’s

equilibrium radiance distribution and then using this single collection of samples to render the

entire image. The photon tracing stage generates N weighted sample rays, or photons, (αi ,xi ,~ωi ),

where each (xi ,~ωi ) is a ray and αi is a corresponding weight. Our goal is to use these samples to

take unbiased estimates of the radiance as a weighted sum,

E

[
1

N

N∑
i=1

We (xi →~ωi )αi

]
= 〈We ,L〉, (8.11)

for an arbitrary importance function We . We must therefore determine the proper distribution of

samples for Equation 8.11 to hold.

We start by manipulating the measurement equation on the right-hand side. To ex-

press the measurement equation using paths, we expand Equation 8.10 in terms of the outgoing

radiance and convert to area form, introducing an additional geometry term,

〈We ,L〉 =
∫
µl (x1)

∫
µl (x0)

We (x0→x1)L(x1→x0)Ĝ(x1↔x0) dµl (x0) dµl (x1). (8.12)

By combining with Equations 8.8 and 8.9 and moving the summations outside the integrals, this

becomes

∞∑
k=1

2k+1−1∑
l=0

[∫
µl (xk )
· · ·

∫
µl (x0)

We (x0→x1) L̂e (xk →xk−1)

(
k−1∏
j=1

f̂ (x j )Ĝ(x j+1↔x j )

)
Ĝ(x1↔x0)dµl (x0) · · ·dµl (xk )

]
.

The Monte Carlo estimator for this expression using N samples is

E

[
1

N

N∑
i=1

We (xi ,0→xi ,1)Ri

]
, (8.13)
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where each Ri is a random-walk path of length ki generated using Russian roulette,

Ri =
L̂e (xi ,ki →xi ,ki−1 )

pdf (xi ,ki ,xi ,ki−1)

ki−1∏
j=1

(
1

qi , j

f̂ (xi , j )Ĝ(xi , j+1↔xi , j )

pdf (xi , j−1)

)
Ĝ(xi ,1↔xi ,0), (8.14)

and qi , j was the probability of terminating Ri at the j th vertex. Comparing Equation 8.13 with 8.11

we see that in order to satisfy the requirements we need to set αi = Ri .

Connection to Conventional Photon Tracing. Though derived in a different fashion, Equa-

tion 8.14 is exactly how conventional photon mapping distributes photons within the scene.

For instance, for a diffuse area light, photons are emitted using a cosine distribution with the

power of the light source. In Equation 8.14, photons are emitted with the radiance of the light

source divided by the pdf of choosing a position and direction on the light. These quantities are

equivalent. Hence the particles generated above represent differential flux. The correspondence

between the photon powers [Jensen and Christensen, 1998] and the sample weights is ∆Φi = αi
N .

8.2.4 Radiance Estimation Using the Measurement Equation

The main advantage of the reformulation in Section 8.2.3 is that it naturally accom-

modates computation of any measurement of radiance within the scene simply by using an

appropriately defined importance function We . In this section, we first show how the conven-

tional estimate for in-scattered radiance can be expressed as a measurement. We then go one

step further and show how to derive a beam radiance estimate which approximates Equation 8.1

along rays directly.

Conventional Radiance Estimate. The conventional radiance estimate approximates the value

of the in-scattered radiance Li at fixed points within the scene. To express this using the theory

from Section 8.2, we need to transform Equation 4.13 into the measurement equation. Since the

measurement equation is an integral over all of ray space (V×Ω4π), we artificially expand Li to
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also integrate over the volume

Li (xt →~ω) =
∫
Ω4π

p(xt ,~ω↔~ωt)L(xt ←~ωt)d~ωt (8.15)

=
∫
V

∫
Ω4π

δ(‖x′−xt‖) p(x′,~ω↔~ωt)L(xt ←~ωt)d~ωt dV(x′).

In order to keep the expressions equivalent when we add the integration over volume, we also

introduce a Dirac delta function δ.

The bottom row of the above equation is now the measurement equation, where We =
δ(‖x′−xt‖)p(x′,~ω↔~ωt). Hence we can compute an unbiased estimate using the photon map by

evaluating Equation 8.11 with this importance function. However, in order to obtain a useful

estimate of radiance at all points in the scene, a normalized kernel function is used in place of

the delta function. This is where bias is introduced in the photon mapping method. Another

interpretation is that by replacing the delta function with a kernel, photon mapping computes

an unbiased estimate of blurred radiance. Jensen and Christensen [1998] use a constant three-

dimensional kernel with a radius based on the kth nearest neighbor. This results in the following

radiance estimate by applying Equation 8.11

Li (xt →~ω) ≈
∫
V

∫
Ω4π

Kt (‖x′−xt‖) p(x′,~ω↔~ωt)L(xt ←~ωt)d~ωt dV(x′), (8.16)

≈ 1

N

N∑
i=1

Kt (‖xi −xt‖) p(xi ,~ω↔~ωi)αi (8.17)

where the kernel Kt is defined as

Kt (r ) =
{

3
4πdk (xt )3 if r ∈ [0,dk (xt )]

0 otherwise
, (8.18)

and dk (xt ) is the distance from xt to the kth nearest photon. Note that this is equivalent to the

conventional volumetric radiance estimate in Equation 7.10.

Beam Radiance Estimate. A similar procedure can be used to derive an estimate for the accu-

mulated in-scattered radiance along an entire ray. To accomplish this, we first expand out Li
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Figure 8.3: In the beam radiance estimate, x′ is parametrized in cylindrical coordinates, (t ,θ,r ), about the
ray (x,~ω). An unbiased estimate would only consider points directly on the ray, while a biased version uses
a kernel (shown in grey) to blur the radiance within a beam.

in Equation 8.1 and then artificially inflate the resulting expression to integrate over the whole

volume:

∫ s

0

∫
Ω4π

Tr (x↔xt)σs(xt) p(xt ,~ω↔~ωt)L(xt ←~ωt)d~ωt d t = (8.19)∫
R

∫ 2π

0

∫
R

∫
Ω4π

δ(r ) (H(t )−H(t − s))Tr (x↔x′)σs(x′) p(x′,~ω↔~ωt)L(x′←~ωt)d~ωt dr dθdt . (8.20)

R is the set of real numbers and x′ is expressed in cylindrical coordinates, (t ,θ,r ), about (x,~ω),

where r is the radius to the ray (see Figure 8.3). We have added a Dirac delta function δ as

before, and the Heaviside step functions (H(x) = 1 when x > 0 and 0 otherwise) constrain the

computation to t ∈ (0, s). Equation 8.20 is now equivalent to the measurement equation, where the

integral over volume has been converted into cylindrical coordinates and where We = δ(r )(H (t )−
H(t − s))Tr (x↔x′)σs(x′)p(x′,~ω↔~ωt).

Since the probability of photons landing exactly on the ray (x,~ω) is zero, we introduce

bias by blurring the radiance and replacing the delta and step functions with a smooth kernel, K .

This integral can then be estimated with the measurement equation using the photons as

∫
R

∫ 2π

0

∫
R

∫
Ω4π

K (t ,θ,r )Tr (x↔x′)σs(x′) p(x′,~ω↔~ωt)L(x′←~ωt)d~ωt dr dθdt =

1

N

N∑
i=1

K (ti ,θi ,ri )Tr (x↔xi )σs(xi ) p(xi ,~ω↔~ωi)αi , (8.21)

where (ti ,θi ,ri ) = xi are the cylindrical coordinates of photon i about the ray.

The blurring in the conventional radiance estimate is spherical, and so the kernel needs
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Figure 8.4: After photons have been distributed in the scene, our algorithm constructs a balanced kd-tree
(left). We assign a valid radius to each photon by querying in the kd-tree (middle). Finally, we rapidly
construct a bounding-box hierarchy over the photon-discs (right) by reusing the same hierarchical structure
(shown in red) as the kd-tree.

to be normalized for 3D. However, with the beam radiance estimate, we blur in two dimensions

(perpendicular to the ray) since the radiance we are computing already includes the integration

along the ray itself. Therefore, the kernel in the beam estimate is normalized for 2D.

8.2.5 Kernel Radiance Estimation

For both the conventional and beam radiance estimates, the characteristics of the bias

and blur are determined by the smoothing function chosen. Several options exist for applying a

smoothing kernel to the photon map data.

The kernel method uses a fixed-radius smoothing kernel and results in a uniform blur of

radiance within the scene. In practice, using a fixed-width circular kernel implies that in order

to evaluate the beam radiance estimate (Equation 8.21) using the photon map (Equation 8.11)

we only need to consider photons which are located within a fixed-radius cylinder about the ray

(x,~ω). Alternatively, the equivalent dual interpretation considers each photon as the center of an

oriented disc facing the ray and all photon-discs that intersect the ray need to be found.

If the density of photons varies significantly it can be difficult to choose a single radius

that works well for all regions of the scene. This can be solved by allowing the size and shape of

the blurring kernel to vary spatially. In conventional photon mapping, the kth nearest neighbor

method (k-NN) is used to adapt the kernel width to the local density. Generalizing point-based

k-NN to a visually comparable range search along rays is challenging. However, spatial variation
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can easily be applied to the dual photon-discs interpretation using the variable kernel method

(VK) [Breiman et al., 1977]. A smoothing kernel is “attached” to each photon, and the radius of the

kernel is allowed to vary from one photon to another, based on the local density. In contrast to

k-NN estimation, where the kernel widths vary based on the distance from the evaluation location

to the data points, in the VK method the kernel widths only depend on the data points themselves.

In order to facilitate this, the method relies on a pilot estimate of the local density at each data

point in order to assign the kernel widths. We review these and other density estimation methods

in more detail in Appendix C. This is the approach we take.

8.3 Algorithm

In order to use the dual interpretation to evaluate the beam radiance estimate (Equa-

tion 8.21), we need an efficient way of locating all photon-discs that intersect an arbitrary ray.

Additionally, to use variable width kernels we need to efficiently compute a radius for each photon

in the photon map. At a high level, our volumetric photon mapping technique performs the five

steps in Algorithm 8.1. Steps 1 and 2 are identical to conventional photon mapping, while 3–5 are

unique to our approach and are explained in more detail below.

Photon Radius Computation. We augment the traditional photon map by associating a radius

with each photon. For fixed width kernels the radius is a constant for all photons and does not

need to be explicitly stored. For variable width kernels using the VK method, we perform a density

estimation at each photon to assign a radius. At each photon we compute the local density by

estimating the distance to the kth nearest photon and use this as the photon-disc’s radius. This

pilot estimate is performed using the photon map kd-tree. The value k plays the same role as in

the conventional radiance estimate: it controls the amount of blur.

As an optimization, we only search for the nearest n ¿ k photons and estimate the

necessary radius for k photons. By assuming locally uniform photon density, if dn(xi ) is the

distance to the nth photon from photon i , we estimate the radius as ri = dn(xi ) 3
√

k
n . The n

parameter controls the sensitivity of the computed radius to the local variation in density. Very

small values of n, n < 5, can produce noisy radii, which change drastically between neighboring
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Algorithm 8.1: Beam photon mapping.

Shoot photons from light sources.1

Construct a balanced kd-tree for the photons.2

Assign a radius for each photon.3

Construct a bounding-box hierarchy over the photon-discs.4

Use the photon BBH to render the image.5

photons, while large values are more expensive to compute. In practice, we have found that

n = p
k works well as a default value, and this value was used for all our scenes, significantly

accelerating the preprocessing step.

Bounding Box Hierarchy Construction. In order to efficiently locate all photons-discs which

intersect a ray, we construct a bounding box hierarchy. Heuristics for constructing efficient BBHs

have been extensively studied within the context of ray tracing [Wald et al., 2007]. However, the

performance characteristics of our ray intersections are different than for regular ray tracing since

we are interested in all intersections, not just the first intersection along a ray. Furthermore, the

best heuristics tend to induce long construction times. We employ a rapid construction scheme

by exploiting the information in the photon map kd-tree and reusing that hierarchy for our BBH.

For each photon in the photon map, we compute the bounding box of all descendant

photon-discs. The bounding box of each node encloses the node’s photon radius and the bounding

boxes of its two child nodes. The computation starts at the leaves and propagates upwards through

the tree. This procedure results in a balanced median-split-style BBH, but unlike traditional BBHs

our hierarchy contains photons at interior nodes, not just at the leaves. Figure 8.4 illustrates the

relationship between the kd-tree and the BBH. The BBH can be constructed by passing the root of

the photon map kd-tree to Algorithm 8.2.

Given a balanced kd-tree, this linear-time construction procedure is extremely fast and

produces BBHs which can be efficiently traversed for nearby photons during rendering. After the

BBH is constructed the photon map kd-tree is no longer used and can be freed from memory.

Using a BBH and a per-photon radius, an additional seven floating-point values need to be stored,

increasing the size of each photon from 20 bytes to 46 bytes.
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Algorithm 8.2: CONSTRUCTBBH(p)

Data: p is a node in a balanced photon map.
Result: The subtree at p contains a valid BBH.
begin1

B ⇐ BOUNDINGBOX(p.position, p.radius);2

if p.leftChild then3

B ⇐ B ∪ CONSTRUCTBBH(p.leftChild);4

end5

if p.rightChild then6

B ⇐ B ∪ CONSTRUCTBBH(p.rightChild);7

end8

p.bbox ⇐ B ;9

return B10

end11

The Beam Radiance Estimate. During rendering we estimate the accumulated in-scattered

radiance (Equation 8.1) along viewing rays by locating all photons whose bounding spheres

intersect the ray. These photons are found using a standard ray-BBH intersection traversal. The

contribution from each photon (αi ,xi ,~ωi ) is accumulated using Equation 8.21; however, with the

variable kernel method, a kernel Ki is defined per photon. This leads to the following radiance

estimate

1

N

N∑
i=1

Ki (x,~ω, s,xi ,ri )Tr (x↔x′i )σs(x′i ) p(xi ,~ω↔~ωi)αi , (8.22)

Table 8.1: Rendering parameters and timings, in seconds, (s), and minutes, (m), for all example scenes.
Statistics relating to the photon tracing preprocess are shown in the first set of columns. We compare
our beam radiance estimate method (B) to conventional photon mapping (C) with both a fixed width
kernel and an adaptive width kernel. The r column represents the fixed-width kernel radius, while r+ is the
maximum search radius and the number of nearest neighbors is k.

Photon Tracing Preprocess Fixed Radius Render Adaptive Radius Render

Scene N Shoot (s) Balance (s) Radius (s) r ∆t C (m) B (m) r+ k ∆t C (m) B (m)

Cornell 0.4M 1.50 0.30 2.0 0.4 0.40 3:19 3:00 0.6 1.5K 0.80 4:03 3:35
Stage 1M 3.25 0.76 5.0 0.3 0.20 4:21 4:15 0.5 0.5K 0.70 6:38 6:22
Cars 2M 19.0 1.50 2.0 0.4 1.25 1:30 1:30 0.5 1K 1.25 2:02 1:53
Lighthouse 1M 2.83 0.78 6.0 0.4 0.25 1:07 0:59 0.5 0.4K 1.00 1:12 1:05
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where x′i = x+ ti~ω is the projection of the photon location xi onto the ray’s direction ~ω, and

ti = (xi −x) ·~ω. We define the kernel as

Ki (x,~ω, s,xi ,ri ) =
{

r−2
i K2

(
di
ri

)
if di ∈ [0,ri ]

0 otherwise
, (8.23)

where ri is the pre-computed radius for photon i . We use Silverman’s two-dimensional biweight

kernel [Silverman, 1986] along the ray, K2(x) = 3π−1(1− x2)2, where di is the shortest distance

from photon i to the ray. We chose this kernel because it is smooth, efficient to evaluate, and

has local support. Equation 8.22 is the beam radiance estimate, and it replaces the ray marching

computation from conventional photon mapping (second term in Equation 7.9).

Heterogeneous Media. For homogeneous media, the transmission terms, Tr (x↔x′i ), can be

computed explicitly for each photon during gathering. Beam gathering in heterogeneous media

can also be handled efficiently by first marching along the ray and saving the transmission

values in a 1D lookup table. Then, during gathering, each photon’s transmission is computed

by interpolating within the lookup table. This preprocess needs to be performed independently

for each ray, just prior to gathering, so the lookup table can be reused. Furthermore, if single

scattering is simulated separately by directly sampling light sources, the lookup table can be

populated during this marching step.

8.4 Results

We compared our beam gathering technique against conventional volumetric photon

mapping using ray marching. In order to isolate just the performance of the photon gathering

methods, we use the photon map for both single and multiple scattering. We compared results on

four test scenes: Cars, Lighthouse, Stage, and a Cornell box. For each scene we compare using a

fixed gathering radius for both types of estimates, and we also compare the conventional estimate

using k-NN to the beam estimate using the VK method. The images were all rendered with a

maximum dimension of 1024 pixels with up to four samples per pixels on an Intel Core 2 Duo 2.4

GHz machine using one core.
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Approx. Equal Time

k-NN (6:38) Fixed (4:21)

Conventional Radiance Estimate
Reference Solution

k-NN (5:18:33) Fixed (2:38:57)

Beam Radiance Estimate

Adaptive (6:22) Fixed (4:15)

Figure 8.5: A comparison between the convention radiance estimate and our beam radiance estimate
on the Stage scene with render times provided as (hours:minutes:seconds). Our method (right) produces
images with much less noise than an equal time rendering using conventional volumetric photon mapping
(middle) for both a fixed radius and an adaptive radius gathering approach. Our method does not require
stepping but matches the quality of conventional photon mapping if a very small step size is used (left).

In our experimental setup, we first choose suitable gathering parameters (search radius

and number of nearest neighbors k) and render the scenes using our method. We then use

the same parameters using conventional photon mapping but tune the minimum step-size ∆t

to obtain approximately equal render times. Note that ∆t is the minimum step-size and that

exponential stepping is used to sample the ray according to transmission. Finally, we render a

high-quality result with conventional photon mapping using a very small step size as a “reference.”

We show visual comparisons of the methods in Figures 8.5 and 8.6. All images of each

scene are rendered using the same photon map. The only differences in quality and performance

are due to the gathering method used. We used the Henyey-Greenstein phase function for all

Table 8.2: Medium scattering properties and photon tracing statistics for the four example scenes. N is the
total number of photons stored.

Medium Parameters Photon Tracing

Scene σs σa g N Shoot (s) Balance (s) Radius (s)

Cornell 0.225 0.225 0.00 0.4M 1.50 0.30 2.0
Stage 0.225 0.225 0.75 1M 3.25 0.76 5.0
Cars 0.06 0.015 0.00 2M 19.0 1.50 2.0
Lighthouse 0.24 0.010 0.75 1M 2.83 0.78 6.0
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scenes. The render times, gathering parameters and timings for constructing the photon maps

are listed in Table 8.1. We report the scattering parameters for all the example scenes in Table 8.2.

In all cases, our method produces significantly higher-quality images than conventional

photon mapping. This is because querying once for all photons along a ray is more efficient than

repeatedly querying for photons near numerous samples along the ray. Not surprisingly, we see

that the reduced blurring of the adaptive kernel gathering methods is essential for scenes like the

Stage and Lighthouse, where concentrated beams of light are visible. However, at the same render

time, this advantage is difficult to discern in the conventional photon mapping images.

Though the k-NN and VK methods both adapt the width of the kernel to the local photon

density, they are distinct approaches which result in similar, but not identical, density estimates.

This is what accounts for the small differences in blurring between our adaptive results and the

k-NN “reference” images. However, as our results show, the same value of k produces visually

comparable renderings using the two methods.

8.5 Summary and Discussion

In this chapter, we showed how volumetric photon mapping can be expressed as a solution

to the measurement equation. This formulation showed that any measurement of radiance within

participating media can be estimated using the photon map. We applied this formulation by

using the photon map to directly estimate accumulated in-scattered radiance along rays. This

approach was implemented using an efficient beam gathering method, which can be used for

both fixed and adaptive width kernels. The resulting algorithm produces images with significantly

less noise than conventional volumetric photon mapping using the same render time.
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Figure 8.6: Visual comparison for the Cornell box, Cars, and Lighthouse scenes.
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