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In this dissertation we focus on developing accurate and efficient Monte Carlo methods

for synthesizing images containing general participating media. Participating media such as

clouds, smoke, and fog are ubiquitous in the world and are responsible for many important

visual phenomena which are of interest to computer graphics as well as related fields. When

present, the medium participates in lighting interactions by scattering or absorbing photons as

they travel through the scene. Though these effects add atmosphere and considerable depth to

rendered images they are computationally very expensive to simulate. Most practical solutions

make simplifying assumptions about the medium in order to maintain efficiency. Unfortunately,

accurate and efficient simulation of light transport in general scattering media is a challenging

undertaking. In this dissertation, we address this problem by introducing two complementary

techniques.

We first turn to the irradiance caching method for surface illumination. Irradiance caching

gains efficiency by computing an accurate representation of lighting only at a sparse set of

locations and reusing these values through interpolation whenever possible. We derive the

mathematical concepts that form the foundation of this approach and analyze its strengths and

weaknesses. Drawing inspiration from this algorithm, we then introduce a novel volumetric

xvii



radiance caching method for efficiently simulating global illumination within participating media.

In developing the technique we also introduce efficient methods for evaluating the gradient of

the lighting within participating media. Our gradient analysis has immediate applicability for

improved interpolation quality in both surface and media-based caching methods.

We also develop a novel photon mapping technique for participating media. We present a

theoretical reformulation of volumetric photon mapping, which provides significant new insights.

This reformulation makes it easier to qualify the error introduced by the radiance estimate but,

more importantly, also allows us to develop more efficient rendering techniques. Conventional

photon mapping accelerate the computation of lighting at any point in the scene by performing

density estimation. In contrast, our reformulation accelerates the computation of accumulated

lighting along the length of entire rays. This algorithmic improvement provides for significantly

reduced render times and even the potential for real-time visualization of light transport in

participating media.
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1
Introduction

“Make it so.”

—Captain Jean-Luc Picard, 2305–

EVERYDAY we are exposed to an immense amount of visual information. The natural world

is filled with beautiful and complex phenomena which have sparked the curiosity of

humankind for millennia. Throughout history we have struggled to find new ways to understand,

manipulate, and, in fact, create the world around us for purposes ranging from communication,

to medicine, to art and entertainment.

The visual arts and sciences have been following parallel paths in our quest for under-

standing the nature of the world around us. These seemingly distinct disciplines have been

inextricably linked in the development of this understanding. Artists have readily utilized existing

scientific and mathematical knowledge to create more convincing works of art. For instance,

the development of contrapposto by classical Greek sculptors such as Polykleitos in the 4th cen-

tury BCE relied heavily on a system of ideal mathematical proportions initially investigated by

Pythagoras and Euclid [Tanner, 2006]. The understanding of the behavior of light perhaps bridges

these two disciplines most since it is light which determines the visual appearance of the natural

world. Often discoveries were made independently in both fields, like when Renoir and Monet

rediscovered indirect illumination by observing that shadows are not brown or black, but the

color of the surrounding environment. At other times the physical sciences have only been able

to explain phenomena years after artists had developed an intuitive understanding. Leonardo

Da Vinci, for instance, introduced aerial perspective in his Treatise on Painting [1651] to describe

1
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the effects of light scattering in the atmosphere centuries before a scientific understanding of

volumetric scattering was established. In fact, these disciplines are so intertwined that historically,

practitioners of one discipline were often heavily ingrained in or influenced by the other. This

quality is perhaps embodied most by Da Vinci, but other notable examples include Archimedes,

Su Song, Michelangelo, Piero della Francesca, Albrecht Dürer, Vermeer, and M.C. Escher. Recently

we have seen a convergence between many aspects of these disciplines with the introduction of

photography, and now the computer.

Today, the understanding fueled by these two disciplines, combined with the advent

of the computer, has provided us with unprecedented potential for simulating our world. The

introduction of computers has spawned a new discipline at the crossroads of these two fields:

computer graphics. The goal of computer graphics is to develop algorithms that allow a user to

digitally synthesize and manipulate visual content. As in art, the visual content we are typically

interested in synthesizing relates to the natural world and therefore depends on the physical

sciences.

Physically based rendering is concerned with generating, or rendering, images by model-

ing the way the physical world behaves. A related goal is photorealistic rendering, which strives

to synthesize images that are indistinguishable from photographs. Both of these disciplines are

primarily concerned with simulating the physical behavior of light as it interacts in virtual envi-

ronments in order to generate realistic images. Applications of realistic image synthesis include

design, architecture, and education. In particular, we have recently witnessed an explosion in the

widespread use of computer graphics and realistic image synthesis in journalism, games, televi-

sion, movies, as well as virtually all forms of media. This is made evident by the entertainment

industry’s extensive use of computer generated imagery and special effects.

As the field has matured, computer generated images in many of the aforementioned areas

are becoming increasingly complex, and the desire for unparalleled realism is always increasing.

Theoretical understanding combined with increased computational power has allowed us to

simulate virtually every observable or imaginable phenomenon. Unfortunately, many of the most

interesting phenomena are also some of the most computationally intensive, fueling the need for

more efficient, general purpose algorithms. One example of particular interest to the computer



3

graphics community is simulating participating media.

Participating, or scattering, media influences virtually everything we see around us: from

the color of the sky at sunset, to the appearance of milk, to the reduced visibility we encounter in

fog or rain. Participating media gives rise to pyrotechnic effects such as fire, smoke, clouds, and

explosions, which are of particular interest to the special effects industry. Furthermore, paper,

marble, and virtually all organic materials exhibit subsurface scattering, which is a special case of

the volumetric scattering inherent to participating media. See Figure 1.1 for a few examples of

the striking and visually complex effects caused by participating media. Unfortunately, rendering

images with participating media is an especially difficult problem. The behavior of light transport

becomes significantly more complex when participating media is considered, since photons may

interact at any point within the volume instead of just at surface boundaries. For this reason,

many rendering algorithms assume that all objects are in a vacuum in order to simplify the

lighting simulation needed. At times this can be a reasonable approximation, but there are

many situations when the effects from participating media have a significant visual impact (see

Figure 1.1). These are not pathological cases by any means, and are in fact of considerable interest

to many disciplines outside of computer graphics, including heat transfer and neutron transport.

Due to increased computational power and the ubiquity of participating media, there has

been a steady increase in techniques capable of rendering volumetric effects. Due to the complex-

ity of the problem, many of the most successful techniques have made simplifying assumptions

about the medium being simulated. For example, homogeneous media with a high scattering

albedo, such as milk, can be modeled accurately using a diffusion approximation. Diffusion

was originally developed to explain the transport of neutrons in nuclear reactors [Glasstone and

Sesonske, 1955], but also leads to very efficient rendering algorithms [Stam, 1995; Jensen et al.,

2001b]. On the other extreme, the assumption of non-scattering but absorbing media makes

the light transport problem significantly more tractable. Tenuous media with a low scattering

albedo can also be effectively approximated by assuming only a single scattering event between

the light source and the eye [Blinn, 1982; Nishita et al., 1987]. In isotropic media, which scat-

ters light equally in all directions, the lighting simulation can be computed in a preprocess and

rapidly visualized from any arbitrary viewpoint [Rushmeier and Torrance, 1987]. Many efficient
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Figure 1.1: Volumetric scattering due to participating media is responsible for the appearance of a number
of striking visual effects including aerial or atmospheric perspective (top), shafts of light (left), clouds and
crepuscular rays (right), as well as interstellar dust and nebula (bottom). The bottom image is courtesy of
T.A.Rector (NOAO/AURA/NSF) and the Hubble Heritage Team (STScI/AURA/NASA).

algorithms have been developed which work exceptionally well for specific classes of scattering

materials. Unfortunately, not all participating media effects fall within these narrow confines, in

which case we must resort to more general, but typically less efficient, approaches.

The goal of this dissertation is to develop efficient, general-purpose methods for solv-
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ing light transport in scenes containing participating media. To meet our goal of generality, we

concentrate on Monte Carlo methods. These methods can easily handle arbitrary medium prop-

erties and make few underlying assumptions about the scenes being simulated. Unfortunately,

unbiased Monte Carlo techniques suffer from long computation times and significant noise. To

satisfy our goal of efficiency we focus on caching-based Monte Carlo methods. These methods

exploit the often smooth nature of illumination by computing and caching lighting at a small set

of locations. These cache values are then reused to estimate lighting at all locations needed to

render the image. Aside from this property, the methods developed in this dissertation make no

assumptions about the properties of the medium being rendered.

1.1 Summary of Original Contributions

The work in this dissertation builds upon the irradiance caching and photon mapping

methods. We outline our major contributions below.

Volumetric Radiance Caching. Our first contribution is a novel radiance caching method for

efficiently rendering participating media using Monte Carlo ray tracing. The volumetric radiance

caching method handles all types of light scattering, including anisotropic scattering, and it

works in both homogeneous and heterogeneous media. Our method gains efficiency by sparsely

sampling and interpolating radiance within the medium. The method provides several orders of

magnitude speedup compared to path tracing and produces higher quality results than volumetric

photon mapping. Furthermore, it is view-driven and well suited in large scenes where methods

such as photon mapping become costly.

Accurate Illumination Gradients in Participating Media. Another key contribution in this dis-

sertation is a technique for computing gradients of radiance evaluated in the presence of partici-

pating media. These gradients describe how the incident radiance field changes with respect to

translation both on surfaces and within the medium. Our gradient derivations take the full path

of the scattered light into account including the changing properties of the medium in the case of

heterogeneous media. We compute gradients for single scattering from lights and surfaces and
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for multiple scattering. For surface irradiance, we additionally take into account the effects of

visibility on the gradient. We apply our gradient derivations to provide higher quality interpolation

within both the irradiance caching and volumetric radiance caching methods.

The Beam Radiance Estimate. We also introduce a new photon mapping method for more

efficiently simulating the scattering of light within participating media. We present a theoretical

reformulation of volumetric photon mapping, which allows us to develop a novel photon gathering

technique for participating media. This approach explicitly estimates the accumulated radiance

along the length of an entire ray instead of sampling the radiance at individual points. This

optimization provides a significant savings making it substantially faster than regular volumetric

photon mapping.

1.2 Organization of the Dissertation

The dissertation is divided into nine chapters. In the remaining chapters, we first focus

on background material for the first two contributions above. In Chapter 2 we introduce the

fundamentals of light transport in the absence of participating media. We describe irradiance

caching and derived methods, which form the inspiration for our volumetric radiance caching

approach, in Chapter 3. We also provide derivations which are missing from the literature in

previous work. In Chapter 4 we extend our theoretical understanding by describing how light

interacts with participating media. Based on this foundation, in Chapter 5 we develop the

volumetric radiance caching method in detail and derive expressions for computing the gradient

of in-scattered radiance within participating media. In Chapter 6 we extend our derivations

for illumination gradients by considering the behavior of surface irradiance in the presence of

participating media and occlusions. We then move on to the photon mapping method, which

we describe in detail in Chapter 7. After highlighting the shortcomings of the volumetric photon

mapping method, we present a theoretical reformulation in Chapter 8, which allows us to develop

the beam radiance estimate. Chapter 9 summarizes our contributions and discusses possible

avenues of future work.

In the body of this dissertation, we use a number of mathematical tools while providing
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only minimal overview and no derivations of associated properties. We therefore provide three

appendices which cover, in more detail, these mathematical concepts. Appendix A provides a

detailed introduction to Monte Carlo integration upon which all our methods are based. We

cover spherical harmonics in Appendix B and review their benefitial properties and associated

operations. Lastly, we review the theory behind density estimation methods such as photon

mapping in Appendix C.



2
Fundamentals of Light Transport

“He who loves practice without theory is like the sailor
who boards ship without a rudder and compass and
never knows where he may cast.”

—Leonardo Da Vinci, 1452–1519

THE goal of rendering algorithms is to synthesize images of virtual scenes. Global illumi-

nation algorithms solve this problem by mimicking the physical behavior of light as it is

emitted from light sources, scattered by elements in the scene, and ultimately detected by a virtual

sensor or “camera.” In this chapter we first explore the necessary background and develop the

terminology needed to understand the physical properties of light. We then explain the expres-

sions that govern the local and global behavior of light as it interacts with surfaces in a vacuum.

We conclude the chapter with a short overview of techniques that have been developed in the

computer graphics literature to simulate these effects, and summarize our notation in Table 2.2.

2.1 Assumptions About the Nature of Light

Our current understanding of the behavior of light relies on a progression of increasingly

complete yet complicated models of light. These are: ray optics, wave optics, electromagnetic

optics, and quantum optics (see Figure 2.1) [Saleh and Teich, 2007]. Computer graphics typically

relies on the simplest of these models, ray optics (also called geometric optics). This model makes

several simplifying assumptions about the behavior of light that limit the types of phenomena that

can be simulated. In essence, in this model light can only be emitted, reflected, and transmitted.

Additionally, light is assumed to travel in straight lines and at infinite speed. This means that

8
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Ray Optics

Wave Optics

Electromagnetic
Optics

Quantum Optics

Figure 2.1: The theory of light is described by a series of increasingly complete optical models, where
each successive model is able to account for more optical phenomena. In computer graphics and this
dissertation, we will restrict ourselves to the simplest model, ray optics.

effects explained by the higher-level models cannot (easily) be incorporated into our simulations.

In ray optics, effects such as diffraction and interference (wave optics), polarization and dispersion

(electromagnetic optics), and fluorescence and phosphorescence (quantum optics) are completely

ignored. In spite of these limitations, we are still able to correctly simulate a wide range of physical

phenomena.

2.2 Radiometry

Radiometry is the study of the physical measurement of electromagnetic radiation, includ-

ing visible light. It defines a common terminology for the physical quantities and units that are

used by global illumination algorithms. In this section we review the basic radiometric quantities

and illustrate them in Figure 2.2. All of these radiometric quantities in reality depend on the

wavelength of light; however, we omit this in our notation.

2.2.1 Radiometric Quantities

Flux. The most fundamental radiometric quantity is radiant power, or flux. Flux, denoted Φ,

expresses the amount of energy flowing across a surface over time. This is the same quantity that

is used to describe the power of light bulbs and is expressed in terms of watts [W = J · s−1].
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Flux Irradiance Radiance

Figure 2.2: Flux measures the amount of light that hits a surface over a finite area from all directions,
irradiance integrates the light arriving at a single point over the whole hemisphere, and radiance expresses
the amount of light arriving at a single point from a differential solid angle.

Irradiance. A related quantity, irradiance, expresses the amount of incident power hitting a

surface per unit surface area. Hence, it has units of [W ·m−2] and can be expressed in terms of

flux as:

E(x) = dΦ(x)

dA(x)
. (2.1)

Irradiance is always measured at some surface position x with a surface normal~n. The term

irradiance implies a measure of the flux arriving at a surface location x. The term radiant exitance

(M) or radiosity (B) is used instead if the flux is leaving a surface.

Radiance. Perhaps the most important quantity in global illumination is radiance. Intuitively,

radiance expresses how much light arrives from a differential direction d~ω onto a hypothetical

differential area perpendicular to that direction dA⊥. Radiance has units of [W · sr ·m−2]. This

five-dimensional function of position and direction can be expressed as

L(x,~ω) = d 2Φ(x,~ω)

d~ω dA⊥(x)
. (2.2)

In practice we are typically interested in measuring radiance at an actual surface instead of

a hypothetical surface perpendicular to the flow of light. In this case the relationship dA⊥=
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(~n ·~ω) dA can be used to obtain:

L(x,~ω) = d 2Φ(x,~ω)

(~n ·~ω) d~ω dA(x)
. (2.3)

The foreshortening cosine term (~n ·~ω), which returns the cosine of the angle between ~ω and the

surface normal~n, takes into account the spreading of light at glancing angles.

It is also possible to interpret radiance as a density over projected solid angle d~ω⊥ =
(~n ·~ω) d~ω, instead of projected surface area dA⊥:

L(x,~ω) = d 2Φ(x,~ω)

d~ω⊥dA(x)
. (2.4)

This can often be a more convenient way of describing radiance since it uses the natural differential

surface area dA of the surface at x.

Radiance is most directly related to the perceived brightness of colors to the human eye

and is the quantity that needs to be computed for each pixel in a rendered image.

We summarize the radiometric quantities, their symbols, and units in Table 2.1.

2.2.2 Radiometric Relationships

Radiance is so instrumental in rendering that it is useful to express the other radiometric

quantities in terms of radiance. Equation 2.2 expresses radiance in terms of flux, but it is also

possible to invert this relationship by integrating both sides over the hemisphere of directionsΩ

Table 2.1: Definitions of the fundamental radiometric quantities with their associated symbols and units.

Symbol Units Description

Φ W Radiance flux, or power
E W ·m−2 Irradiance
M W ·m−2 Radiant exitance (outgoing)
B W ·m−2 Radiosity (outgoing)
L W ·m−2 · sr−1 Radiance
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Incident Radiance Exitant Radiance BRDF

Figure 2.3: We distinguish between two types of radiance at a point x. L(x ←~ω) represents incident
radiance at x from direction ~ω (left), whereas L(x→~ω) represents exitant radiance at x in direction ~ω

(middle). The bidirectional reflectance distribution function (right) describes the relationship between
these two quantities and is a function of both an incoming and an outgoing direction vector. In our
notation, direction vectors always point out of x regardless of the actual direction of light flow.

and area A to arrive at:

Φ=
∫
A

∫
Ω

L(x→~ω) (~n ·~ω) d~ω dA(x). (2.5)

Combining this with Equation 2.1 allows us to also express irradiance and radiosity in terms of

radiance:

E(x) =
∫
Ω

L(x←~ω) (~n ·~ω) d~ω, (2.6)

M(x) = B(x) =
∫
Ω

L(x→~ω) (~n ·~ω) d~ω. (2.7)

2.2.3 Incident and Exitant Radiance Functions

In this dissertation we use the convention that L(x→~ω) denotes exitant radiance leaving

x in direction ~ω, and L(x←~ω) represents incident radiance arriving at x from direction ~ω. In

both situations the direction vector ~ω points out of the surface. This is illustrated in Figure 2.3.

In addition to representing radiance flowing in different directions, this distinction is more

fundamental since these two quantities measure different sets of photon events. Incident radiance

measures photons just before they arrive at a surface, whereas exitant radiance measures the
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Figure 2.4: In a vacuum, the incident radiance at x from direction ~ω is equal to the exitant radiance from
the nearest visible surface in that direction.

photons departing. Hence, in general

L(x→~ω) 6= L(x←~ω). (2.8)

Within a vacuum, photons propagate unobstructed. This means that all the radiance

incident at a point from direction ~ω will continue on as exitant radiance in direction −~ω

L(x←~ω) = L(x→−~ω). (2.9)

Hence, radiance remains constant until it interacts with a surface. This observation allows us to

form a simple relation between the exitant and incident radiance functions between two distinct

points. To accomplish this we introduce the ray casting function r(x,~ω) = x′, which returns x′,

the point on the closest surface from x in the direction ~ω. In the case that the space between

surfaces is a vacuum, radiance remains constant along straight lines. This property means that

the incident radiance at a point x from direction ~ω is equal to the outgoing radiance from the

closest visible point in that direction. This is illustrated in Figure 2.4 and can be expressed as:

L(x←~ω) = L(x′→−~ω). (2.10)

It is important to remember that Equations 2.9 and 2.10 are only valid within a vacuum.
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Figure 2.5: The ideal diffuse, or Lambertian, BRDF (left) reflects light equally in all directions. On the other
extreme, perfectly specular materials (right) reflect all light in the mirror direction. General BRDFs (center)
define a 2D reflectance distribution function for each incoming direction ~ω′.

We will extend this model in Chapter 4 to include effects from participating media.

2.3 Interaction of Light with Surfaces

In the remainder of this chapter we will explore the interaction of light with surfaces.

2.3.1 The BRDF

When light encounters objects in the scene, it interacts with the surfaces by being reflected,

refracted, or absorbed. If we make the simplifying assumption that light striking a surface location

will reflect at the same location, then the interaction between the light and the surface can

be described using a six-dimensional function called the bidirectional reflectance distribution

function, or BRDF. At a high level, the BRDF describes how “bright” a surface will look from a

particular direction~ωwhen being illuminated by a light from another direction~ω′. More precisely,

the BRDF expresses the relationship between irradiance and reflected radiance at a point x:

fr (x,~ω′→~ω) ≡ dL(x→~ω)

dE(x←~ω′)
= dL(x→~ω)

L(x←~ω′) (~n ·~ω′) d~ω′ . (2.11)

The last step results from substituting Equation 2.6 into the denominator. Three example BRDFs

are illustrated in Figure 2.5.

Properties of the BRDF

1. Domain. For a particular surface point x, the BRDF is a four-dimensional function: two

dimensions to specify the incoming direction, and two dimensions to specify the outgoing
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direction. Furthermore, if the BRDF is allowed to vary spatially over an object’s surface, this

leads to an additional two dimensions.

2. Range. The BRDF can take on any positive value.

3. Reciprocity. The value of the BRDF remains unchanged if the incident and outgoing

directions are swapped. Mathematically, Helmholtz’s law of reciprocity states that:

fr (x,~ω′,~ω) = fr (x,~ω,~ω′). (2.12)

Because of this property, we use the following notation for the BRDF to indicate that the

directions can be interchanged:

fr (x,~ω′↔~ω). (2.13)

From a practical point of view, reciprocity means that surface reflection is invariant to the

direction of light flow, i.e, the reflected radiance remains unchanged if the light and camera

positions are swapped. This property is essential for many global illumination algorithms

and allows light to be traced either in the forward or backward direction.

4. Relationship between incident and reflected radiance. The information in the BRDF can

be used to derive the relationship between incident and reflected radiance. By multiplying

both sides of Equation 2.11 by the denominator and integrating over all directions we can

derive an expression for computing the reflected radiance at a point x:

L(x→~ω) =
∫
Ω

fr (x,~ω′↔~ω)L(x←~ω′) (~n ·~ω′) d~ω′. (2.14)

In essence, the reflected radiance off of a surface can be computed by integrating all the

incident radiance arriving over the hemisphere of directions. This expression describes the

local behavior of light as it interacts with surfaces and is know as the local illumination

model.

5. Energy conservation. Due to energy conservation, a surface cannot reflect more light than
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Figure 2.6: The exitant radiance at a point on a surface depends on the incident radiance over the
hemisphere above the point. The incident radiance field can be visualized as a hypothetical “fisheye” view
from the point (top) and the exitant radiance is the integral of this value over the whole hemisphere.

it receives. By examining Equation 2.14, this can be expressed as the following constraint:

∫
Ω

fr (x,~ω′↔~ω) (~n ·~ω′) d~ω′ ≤ 1, ∀~ω. (2.15)

2.3.2 The Rendering Equation

At a high level, the illumination at each surface point is based on the “brightness” of

what that point “sees” within its hemisphere of directions. This could be light sources or other

surfaces. The brightness of these other surfaces is in turn evaluated in the same way, introducing a

recursive definition for calculating illumination. This intuitive explanation of lighting is illustrated

in Figure 2.6. In order to compute the lighting at a surface we must solve for this recursive light

energy distribution.

Hemispherical Formulation

The equation which mathematically describes this equilibrium is called the rendering

equation [Kajiya, 1986]. The rendering equation expresses the outgoing radiance, L(x→~ω), of any
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point in a scene as the sum of the emitted radiance of the underlying surface, Le , and the reflected

radiance, Lr .

L(x→~ω)︸ ︷︷ ︸
outgoing

= Le (x→~ω)︸ ︷︷ ︸
emitted

+Lr (x→~ω)︸ ︷︷ ︸
reflected

. (2.16)

The local illumination model in Equation 2.14 expresses the reflected radiance on a

surface. Substituting this into Equation 2.16 results in the hemispherical form of the rendering

equation:

L(x→~ω)︸ ︷︷ ︸
outgoing

= Le (x→~ω)︸ ︷︷ ︸
emitted

+
∫
Ω

fr (x,~ω′↔~ω)L(x←~ω′) (~n ·~ω′) d~ω′︸ ︷︷ ︸
reflected

. (2.17)

The combination of Equation 2.17 with Equation 2.10 (which relates the exitant radiance on the

left hand side to the incident radiance on the right hand side) forms the recursive nature of global

illumination. This arises from the fact that outgoing radiance at one point is dependent on the

outgoing radiance at all other points in the scene. Hence, the radiance L appears on both sides of

the equation.

Area Formulation

Sometimes it is more convenient to express the rendering equation as an integration over

points on the surfaces of the scene geometry. This can be done by performing a change of variable

using the relation,1

d~ω′(x) = (~n′·−~ω′)
‖x′−x‖2 dA(x′), (2.18)

where x′ is a point on a surface with surface normal~n′.

In the hemispherical formulation visibility is implicitly accounted for using the ray casting

function. In order to change the integration from the hemisphere of directions to surface area

we must explicitly take into account the visibility between surface points. To accomplish this we

1This expression is obtained by computing the Jacobian determinant of the transformation matrix mapping direc-
tions on the hemisphere to points on the scene geometry.
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introduce a visibility function V :

∀x,x′ ∈A : V (x↔x′) =
{

1 if x and x′ are mutually visible,

0 otherwise.
(2.19)

Table 2.2: Notation used in this dissertation.

Symbol Units Description Page

x Position
~n Surface normal at x (always normalized: ‖~n‖ = 1)

dA(x) Differential surface area at x
dA⊥(x,~ω) Differential surface area perpendicular to ~ω at x 10

~ω Normalized direction (away from surface)
d~ω Differential solid angle (d~ω= sinθ dθ dφ)

d~ω⊥ Differential projected solid angle 11
Ω sr Hemisphere of directions 11
Ω4π sr Sphere of directions 61
A m2 Surface area 131
V m3 Medium volume 131

L(x,~ω) W ·m−2 · sr−1 Radiance at x in direction ~ω 10
L(x←~ω) W ·m−2 · sr−1 Incident radiance at x from ~ω 12
L(x→~ω) W ·m−2 · sr−1 Outgoing radiance leaving x in direction ~ω 12
L(x←x′) W ·m−2 · sr−1 Incident radiance at x from x′
L(x→x′) W ·m−2 · sr−1 Outgoing radiance leaving x towards x′

Le W ·m−2 · sr−1 Emitted radiance 17
Lr W ·m−2 · sr−1 Reflected radiance 15
Li W ·m−2 · sr−1 In-scattered radiance 61

fr (x,~ω↔~ω′) sr−1 BRDF 14
p(x,~ω↔~ω′) sr−1 Phase function (normalized) 61

σs (x) m−1 Scattering coefficient at x 57
σa(x) m−1 Absorption coefficient at x 57
σt (x) m−1 Extinction coefficient at x 57

τ(x↔x′) unitless Optical thickness:
∫ x

x′ σt (x) d x 59
Tr (x↔x′) unitless Transmittance: e−τ(x↔x′) 58
V (x↔x′) unitless Visibility function 18, 77
G(x↔x′) unitless Geometric coupling term (surfaces) 19
H(x→x′) unitless Geometric coupling term (media) 77
Ĝ(x↔x′) unitless Generalized geometric coupling term (surfaces and media) 132

We (x→~ω) m−3 · sr−1 Importance at x towards ~ω 133
We (x→x′) m−3 · sr−1 Importance at x towards x′ 133

αi unitless Weight for photon i 134
δ(x) unitless Dirac delta distribution 136
δi j unitless Kronecker delta function 172
ξ unitless Uniformly distributed random number between 0 and 1 82
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We can now transform Equation 2.17 into an integration over surface area:

L(x→~ω) = Le (x→~ω)+
∫
A

fr (x,x′→x,~ω)L(x←x′)V (x↔x′)
(~n ·~ω′) (~n′·−~ω′)

‖x′−x‖2 dA(x′). (2.20)

Typically, the last terms involving the surface positions and normals are folded into a symmetric

geometric coupling term

G(x↔x′) = (~n ·~ω′) (~n′·−~ω′)
‖x′−x‖2 , (2.21)

which results in

L(x→~ω) = Le (x→~ω)+
∫
A

fr (x,x′→x,~ω)L(x←x′)V (x↔x′)G(x↔x′) dA. (2.22)

2.4 Methods for Solving the Rendering Equation

The rendering equation is very costly to compute and is far too complex to solve analyti-

cally in the general case. Because of this, it is typically approximated using numerical integration.

Several algorithms have been proposed in the literature to fully or partially solve the rendering

equation. These global illumination algorithms can generally be classified into two categories:

finite element methods and Monte Carlo ray tracing methods.

2.4.1 Finite Element Methods

Finite element methods in computer graphics were originally adapted from the radiative

heat transfer literature [Siegel and Howell, 2002]. In the compute graphics field, finite element

techniques have collectively been called radiosity methods. Radiosity computes indirect illumina-

tion by discretizing the scene geometry into a collection of small patches. These patches form

the basis over which the global illumination solution is computed. The lighting computation is

solved by expressing the rendering equation as a linear system of equations describing the light
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exchange between patches in the scene.

Initial work in radiosity placed heavy restrictions on the complexity of the light sources,

geometry and materials of the scene. These early approaches only worked for scenes with large

area light sources and Lambertian, or perfectly diffuse, surfaces where the BRDF is a simple

constant [Goral et al., 1984; Cohen and Greenberg, 1985; Nishita and Nakamae, 1985]. With these

restrictions, the radiosity algorithm is simple to implement and the lighting solutions computed

are view-independent. This allows for a single solution to be reused for rendering images from ar-

bitrary viewpoints. Due to this, radiosity techniques were well suited for walk-through animations

of simple diffuse scenes. Unfortunately, precomputation for walk-through animations requires

significant computation time as well as storage space for the final solution. Many researchers tried

to address some of these drawbacks by adding view-dependent computation [Smits et al., 1992],

support for more complex reflections [Wallace et al., 1987; Immel et al., 1986; Sillion et al., 1991;

Christensen et al., 1996; Gortler et al., 1993], as well as clustered and hierarchical computation

[Stamminger et al., 1998; Hanrahan et al., 1991; Smits et al., 1994]. Support for high-frequency

lighting can be obtained through discontinuity meshing where the tessellation of the solution

is carefully subdivided to better resolve sharp discontinuities such as hard shadow boundaries.

These additions unfortunately make the radiosity algorithm much more complex. Furthermore,

radiosity cannot efficiently handle scenes with complex geometry since the cost of the lighting

simulation is directly tied to the geometric complexity of the scene.

2.4.2 Monte Carlo Ray Tracing Methods

Monte Carlo methods rely on the use of random sampling in order to compute their

results. The first real use of Monte Carlo methods stems from work on the atomic bomb during

the second world war in the 1940s and has been used extensively in the neutron transport field

ever since [Metropolis and Ulam, 1949; Metropolis, 1987]. Monte Carlo methods developed

independently in computer graphics. They were introduced to computer graphics by Appel [1968],

who first suggested the use of ray casting to generate images by intersecting the scene geometry

with a ray for each pixel. In 1980, Whitted suggested the recursive evaluation of illumination by

tracing specular reflection and refraction rays, and additionally, shadow rays for direct Lambertian
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illumination. Whitted also suggested the use of random perturbation of the surface normal in

order to simulate rough or glossy specular reflections.

Ray tracing methods can also naturally account for complex surfaces and light interactions.

By further combining ray tracing with Monte Carlo techniques, researchers were able to simulate a

vast array of effects including depth of field, motion blur, glossy reflections, and global illumination

[Cook, 1986; Cook et al., 1984; Kajiya, 1986]. Monte Carlo ray tracing methods such as path tracing

or bidirectional path tracing [Kajiya, 1986; Lafortune and Willems, 1993; Veach and Guibas, 1994]

can simulate virtually all effects described by the rendering equation. The downside of Monte

Carlo techniques is variance, which manifests itself as high-frequency noise in the rendered

image. Though several researchers have explored ways to minimize this noise [Shirley, 1990, 1991;

Lafortune, 1996; Veach and Guibas, 1995], these unbiased methods still typically involve tracing

hundreds of rays at each pixel in order to converge to solutions of reasonable quality.

One of the main advantages of radiosity over unbiased ray tracing is that for a specified

simulation quality, computation time is independent of the actual resolution of the rendered

image. Radiosity can effectively reuse computation over large regions of the image. In contrast,

unbiased ray tracing techniques require independent evaluation at each pixel, which precludes

resolution independence. Biased Monte Carlo ray tracing relaxes this restriction and has produced

some of the most efficient methods to date. Irradiance caching [Ward et al., 1988] and photon

mapping [Jensen, 2001] methods are two such approaches. We review these two techniques in

more detail in Chapter 3 and Chapter 7, respectively. We also provide a more detailed introduction

to Monte Carlo integration in Appendix A.

2.4.3 Hybrid Methods

Several methods have also been proposed which combine features of Monte Carlo and

finite element techniques in order to get the best of both worlds. These typically take a multi-

pass approach by augmenting finite element methods with a Monte Carlo pass to account for

more general reflection models [Wallace et al., 1987; Sillion and Puech, 1989; Chen et al., 1991].

Another motivation for combining the techniques is to reduce discretization artifacts in finite

element methods. A common optimization technique is to precompute a low-quality solution
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using radiosity techniques, and then to simulate one additional bounce of illumination using a

higher quality final gather pass [Reichert, 1992]. This final gather pass typically takes the form

of a Monte Carlo evaluation and can effectively remove many of the artifacts present in the

low-quality solution. In addition to being a full global illumination algorithm on its own, the

irradiance caching method described in the next chapter can also be effectively used as a final

gather optimization technique.



3
Irradiance Caching and Derived Methods

“Originality is merely an illusion.”

—M.C. Escher, 1898–1972

SINCE its inception in 1988, irradiance caching [Ward et al., 1988] has become a widely-used

technique for computing global illumination. In this chapter we explore this influential

technique and the numerous extensions and improvements which have followed. We discuss

the strengths of the algorithm that have led to its widespread use in academia as well as indus-

try [Tabellion and Lamorlette, 2004; Kato, 2002]. We also present derivations needed to fully

understand the approach, which are currently missing in the literature. Finally, we conclude by

highlighting some shortcomings of the algorithm, which provides motivation for the contributions

presented in Chapters 5 and 6 of this dissertation.

3.1 Algorithm Overview

Ray tracing techniques solve the rendering equation by means of recursive point-sampling.

At each level of recursion, shading is evaluated by (1) computing the direct lighting from light

sources, (2) computing specular reflection and refraction, and (3) computing diffuse indirect

reflections. The lighting integral is effectively split up into disjoint components, each of which is

approximated using the point-sampling processing of ray tracing. The cost of performing each of

these operations is directly related to the number of rays that need to be traced. Contributions

from (1) and (2) typically subtend a small solid angle and can therefore be effectively integrated

using a relatively small number of sample rays. In contrast, (3) involves a lighting integral over

23



24

+ = ≈

Figure 3.1: Irradiance caching decomposes the incident lighting into a direct component (far left) and
an indirect component (left). The total lighting is obtained by summing these components (right). Even
though the direct component may have sharp discontinuities, the indirect illumination tends to vary
smoothly across Lambertian surfaces. Irradiance caching exploits this property by only computing this
costly value at sparse locations (far right, shown in yellow) and using interpolation whenever possible.

the whole visible hemisphere, the approximation of which typically requires tracing hundreds or

thousands of rays.

Irradiance caching is an acceleration technique for computing this diffuse indirect illumi-

nation component. Direct lighting tends to have sharp illumination discontinuities, for instance,

near hard shadow boundaries. However, Ward et al. made the observation that, although diffuse

indirect illumination is expensive to compute, the integration over the whole hemisphere causes

this component to be extremely low frequency. This causes indirect illumination to change slowly

across Lambertian surfaces. Irradiance caching exploits this property: instead of evaluating the

costly illumination integral at each pixel on the image, a high-quality computation is performed

only at sparse locations. These irradiance computations are cached and, when possible, reused

through interpolation. This approach is illustrated in Figure 3.1.

Irradiance caching incorporates the beneficial properties of radiosity methods while

retaining the generality of Monte Carlo approaches. If the cost of interpolating irradiance is

negligible compared to a full integration, then the resolution of the rendered image has little

impact on the computation time needed to simulate global illumination. However, unlike radiosity,

irradiance caching gains further efficiency by concentrating computational effort only in regions of

the scene which are directly visible by the camera. Furthermore, the algorithm uses a separate data

structure to store the irradiance values. Hence, it does not artificially impose a coupling between

the lighting simulation and the geometric representation of the scene. This is a major advantage,

as there is no restriction on the kind of geometry that can be simulated with this technique. The
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algorithm originally described by Ward et al. was used to accelerate the computation of all indirect

diffuse illumination within the RADIANCE Monte Carlo ray tracer [Ward, 1994]; however, since

that time, irradiance caching has proven popular also as a high-quality final gather pass for other

methods such as photon mapping, which we discuss in Chapter 7.

In the irradiance caching algorithm, indirect lighting values are cached in the following

manner:

Algorithm 3.1: COMPUTEINDIRECTIRRADIANCE(x)

if there is at least one stored irradiance value near x then1

Interpolate irradiance from the stored value(s).2

else3

Compute and store a new irradiance value at x.4

The above procedure computes irradiance in a lazy, on-demand fashion. In order to implement

this algorithm, a number of outstanding issues must first be addressed:

• How do we compute the irradiance values?

• What criterion is used to determine whether a cache point is “near”?

• How do we interpolate the nearby cached irradiance values?

• What data structure should be used to provide for efficient storage and query of the cache

points?

We answer these questions in the following sections.

3.2 Computing Irradiance

In this section we describe the method used to compute an accurate irradiance estimate.

This method is employed when no nearby cache points are found.

The irradiance at a point x can be expressed in terms of the incident radiance using
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Equation 2.6:

E(x) =
∫
Ω

L(x←~ω) (~n ·~ω) d~ω. (3.1)

This integral can be approximated using ray tracing by evaluating the Monte Carlo esti-

mator:

E(x) ≈ 1

N

N−1∑
i=0

L(x←~ω) (~n ·~ω)

pdf (~ω)
. (3.2)

Ward et al. use two variance reduction techniques to more efficiently evaluate this estimate.

Choosing to distribute the sample rays with a cosine probability distribution, pdf (~ω) = (~n ·~ω)/π,

provides variance-reduction through importance sampling by allowing the foreshortening term

to cancel out:

E(x) ≈ 1

N

N−1∑
i=0

L(x←~ω)(~n ·~ω)

(~n ·~ω)/π
⇒ π

N

N−1∑
i=0

L(x←~ω). (3.3)

The evaluation is also stratified by converting to polar coordinates:

E(x) ≈ π

M N

M−1∑
j=0

N−1∑
k=0

L(x,θ j ,φk ), (3.4)

where

θ j = sin−1

√
j +ξ1

M

 , φi = 2π
i +ξ2

N
, (3.5)

(ξ1,ξ2) ∈ [0,1)2 are uniformly distributed random numbers, and the angles (θ j ,φk ) are expressed

with respect to the local coordinate frame at the evaluation location x. The above expression uses

a total of M ×N samples1. Monte Carlo integration is covered in more detail in Appendix A.

1Generally M is chosen to be approximately πN
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3.3 Interpolating Irradiance

For typical scenes, an accurate computation of Equation 3.4 requires hundreds or even

thousands of sample rays. This is obviously a very costly operation; however, the goal of the

irradiance caching algorithm is to compute these very accurate irradiance estimates at only a

few locations within the scene and to perform interpolation or extrapolation whenever possible.

Where the irradiance changes slowly we can compute the costly estimates very sparsely, whereas

regions which exhibit sharp irradiance changes require more irradiance samples to faithfully

capture the indirect illumination. Ward et al. developed a simplified heuristic which estimates an

upper bound for the change of the irradiance εi (x,~n). The inverse of this change in irradiance

serves as a weight for interpolation between nearby cached irradiance values:

wi (x,~n) = 1

εi (x,~n)
. (3.6)

At any shading location, all previously stored cache points whose weight is above a user-specified

threshold are used in the averaging. If no cache points have a weight above this threshold, then a

new full irradiance estimate needs to be computed using Equation 3.4.

3.3.1 The “Split-Sphere” Model

In order to estimate an upper-bound on the maximal possible irradiance gradient, Ward

et al. developed the “split-sphere” heuristic. In this model, a sample point is positioned at the

center of a hypothetical spherical environment, which is half black and half white. The sample

point is oriented to face the boundary between these two regions as illustrated in Figure 3.2. If

we assume that concentrated light sources have been eliminated from the irradiance integral by

separately accounting for direct lighting, then this hypothetical environment provides the largest

possible irradiance gradient configuration.

In the split-sphere, irradiance is a function of the position, x, and surface normal,~n, of the

evaluation location. Therefore, the maximum change in irradiance in the split-sphere is composed

of the differential change with respect to change in both x and~n. Ward et al. approximated this

change by taking a first-order Taylor expansion of irradiance at x0. From this model, the estimated
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The “Split-Sphere’’ Model Rotational Gradient Translational Gradient
Top View

Side View

Figure 3.2: The “split-sphere” model. A surface element is positioned at the center of a hypothetical
half-dark sphere. The induced change in irradiance is calculated with respect to change in translating
the x (red) and rotating the orientation~n (green). This serves as an estimate of the maximum change in
irradiance for any scene.

change in irradiance can be computed as:

εi (x,~n) = Ei

(
4

π

‖x−xi‖
Ri

+
√

1− (~n ·~ni )

)
, (3.7)

where:

xi = irradiance sample location,

~ni = surface normal at xi ,

Ei = irradiance at xi ,

Ri = harmonic mean distance to surfaces from xi .

The Ri quantity represents the “average” distance to visible surfaces. This value is computed using

the harmonic mean of the sample distances r j ,k as:

Ri = M N
M−1∑
j=0

N−1∑
k=0

1

r j ,k

, (3.8)

where each r j ,k is attained from the lengths of the rays traced during the irradiance integration. A

complete derivation of how this expression is obtained is provided in the next section.
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The weight associated with each cache point is equal to the inverse of the estimated

error for that cache point at the query location. The irradiance weighted averaging is therefore

performed as follows:

E(x,~n) ≈

∑
i∈S

wi (x,~n)Ei∑
i∈S

wi (x,~n)
, (3.9)

where:

a = user selected error threshold parameter

S =
{

i : wi (x,~n) > 1

a

}

In the final weighted interpolation, Ward et al. use a simplified expression to compute the weight

by eliminating the constant terms in Equation 3.7

wi (x,~n) = 1
‖x−xi‖

Ri
+

√
1−~n ·~ni

. (3.10)

Given this formulation of irradiance averaging, it is easy to compute the maximum

distance at which the weight of a cache point will fall below the threshold 1
a by ignoring the

change in surface normal and examining wi as a function of only distance. This observation

imposes a maximum possible valid radius of aRi for each cache point. The finite spatial extent of

cache points allowed Ward et al. to store them in an octree. The octree is used to efficiently find all

cache points which overlap with a given shading location x in order to evaluate Equation 3.9. Since

the valid radius depends on the harmonic mean distance Ri , cache points which “see” nearby

geometry will have small valid radii, and cache points far away from visible geometry will have

larger valid radii.
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3.3.2 Derivation of the “Split-Sphere” Model

We now present a more rigorous derivation of the split-sphere irradiance gradient from

Equation 3.7 than is currently available in the literature and illustrate the process in Figure 3.2.

The change in irradiance depends on the translation of x and the rotation of the surface normal ϕ.

This change can be approximated using a first order Taylor expansion about xi :

ε(x,ϕ) = Ei

(
∂E

∂x
(x −xi )+ ∂E

∂ϕ
(ϕ−ϕi )

)
. (3.11)

In the hypothetical split-sphere environment, the irradiance at a sample point is propor-

tional to the projected area of the bright half of the hemisphere. The change in irradiance is equal

to the change in ratio of the bright and dark parts. For the translational component ∂E
∂x , the change

in projected area of the bright half is shown in red in Figure 3.2. When ∆x is small, the projection

of the new region can be well approximated by a thin rectangle of size ∆x by 2R. Hence,

∂E

∂x
∆x ≈ 2R∆x

1
2πR2

⇒ 4∆x

πR
. (3.12)

In order to examine the change in irradiance due to surface normal, we consider a rotation

of the surface normal by a small angle ϕ. The axis of rotation that induces the most change in

irradiance is parallel to the split plane between the bright and dark half of the environment. We

can see in Figure 3.2 that as the sample point’s orientation is rotated, the change in the projected

bright region can be represented by half of an expanding ellipse (shown in green). The area of

an ellipse with axes r1 and r2 is given by the formula Ae = πr1r2. In our case, r1 = R, and r2 is

dependent on the rotational offset∆ϕ. Examining the geometry in the bottom row of Figure 3.2(b),

we see that r2 = R sin
(
∆ϕ

)
. This gives us

∂E

∂ϕ
∆ϕ≈

1
2πR2 sin

(
∆ϕ

)
1
2πR2

⇒ sin
(
∆ϕ

)
. (3.13)
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The final Taylor expansion for the change in irradiance expands Equation 3.11 to:

ε(x,ϕ) = Ei

(
4

π

|x −xi |
R

+ sin
(
ϕ−ϕ0

))
. (3.14)

In computing the upper bound on the irradiance gradient, we had assumed a fixed, imag-

inary split-sphere environment a constant distance R away from the sample location. However,

we now need to apply this gradient estimate to the actual environment that is sampled using

Equation 3.4. Generalizing the above gradient computation into vector-based quantities involves

replacing the change in x into a distance between two points and the change in ϕ into the angle

between two surface normals. This brings us to Equation 3.7.

3.4 Irradiance Gradients

Ward and Heckbert [1992] realized that it is possible to improve the quality of the irra-

diance estimate significantly by better utilizing the information provided during the sampling

process. Specifically, it is possible to compute the actual gradient of the irradiance function from

the information available in a sampled hemisphere. This is in contrast to the split-sphere deriva-

tion in the previous section which only computes a loose upper-bound on the gradient. If both

the irradiance and its gradient are available, it is possible to perform higher-order interpolation of

the irradiance samples.

The sampling of rays over the hemisphere (Equation 3.2) tells us not only the final ap-

proximation for irradiance, but also the brightness, direction, and distance for each individual

sample ray. This extra data provides us with the information necessary to deduce a gradient of

the sampled irradiance function. As with the split-sphere model, the irradiance gradient can be

decomposed into two components: ∇t E , representing the gradient with respect to translation,

and ∇r E , the gradient with respect to rotation. We present a full derivation of the irradiance

gradient computation in the next section.

To take advantage of the additional gradient information in a higher-order interpolation,



32

vertical scanline pixels vertical scanline pixels

irr
ad

ian
ce

actual irradiance extrapolated irradiance irradiance cache point

irr
ad

ian
ce

Irradiance Caching
(Constant Extrapolation)
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Figure 3.3: Render quality comparison between irradiance caching (left) and irradiance caching with
gradients (right). The top row shows a simple scene rendered with both techniques. The two zoomed
insets highlight the benefit of the translational (red) and rotational (blue) gradients. The graphs in the
bottom image compare the extrapolated irradiance estimate for a single vertical scanline. New cache
points are added on demand when the previous cache point’s weight falls below a threshold. This results
in constant extrapolation for irradiance caching (left), which produces significant errors. Incorporating
gradients (right) results in a piecewise linear approximation, which follows the actual irradiance function
more closely.

Equation 3.9 can be extended as

E(x,~n) ≈

∑
i∈S

wi (x,~n) (Ei + (~ni×~n) ·∇r Ei + (x−xi ) ·∇t Ei )∑
i∈S

wi (x,~n)
. (3.15)

This modification adds contribution from the translational gradient as we move away from a

cache point and contribution from the rotational gradient as we rotate away from a cache point.

This can be interpreted as performing a linear extrapolation from one cache point to the next, as

opposed to a piecewise constant extrapolation (see Figure 3.3 for a one-dimensional analogy).

The incorporation of gradients into the irradiance caching scheme requires little extra

computation but can provide vastly superior interpolation quality. A comparison rendering is

provided in Figure 3.3.
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3.5 Radiance Caching

One of the underlying observations justifying interpolation for irradiance caching is

that reflected radiance due to indirect illumination changes slowly across Lambertian surfaces.

Furthermore, since lighting on Lambertian surfaces is view-independent, a single irradiance value

is sufficient for interpolating lighting across these surfaces. However, this compact representation

is not possible with general surfaces since reflected light is, in general, view-dependent. In a

series of papers, Křivánek et al. [2005b,a] extended the irradiance caching method to work with

glossy surfaces. They observed that indirect illumination also changes slowly on surfaces with

general low-frequency BRDFs. In order to interpolate indirect illumination on view-dependent

glossy materials, Křivánek et al. cache the full directional radiance function instead of just a scalar

irradiance value, and call their extension radiance caching.

3.5.1 Radiance Computation

Spherical functions, such as a full radiance field, can be efficiently stored using spherical

harmonics. Since the radiance at surfaces is really only defined in the upper hemisphere, Křivánek

et al. used hemispherical harmonics instead, which were introduced and derived in an earlier

paper [Gautron et al., 2004]. Spherical (SH) and hemispherical (HSH) harmonics act in analogous

ways, but HSH can more efficiently approximate functions over just a hemisphere. At a high

level, these can be thought of as generalizations of a Fourier series applied to the spherical and

hemispherical domains, respectively. In the context of radiance caching they can be interchanged

except where explicitly noted. A more detailed introduction to spherical harmonics is provided in

Appendix B.

Similarly to irradiance caching, the radiance caching algorithm uses a lazy caching

scheme. When no cache records are found nearby, the incident lighting is evaluated accurately

using Monte Carlo integration. During this process, the incoming radiance, L(x←~ω), is pro-

jected onto (H)SH and stored as a vector of coefficients,Λ= {λm
l }, within a new cache record for

subsequent interpolation. Each coefficient λm
l is computed using the Monte Carlo samples by
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integrating the product of the incident radiance and the corresponding basis function ym
l :

λm
l = 2π

N

N−1∑
k=0

L(x←~ωk )ym
l (~ωk ). (3.16)

3.5.2 Radiance Interpolation

As in irradiance caching, efficiency is gained in radiance caching by attempting to in-

terpolate from nearby cache points before computing a new cache record. Radiance caching

uses a similar weighted averaging scheme as irradiance caching but interpolates the coefficient

vectors instead of the irradiance values. However, the calculation of HSH coefficient vectors in

Equation 3.16 was performed within the local coordinate frame of each cache point. Multiple HSH

coefficient vectors, therefore, cannot be directly interpolated because they potentially lie in differ-

ent coordinate frames. Fortunately, functions represented using (H)SH can be efficiently rotated

[Gautron et al., 2004; Ivanic and Ruedenberg, 1996; Blanco et al., 1997; Choi et al., 1999]. Hence,

before interpolation, each cache record’s coefficient vector is aligned to a common coordinate

frame to make interpolation possible2. This results in the following modification to Equation 3.9:

Λ(x,~n) =

∑
i∈S

wi (x,~n)Mi (Λi )∑
i∈S

wi (x,~n)
, (3.17)

where Mi is the HSH rotation matrix, which aligns the coordinate frame of cache point xi to the

frame at the query point x. Computing the interpolated radiance field and the BRDFs as (H)SH

allows us to integrate them at any scene location using a simple dot product of their coefficient

vectors.

3.5.3 Translational Radiance Gradients

Ward and Heckbert [1992] found that interpolation quality can be substantially improved

by calculating gradient information from the hemispherical samples. This same concept can be

applied to the radiance caching algorithm. In irradiance caching with gradients, the gradient is

2If SH are used instead, this rotation is not necessary, as the radiance fields can be stored in global instead of local
space.
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composed of a rotational and translational component. Within the radiance caching framework,

we already take rotational change into account by analytically rotating the coefficient vectors

before interpolation. However, by incorporating a translational gradient we can further improve

interpolation quality.

Křivánek et al. proposed two different methods for computing the translational gradi-

ent [2005b]. In radiance caching, the translational gradient expresses the change of each HSH

coefficient λm
l with respect to movement in the local x- or y-axes at the cache location. As with

traditional irradiance gradients, the radiance gradients are computed at the same time as the

coefficients during the hemispherical sampling.

The first technique calculates the gradient numerically by translating the sample point x

to x′ along the local x-axis, and to x′′ along the local y-axis. It estimates the coefficient λm
l

′ and

λm
l

′′ at these displaced locations and, finally, takes the finite differences:

[
∂λm

l

∂x
,
∂λm

l

∂y
,0

]
=

[
λm

l
′−λm

l

∆x
,
λm

l
′′−λm

l

∆y
,0

]
. (3.18)

The second technique proposed by Křivánek et al. [2005b], and also independently by An-

nen et al. [2004], calculates the gradient by analytically differentiating the terms in Equation 3.16.

This calculation involves deriving partial derivatives for the hemispherical harmonics. We omit

the full derivation here and refer the interested reader to the original paper [Křivánek et al., 2005b].

The above two gradient computations treat each sample ray independently. Therefore,

any distribution of rays can be used, which allows for different sampling strategies such as

Quasi-Monte Carlo sampling. However, because each sample is treated independently, neither

of the techniques take changing occlusions into account. To address this limitation, Křivánek

et al. [2005a] later proposed an improved gradient computation, which accounts for changing

occlusions.

The improved gradient calculation takes the approach originally used by Ward and Heck-

bert [1992] by stratifying the samples and considering the marginal change in incoming radiance

with respect to each cell boundary. To account for the fact that in radiance caching the values are

projected onto hemispherical harmonic basis functions, Křivánek et al. [2005a] generalize the
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Figure 3.4: The stratified geometry used in the Ward and Heckbert [1992] gradient computation illustrated
from the side (left) and above (right). The relevant quantities are described in Table 3.1.

calculations of Ward and Heckbert [1992] to work with an arbitrary weighting function applied to

each sample. In Section 3.6 we explore this derivation in more detail and show how it relates to

the original irradiance gradient formulation by Ward and Heckbert [1992].

Regardless of the technique used to calculate the gradient, Equation 3.17 can be extended

as follows to incorporate the translational gradient information:

Λ(x,~n) =

∑
i∈S

wi (x,~n)Mi

(
Λi +dx

∂Λi

∂x
+dy

∂Λi

∂y

)
∑
i∈S

wi (x,~n)
, (3.19)

where dx and dy are the displacements of x−xi along the local x- and y-axes.

3.6 Derivation of Irradiance Gradients

Since a complete derivation of the irradiance gradient computation is not included in the

literature, we provide one here. The following discussion uses the notation described in Table 3.1

and illustrated in Figure 3.4.

At a high level, the irradiance computation in Equation 3.2 can be thought of as a weighted

sum of the radiance. The contribution of each sample is the product of the radiance through

the hemispherical cell L(x←~ω j ,k ), the solid angle or “area” of the cell A j ,k , and the cosine term



37

(~n ·~ω j ,k ):

E(x) ≈
M−1∑
j=0

N−1∑
k=0

A j ,k L(x←~ω j ,k ) (~n ·~ω j ,k ). (3.20)

The cell area is the integral over the bounds of each cell:

A j ,k =
∫ φk+

φk-

∫ θ j+

θ j-

sinθdθdφ =⇒ (cosθ j-−cosθ j+ )(φk+−φk- ). (3.21)

The irradiance gradient considers how these terms change when translating the center

of projection or rotating the surface normal by an infinitesimal amount. The rotational and

translational gradients are obtained by differentiating Equation 3.20:

∇r E(x) ≈
M−1∑
j=0

N−1∑
k=0

∇r (A j ,k L j ,k cosθ j )

∇t E(x) ≈
M−1∑
j=0

N−1∑
k=0

∇t (A j ,k L j ,k cosθ j ),

where we have used the shorthand L j ,k = L(x←~ω j ,k ), and cosθ j = (~n ·~ω j ,k ). Since in irradiance

caching surfaces are assumed to be Lambertian, the radiance in each cell remains constant, which

Table 3.1: Definitions of quantities used in the irradiance gradients derivation.

Symbol Description

N Number of divisions in azimuthal angle φ
M Number of divisions in elevation angle θ
~ω j ,k Sample direction for cell ( j ,k), i.e.: (θ j ,k ,φ j ,k )
A j ,k Area of cell ( j ,k), i.e.: (M N )−1pdf (~ω j ,k )−1

θ j Elevation angle at center of cells ( j , ·)
φk Azimuthal angle at center of cells (·,k)

( j-,k), ( j+,k) Cell boundaries ( j ↔ j -1,k) and ( j ↔ j +1,k)
( j ,k-), ( j ,k+) Cell boundaries ( j ,k ↔ k-1) and ( j ,k ↔ k+1)

θ j+ Elevation angle at boundary ( j+, ·)
θ j- Elevation angle at boundary ( j-, ·)
θ j+ Elevation angle at boundary ( j+, ·)
φk- Azimuthal angle at boundary (·,k-)
φk+ Elevation angle at boundary (·,k+)
ûk Tangent vector in the φk direction
v̂k Tangent vector in the φk + π

2 direction
v̂k- Tangent vector in the φk- + π

2 direction
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simplifies the above expressions to:

∇r E(x) ≈
M−1∑
j=0

N−1∑
k=0

L j ,k ∇r (A j ,k cosθ j ) (3.22)

∇t E(x) ≈
M−1∑
j=0

N−1∑
k=0

L j ,k ∇t (A j ,k cosθ j ). (3.23)

In the following sections we derive expressions for ∇r E(x) and ∇t E(x).

3.6.1 The Rotational Gradient

The rotational gradient needs to express the change in the projection solid angle A j ,k cosθ j

of each hemisphere sample cell as it is rotated in any direction. We make the observation that

under a rotation of the surface normal, the stratified cell areas A j ,k do not change. Hence,

∇r (A j ,k cosθ j ) = A j ,k ∇r cosθ j , (3.24)

and Equation 3.22 reduces to

∇r E(x) ≈
M−1∑
j=0

N−1∑
k=0

L j ,k A j ,k ∇r cosθ j . (3.25)

The only factor that influences the rotational irradiance gradient is the cosine foreshort-

ening term cosθ, and d
dθ cosθ j =−sinθ j . In order to compute the gradient of the whole stratified

hemisphere, we need to sum up all of the marginal cell differentials multiplied by their corre-

sponding rotation axes:

∇r E =−
N−1∑
k=0

{
v̂k

M−1∑
j=0

L j ,k A j ,k sinθ j

}
. (3.26)

In the irradiance caching algorithm the hemispherical samples are constructed using a cosine-

weighted distribution. This simplifies Equation 3.21 to

A j ,k = π

M N cosθ j
, (3.27)
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which reduces Equation 3.26 to

∇r E =− π

M N

N−1∑
k=0

{
v̂k

M−1∑
j=0

L j ,k
sinθ j

cosθ j

}
, (3.28)

=− π

M N

N−1∑
k=0

{
v̂k

M−1∑
j=0

L j ,k tanθ j

}
. (3.29)

3.6.2 The Translational Gradient

In order to compute the gradient due to translation, we use a derivation similar to that

provided by Křivánek et al. [2005a]. We observe that the cosine foreshortening term does not

change under a translation, therefore, ∇t E(x) simplifies to computing the change in cell area:

∇t E(x) ≈
M−1∑
j=0

N−1∑
k=0

∇t A j ,k L j ,k cosθ j . (3.30)

Since we are only interested in translational gradients along the surface, the change in cell

area can be reduced to computing the marginal change in the cell walls with respect to translation

along the base plane. For each cell ( j ,k), we decompose the gradient into directional derivatives

of the four neighboring cell walls:

∇t A j ,k = ûk ·∇ûk A j-,k − ûk ·∇ûk A j+,k + v̂k−·∇v̂k−A j ,k- − v̂k+·∇v̂k+A j ,k+ , (3.31)

where ∇ûk A j-,k computes the scalar directional derivative of area due to movement of boundary

( j-,k) along the ûk direction, and the other quantities are defined analogously (see Table 3.1).

These directional derivatives can be interpreted as computing the length of the cell wall multiplied

by the rate of motion of the wall due to movement in the perpendicular direction. This is illustrated

in Figure 3.5.

Since neighboring cells share cell boundaries, it is more convenient to express the transla-

tional gradient in Equation 3.30 as a summation over all the cell boundaries instead of the cells.

The movement of a cell wall will increase the contribution from one adjacent cell and induce a

corresponding decrease from the other adjacent cell. Because of this, we consider the difference
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Figure 3.5: The change in cell area due to translation is decomposed into the movement of each cell wall.
For both the azimuthal and polar directions, the induced change in cell area is equal to the length of the
wall multiplied by the rate of motion of the wall.

in radiance between the two adjacent cells to determine the effect on the overall irradiance sum3:

∇t E(x) =
N−1∑
k=0

(
ûk

M−1∑
j=1

∇ûk A j-,k (L j ,k −L j -1,k )cosθ j- + v̂k-

M−1∑
j=0

∇v̂k-
A j ,k- (L j ,k −L j ,k-1)cosθ j

)
. (3.32)

This formulation is similar to that provided by Křivánek et al. [2005a] but with the correction that

the first term is weighted by the cosine at the cell boundary, cosθ j- , instead of at the cell center,

cosθ j . We derive the rate of motion of the two types of cell walls in the following sections.

Displacement Along ûk

The induced change in cell area by moving cell wall ( j-,k) along the base plane vector ûk

is:

∇ûk A j-,k =∇ûkθ j- ·
∂A j ,k

∂θ j-

, (3.33)

=∇ûkθ j- · (φk+ −φk- )sinθ j- , (3.34)

where the (φk+ −φk- )sinθ j- arises directly from differentiating the definition of A j ,k in Equa-

tion 3.21. To determine the change in elevation angle as we move along direction ûk , we instead

3Note that the degenerate cell wall at the pole (where θ = 0) is excluded in the loop by starting at j = 1.
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consider the analogous problem within the canonical hemispherical parametrization:

x = r cosφsinθ, (3.35)

y = r sinφsinθ, (3.36)

z = r cosθ, (3.37)

r =
√

x2 + y2 + z2, (3.38)

φ= tan−1
( y

x

)
, (3.39)

θ = cos−1
( z

r

)
, (3.40)

and determine the change in θ as we translate along x:

∂θ

∂x
= zx

r 3
(
1− z2

r 2

) 1
2

, by differentiating Equation 3.40,

= cosθx

r 2
(
1−cos2θ

) 1
2

, because
z

r
= cosθ,

= cosθx

r 2 sinθ
, because sin2θ+cos2θ = 1,

= cosθcosφsinθ

r sinθ
, because

x

r
= cosφsinθ,

= cosθ

r
, because we evaluate at y = 0, where cosφ= 1. (3.41)

In order to apply this derivation to the hemispherical samples, Ward and Heckbert [1992]

observed that as the sample location moves, the rate of motion of the boundary between two cells

is always determined by the closer of the two sample directions. This observation takes changing

occlusions into account. Therefore, the radius in the denominator should use the minimum of

the distances for the two neighboring cells, resulting in:

∇ûk A j-,k = (φk+ −φk- )sinθ j- cosθ j-

min
(
r j ,k ,r j−1,k

) . (3.42)
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Displacement Along v̂k-

We also consider a displacement along v̂k- for cell walls of the form ( j ,k-). The induced

change in area is:

∇v̂k-
A j ,k- =∇v̂k-

φk- ·
∂A j ,k

∂φk-

, (3.43)

=∇v̂k-
φk- · (cosθ j+ −cosθ j- ). (3.44)

In order to compute ∇v̂k-
φk- we again turn to the canonical parametrization and consider the

change of φ as we translate along y :

∂φ

∂y
= x

x2 + y2 , by differentiating Equation 3.39,

= 1

x
, because we evaluate at y = 0,

= 1

r cosφsinθ
, from Equation 3.35,

= 1

r sinθ
, because cosφ= 1 at y = 0. (3.45)

By again using the minimum of the neighboring cell distances we arrive at the following

induced change by translating along v̂k- :

∇v̂k-
A j ,k- =

(cosθ j+ −cosθ j- )

sinθ j min
(
r j ,k ,r j−1,k

) . (3.46)

Putting it Together

Plugging the values for the cell wall differentials from Equations 3.42 and 3.46 into Equa-

tion 3.32, the final translation gradient is:

∇t E(x) =
N−1∑
k=0

(
ûk

M−1∑
j=1

(φk+ −φk- )sinθ j- cosθ j-

min
(
r j ,k ,r j−1,k

) (
L j ,k −L j−1,k

)
cosθ j-+

v̂k-

M−1∑
j=0

(cosθ j+ −cosθ j- )

sinθ j min
(
r j ,k ,r j−1,k

) (
L j ,k −L j ,k−1

)
cosθ j

)
. (3.47)
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3.6.3 Equivalence of the Gradient Formulations

Ward and Heckbert [1992] compute the translational gradient by considering the move-

ment of the projected cell boundaries. Their original formulation is:

∇t E(x) =
N−1∑
k=0

(
ûk

2π

N

M−1∑
j=1

sinθ j- cos2θ j-

min
(
r j ,k ,r j−1,k

) (
L j ,k −L j−1,k

)+
v̂k−

M−1∑
j=0

(sinθ j+ − sinθ j- )

min
(
r j ,k ,r j−1,k

) (
L j ,k −L j ,k−1

))
. (3.48)

The translational gradients we derived in the previous section differ from this formulation. We

instead followed the approach of Křivánek et al. [2005a] and considered the movement of the

unprojected cell boundaries weighted by a cosine term. As Křivánek et al. showed, this approach

has extra flexibility since it allows the use of any weighting function in place of the cosine term.

Křivánek et al. [2005a] stated that their “formula yields numerically very similar results to

that of Ward and Heckbert.” Unfortunately, the derivation by Křivánek et al. [2005a] contained a

few minor errors which obscured the fact that these gradient formulations are in fact analytically

equivalent. In this section we prove this equivalence.

Equivalence Along ûk

We first consider the gradient contribution along ûk . In our formulation, the cell radiance

difference,
(
L j ,k −L j−1,k

)
, is weighted by:

(φk+ −φk- )sinθ j- cosθ j-

min
(
r j ,k ,r j−1,k

) ·cosθ j- , (3.49)

whereas in the original Ward and Heckbert formulation it is:

2π

N

sinθ j- cos2θ j-

min
(
r j ,k ,r j−1,k

) . (3.50)

For a uniform or cosine-weighted stratification, (φk+ −φk- ) = 2π
N , which makes these two formula-

tions equivalent along ûk .
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Equivalence Along v̂k-

Showing that the gradient formulations along v̂k- are equivalent is a bit more involved.

Our formulation weights each cell radiance difference,
(
L j ,k −L j ,k−1

)
, by:

cosθ j+ −cosθ j-

sinθ j min
(
r j ,k ,r j−1,k

) ·cosθ j =⇒
cosθ j+ −cosθ j-

tanθ j min
(
r j ,k ,r j−1,k

) (3.51)

and Ward and Heckbert weight it by:

sinθ j+ − sinθ j-

min
(
r j ,k ,r j−1,k

) . (3.52)

To show that these are equivalent, we start by expressing the boundary angles, θ j- and θ j+ , as

offsets from the angle at the cell center, θ j :

θ j- = θ j − ∆θ
2

, (3.53)

θ j+ = θ j + ∆θ
2

, (3.54)

where ∆θ
2 is half the cell-width along the θ direction. Using this decomposition, we can rewrite

Equations 3.51 and 3.52 as:

cos
(
θ j − ∆θ

2

)
−cos

(
θ j + ∆θ

2

)
tanθ j min

(
r j ,k ,r j−1,k

) , and
sin

(
θ j + ∆θ

2

)
− sin

(
θ j − ∆θ

2

)
min

(
r j ,k ,r j−1,k

) .

By using the angle sum and difference trigonometric identities:

sin

(
θ j ± ∆θ

2

)
= sinθ j cos

∆θ

2
±cosθ j sin

∆θ

2
, (3.55)

cos

(
θ j ± ∆θ

2

)
= cosθ j cos

∆θ

2
∓ sinθ j sin

∆θ

2
, (3.56)
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these two formulations simplify to equivalent expressions:

(
������
cosθ j cos ∆θ2 + sinθ j sin ∆θ

2

)
−

(
������
cosθ j cos ∆θ2 − sinθ j sin ∆θ

2

)
tanθ j min

(
r j ,k ,r j−1,k

) =⇒ 2���sinθ j sin ∆θ
2

�
��tanθ j min

(
r j ,k ,r j−1,k

) ,

=⇒ 2cosθ j sin ∆θ
2

min
(
r j ,k ,r j−1,k

) , (3.57)(
������
sinθ j cos ∆θ2 +cosθ j sin ∆θ

2

)
−

(
������
sinθ j cos ∆θ2 −cosθ j sin ∆θ

2

)
min

(
r j ,k ,r j−1,k

) =⇒ 2cosθ j sin ∆θ
2

min
(
r j ,k ,r j−1,k

) . (3.58)

3.7 Other Extensions

Several other extensions to the irradiance caching method have been proposed in the

literature. We briefly summarize some of the most significant contributions in this section.

3.7.1 Approximate Global Illumination

Several papers have explored the topic of accelerating the global illumination computa-

tion by making physically inaccurate approximations during the irradiance caching algorithm.

These methods loosen the physical restrictions of the computation to gain efficiency, while at-

tempting to minimize the approximation errors and artifacts introduced. We will cover two

different approaches to this problem. The first uses simplified scene geometry during the indirect

lighting calculation, while the second decomposes the indirect light into near and far components

in order to exploit their individual advantages.

Using Simplified Geometry

The algorithm proposed in Tabellion and Lamorlette [2004] was developed within the

context of a production rendering system for computer animated films. The primary concerns

involved were efficiency and artistic control, as opposed to physically accurate simulation. One of

the approximations employed to make the global illumination calculation more computationally

tractable was the use of simplified scene geometry during the indirect lighting calculation.
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Simplified Geometry Micro-Polygons Effective Ray Origin

Figure 3.6: Tabellion and Lamorlette adjusted the ray origins in the irradiance estimate in order to
compensate for simplified geometry.

The main bottleneck of the irradiance caching algorithm is the time spent tracing rays.

To mitigate this, the system proposed by Tabellion and Lamorlette ray traces coarsely tessellated

geometry. Since the underlying rendering system was a micro-polygon renderer, coarse repre-

sentations of the scene geometry were readily available. Using simplified geometry had been

proposed in the past [Rushmeier et al., 1994]; however, Tabellion and Lamorlette’s system used

coarse geometry even near the ray origin. Since rays originate at positions on the fine-scale

geometry, problems can occur from incorrect “self-intersections” with the coarse geometry. This

problem, and its proposed solution, is illustrated in Figure 3.6.

When tracing an indirect ray, the actual ray origin may need to be adjusted to compensate

for the geometric inconsistency. The new ray origin is found by tracing within a user-defined

distance both before and after the origin. The closest hit to the ray origin becomes the new ray

origin.

Using simplified geometry for the indirect rays allowed Tabellion and Lamorlette to gain

an order of magnitude improvement in performance.

Error Metric. Tabellion and Lamorlette also introduced a new error metric used during the

weighted averaging of the cached irradiance samples. They argued that the new error metric

improves cache point distribution for scenes with high geometric detail by reducing clumping

in corners. To compute the error of using a cached sample i at position x, they proposed the
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following formula:

εi = κmax
(
εpi (x),εni (~n)

)
, with (3.59)

εpi = ‖x−xi‖
max

(
min

(
Ri

2
,R+

)
,R−

) , and (3.60)

εni =
√

1−~n ·~nip
1−cos(10◦)

. (3.61)

Here, κ is the only user-adjustable quality parameter and is by default set to 1. Ri is the closest

distance to surfaces seen from xi . R− and R+ are 1.5 and 10 times the square root of the projected

pixel area, respectively. These act like minimum and maximum valid radii constraints on the

cache points. Their inclusion brings about the reduced clumping properties of the metric.

A weighted average of cache points whose weights are non-negative are included in the

interpolated irradiance. The new error metric changes the weighting function used to

wi (x,~n) = 1−εi (x,~n). (3.62)

Irradiance Decomposition

Arikan et al. [2005] noted that, overall, irradiance caching is an excellent technique for

efficiently computing global illumination but suffers from over-sampling around areas of high

geometric complexity due to the potentially rapid change in irradiance in these areas. Especially

with the trend of increasing geometric complexity, these areas can easily dominate the global

illumination computation. The authors attempted to directly attack this problem by decomposing

the incoming irradiance into two parts and exploiting the properties of each part individually.

The incident hemisphere Ω is partitioned into ΩD and ΩN based on whether a distant or

near point is visible in that direction. The distinction of near and far is based on a user-defined

distance threshold. This also implies a partitioning of incoming radiance: LiD , incident radiance

from distant surfaces, and LiN , incident radiance from nearby surfaces.

By construction, LiD changes very slowly across surfaces and is therefore an excellent

candidate for interpolation. In contrast, LiN varies rapidly and is handled separately.
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Arikan et al. cached radiance instead of irradiance to attack the over-sampling problem.

The irradiance due to distant surfaces is computed using Monte Carlo integration, and the

resulting radiance field is stored as nine SH coefficients. Instead of sampling the hemispherical

radiance at specific cache points, Arikan et al. distributed the origin of the hemispherical sample

rays over multiple surface points. This allowed them better coverage of the whole radiance field

while using fewer cache points. The specifics of this procedure are explained in detail in the

original paper [Arikan et al., 2005].

The incident irradiance due to nearby surfaces is calculated using analytic point-to-

triangle form factors assuming perfect visibility. This assumption is not always true and is the

source of most of the approximation error. Since this quantity can change rapidly it is computed

per pixel.

These two irradiance values cannot be combined directly, since the geometry from the

nearby irradiance might block the irradiance from distant surfaces. Therefore, when computing

the analytic form factors, the distant irradiance is sampled in the direction of the triangle and is

assumed to be constant over the whole triangle. These quantities are subtracted to account for

the occlusion.

3.7.2 Distributed Global Illumination

The Kilauea renderer was designed to handle extreme geometric complexity within a

production environment while producing images with high-quality global illumination [Kato,

2002]. Kilauea used photon mapping for global illumination in combination with an irradiance

cache-like algorithm for efficient final gather. To satisfy the primary goal of high image quality,

the renderer traces 65× 65 = 4,225 rays per irradiance sample. This large amount of gather

rays guarantees smooth and accurate results for all but the most grueling scenes, even during

animation. Kilauea handles this ray tracing complexity by employing massively parallel rendering.

However, as a distributed renderer based on message passing, global illumination within Kilauea

has a different performance profile to address. Tracing rays within such a context incurs an even

larger overhead than in a traditional ray tracer. Thus, a method which minimizes the total number

of final gather rays is essential.
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A B C

Figure 3.7: Hit point reprojection. We can estimate the radiance strata at location B by reprojecting the hit
points from both A and C.

Hit Point Reprojection

The approach taken by Kato [2002] employed final gather reprojection to reduce the

number of necessary rays. Instead of simply storing an irradiance value, the whole stratified

radiance hemisphere is stored as a 2D grid of 65×65 colors and depths. Given this information

from neighboring points, we can reproject each strata’s hit points onto a different irradiance

location, as in Figure 3.7. To minimize the amount of unresolved pixels, four neighboring cache

points are used in the reprojection. Nonetheless, gaps could still occur. If a missing stratum is

surrounded by valid strata, these values are just interpolated. All remaining gaps are computed by

tracing rays. The authors found that this method can drastically reduce the number of necessary

final gather rays.

The memory requirements for storing all the hemispherical sample information for each

cache point might seem overwhelming, but the pixels in the rendered image are processed in

small independent buckets. As a result, this information never needs to be stored for a whole

image at once.

Adaptive Sample Placement

In addition to the reprojection, Kilauea employs a hybrid screen/object-space irradiance

sample placement algorithm. The pixels in the rendered image are processed in small, indepen-

dent, rectangular buckets. One bucket at a time, the algorithm first computes the hit location

and normal for each pixel. By comparing the location and orientation of neighboring pixel hit

points, “critical pixels” are identified. These critical pixels roughly correspond to silhouettes and

creases in the scene and, for accuracy, require un-interpolated irradiance computations. For all



50

remaining “safe pixels,” a precise irradiance estimate is computed (using Equation 3.4 with hit

point reprojection) sparsely over the image plane, typically on a grid of every 16×16 pixels. This

grid imposes a tiling over which interpolation or subdivision can occur. If no critical pixels overlap

a tile, then that tile is a candidate for interpolation. The harmonic mean distance (Equation 3.9)

of the corner irradiance samples is evaluated. If the means are found to be large, the irradiance

is predicted to vary smoothly, and, consequently, a simple bilinear interpolation of the corner

irradiance samples is computed over the entire tile. If critical pixels do overlap the tile, or if the

harmonic mean distances are too small, the tile is uniformly subdivided. This process continues

down to a user-defined minimum tile size.

Using both adaptive sample placement and hit point reprojection, the authors were able

to reduce the number of irradiance gather rays per pixel to the range of 3−−25 for typical scenes,

in contrast to the 4,225 samples that would be needed to compute a full 65×65 estimate at each

pixel.

3.7.3 Animation

Temporal Aliasing and Coherence

In a naïve extension of irradiance caching to animation, a new irradiance cache would be

computed per frame. This new cache would not only have different irradiance values for each

cache point, but the location of the irradiance cache points would be different for every frame.

Due to the stochastic sampling of the irradiance and the lack of inter-frame coherence of cache

point locations, significant differences would arise between frames. The approximation errors due

to interpolation and sparse sampling might be unnoticeable for an individual frame, but when

these artifacts change drastically from frame to frame, the illusion is ruined. This phenomenon

results in what appears as “popping” or “flickering” of the indirect illumination.

Age-based Invalidation. The observation made by Tawara et al. [2004] is that, for many regions

of a scene, the irradiance changes slowly and minimally over time when objects are animated.

It would be fruitful to exploit this feature, if only these regions could somehow be identified.

Instead of explicitly identifying these regions, however, the authors decided to probabilistically
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re-evaluate only a small subset of all global illumination rays using a simple age-based heuristic.

In order to accommodate this, the irradiance caching algorithm is extended by storing

radiance values instead of irradiance. The full stratified hemisphere of samples is stored, caching

the radiance and the distance to the nearest hit point for each stratum. In addition, each stratum

is assigned an age, which is initialized to 0. As the animation progresses, the age of each stratum is

incremented. A random subset of the oldest radiance strata is selected to be retraced each frame.

Updating a subset of the strata has many advantages. Firstly, by choosing only 10% of

all strata per frame, the render speed improves by approximately a factor of 10. Furthermore, in

this example, each radiance strata can be expected to be updated, on average, every 10 frames.

Moreover, reusing previous radiance cache locations reduces the temporal flickering problem

described above.

The authors also suggested an improved heuristic which takes the visibility of dynamic

objects into account. A flag is included to indicate whether each stratum intersected a static or

dynamic object. When randomly updating strata, more weight is given to strata viewing dynamic

objects. This adapts the process to update more vigorously in scene regions near moving objects.

Two issues remain: how do we handle irradiance cache points on dynamic objects, and

how do we deal with the fact that the optimal density and distribution of cache point locations

changes over time? To address the first issue, the authors simply attached the irradiance samples

to dynamic objects. The cache point locations are transformed with their underlying object. This

is a gross approximation since the radiance directions will no longer be valid once transformed,

but the authors claimed that the artifacts are negligible for slowly moving objects. The second

problem can be addressed by searching within the local neighborhood of each cache point and

eliminating a point if the number of nearby neighbors is larger than a given threshold (such as

10). This technique showed good results in adapting the cache point distribution to the changing

needs of the animated environment.

Separate Static and Dynamic Caches. An alternate approach to age-based invalidation was

proposed by Tawara et al. [2002]. Here, the proposed technique separates the irradiance cache

into a static and dynamic cache. The motivation behind this is much the same as with irradiance
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decomposition by Arikan et al. [2005]. In this case, however, we decompose the irradiance with

respect to motion, and not distance, to exploit the properties of the static and dynamic irradiance

caches independently.

The static cache contains only irradiance from non-moving objects and hence does not

flicker. Static objects can be determined with respect to the whole animation sequence, or the

animation can be divided into shorter segments and static objects identified within each time

segment. Dynamic objects are handled separately. A distinct dynamic irradiance cache is created

which contains contributions from moving objects.

These two caches cannot be directly combined because changing occlusion and inter-

reflection from dynamic objects needs to be properly integrated into the final irradiance. The

proposed algorithm uses irradiance caching in conjunction with photon mapping [Jensen, 2001].

Changes in occlusions from dynamic objects are handled by photons with negative energy in the

same spirit as “shadow photons” [Jensen, 2001]. Utilizing information in this dynamic photon

map, the two irradiance caches can be effectively combined.

Exploiting the Human Visual System

The sensitivity of the Human Visual System (HVS) changes with respect to both spatial

contrast and temporal effects. For instance, human observers are most sensitive to low frequency

spatial patterns and less so to high frequencies. Furthermore, people can discern moving objects

with different levels of accuracy with respect to speed. Fast moving objects are more noticeable

than static or slow moving objects, but very fast movement can interfere with the eye’s tracking

ability. Peak temporal sensitivity lies somewhere in between. These spatiotemporal sensitivity

disparities allow for an increased level of error tolerance when generating synthetic images.

Using these properties of the HVS, Yee [2000] improved the efficiency of the global illumi-

nation computation by computing a spatiotemporal error tolerance map, which determines how

important each pixel is for an individual frame in an animation. This map, the Aleph map, is used

as an oracle that guides perceptually-driven rendering of the global illumination solution.

The algorithm requires the computation of estimated frames for the animation. These

frames can be generated using graphics hardware or by ray tracing with direct illumination only.
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The frame estimates serve as input for constructing the spatiotemporal sensitivity map. Though

the details of the algorithm are beyond the scope of this paper, the Aleph map computation

incorporates the motion of each pixel, through motion estimation, as well as the varying intensity,

color, and orientation content of the image. This results in a single grayscale image which

identifies areas of increased attention based on the HVS.

The perceptual information is applied to the irradiance caching algorithm by modifying

the error threshold “a” in Equation 3.9 based on the Aleph map value of the underlying pixel.

Recall that the error threshold parameter determines the search radius for nearby cache locations.

This parameter is increased for pixels with a larger error tolerance as governed by the Aleph map.

This allows for performing fewer irradiance computations and more irradiance interpolations in

areas of low interest.

Yee was able to achieve a 6x to 11x speedup over the base irradiance caching algorithm

by using spatiotemporal information. It is important to note that this method also works for

static scenes and, by using the spatial importance information alone, a speedup of around 2x was

observed.

3.8 Limitations

Over the past 20 years, irradiance caching methods have proven to be a practical solution

to the global illumination problem. The many extensions in the literature speak to the versatility

of the approach. Irradiance caching and derived methods can be used to effectively simulate

lighting in scenes containing diffuse as well as glossy materials, and the algorithm has been

successfully applied to animation and the production of computer generated films. However, one

underlying assumption limits the applicability of all of these extensions.

All of the previous work has assumed that light travels unobstructed between surfaces.

None of the previous work has addressed the issue of volumetric scattering. In the next chapter

we extend our theoretical model of light to include effects from scattering media. Light transport

in scattering media is a potentially fruitful related problem, which could benefit from the same

approach that has worked so well for indirect surface illumination. Though the high-level ideas
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could very well be applied within participating media, most of the underlying derivations in

irradiance caching explicitly make assumptions which are only valid at surfaces. Therefore, in

Chapter 5 we develop a completely new algorithm for caching illumination within participating

media, which is inspired by irradiance caching techniques.

Unfortunately, scenes containing participating media also pose a problem for irradiance

caching at surfaces since these scenes invalidate many underlying assumptions. Indirect lighting

from participating media affects the irradiance gradient at surfaces, invalidating the gradient

derivations presented in this chapter. In Chapter 6 we extend the irradiance gradient formulation

to properly include effects from participating media.
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Light Transport in Participating Media

“Thus, if one is to be five times as distant, make it five
times bluer.”

—Leonardo Da Vinci, 1452–1519

IN previous chapters we assumed that all lighting interactions occurred at surfaces. In par-

ticular, the rendering equation from Chapter 2 assumes that the radiance leaving a surface

remains unchanged until it hits another surface. The property that radiance stays constant be-

tween these two points is expressed in Equation 2.10. However, this relationship is only true when

the surfaces are embedded within a vacuum, since photons are able to travel unobstructed as

they propagate from one surface to another. In reality, however, most of the scenes we observe

from day to day do not satisfy this constraint. The space between objects is typically occupied

by some host medium (e.g. air, water) which additionally contains impurities and microscopic

suspended particles. In these situations, the medium participates in the lighting interactions as

light travels between surfaces.

If there are very few particles within the medium, such as over short distances within

clean air, the assumption that light travels unobstructed can be a reasonable approximation.

However, even clean air scatters light (this is the reason the sky is blue) and as light travels over

longer distances, such as in open outdoor scenes, more interactions with the particles are likely to

occur.

In this chapter we expand our model for the behavior of light by considering effects

caused by participating media. We relax the constraints imposed by Equation 2.9 and 2.10 by

deriving expressions for how radiance changes as it travels through participating media. This

55
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Figure 4.1: We treat participating media as a collection of microscopic scattering particles. When lights
travels through the medium, a change of radiance, (~ω ·∇)L(x,~ω), may occur as the photons interact with
the particles.

generalization allows us to simulate lighting within clouds, murky water, fog and any other

medium which participates in the lighting interactions.

4.1 Assumptions About Scattering Media

In this dissertation, and most computer graphics applications, assumptions are made

about the properties of the scattering media in order to more easily derive expressions about

the behavior of light. In particular, we assume that the participating media can be modeled as

a collection of microscopic particles (see Figure 4.1). Since the particles are microscopic and

randomly positioned, we do not represent each individual particle in the lighting simulation.

Instead, we consider the aggregate probabilistic behavior as light travels through the medium.

Moreover, these particles are assumed to be spaced far apart relative to the size of an individual

particle. This assumption implies that as a photon travels through the medium and interacts at a

particle, this interaction is statistically independent from the outcome of subsequent interaction

events.

4.2 Light Interaction Events

When a photon travels through a collection of microscopic particles, it may either miss

all the particles and continue unaffected, or it may interact with some of the particles. The

probability that an interaction does occur is related to the extinction coefficient, σt (units [1/m]),

of the medium. This quantity depends on the density and size of the particles within the medium.
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When an interaction occurs, two things may happen: the photon may be absorbed by the particle

(by being converted to another form of energy, such as heat), or the photon may be scattered in

another direction. The relative probabilities of these two events is given by the absorption, σa ,

and the scattering, σs , coefficients, and σt =σa +σs is the extinction coefficient. Either of these

two events lead to a change of radiance along the ray.

4.2.1 Extinction

Consider a thin beam of light traveling through a medium in direction ~ω (see Figure 4.1).

The number of photons entering this beam is proportional to the incident radiance L(x→~ω) at

the start of the beam x. At each small step ∆t along the beam, some fraction of the photons will

interact with the medium and become absorbed. If the absorption coefficient within the segment

is σa(x+ t~ω), then a fraction σa(x+ t~ω)∆t of the photons will be absorbed. Hence, the number of

photons exiting this segment can be expressed as:

L((x+ t~ω)→~ω) = L(x→~ω) (1−σa(x+ t~ω)∆t ). (4.1)

By rearranging terms, we can determine the change in outgoing radiance between the start and

end of this segment:

L((x+ t~ω)→~ω)−L(x→~ω)

∆t
=−σa(x)L(x→~ω). (4.2)

Taking the limit as ∆t → 0 computes the derivative. The differential change in radiance due to

absorption as light moves along a direction ~ω is:

lim
∆t→0

(
L((x+ t~ω)→~ω)−L(x→~ω)

∆t

)
= (~ω ·∇a)L(x→~ω) =−σa(x)L(x→~ω), (4.3)

where ∇a denotes the gradient due to absorption, and (~ω ·∇a) computes the directional derivative

along ~ω.

At each step, the radiance may also be reduced due to photons being scattered into

other directions. The probability of this happening within the segment is determined by the
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Absorption Emission Out-scattering In-scattering

Figure 4.2: As light travels through a participating medium the radiance may change as a result of four
different types of interactions: absorption, emission, out-scattering and in-scattering.

scattering coefficient σs of the medium. Following the same derivation we can express the change

in radiance due to out-scattering as:

(~ω ·∇o)L(x→~ω) =−σs(x)L(x→~ω). (4.4)

The net loss of radiance due to either absorption or out-scattering is called extinction,

and it can be expressed as:

(~ω ·∇t )L(x→~ω) =−(σa(x)+σs(x))L(x→~ω)

=−σt (x)L(x→~ω). (4.5)

The differential equation above can be solved to find the beam transmittance, or simply

transmittance, denoted Tr . Transmittance gives the fraction of photons that can travel unob-

structed between two points in the medium along a straight light. The remaining fraction accounts

for photons that have either been absorbed or out-scattered in a different direction. By integrating

Equation 4.5 we can express the transmittance as:

Tr (x′↔x) = e−τ(x′↔x). (4.6)

The term in the exponent, τ, is called the optical thickness or optical depth, and comes about by
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integrating the effect of extinction along a line segment:

τ(x′↔x) =
∫ d

0
σt (x+ t~ω) dt , (4.7)

where x+ t~ω with t ∈ [0,d ] parametrizes the line segment between x and x′. In a homogeneous

medium, where σt is a constant, τ can be trivially computed as:

τ(x′↔x) = dσt . (4.8)

The transmittance is always between zero and one. When only absorption and out-

scattering are considered, the transmittance can be used to compute the reduced radiance,

L(x←~ω) = Tr (x′↔x)L(x′→−~ω), (4.9)

which describes how radiance is reduced as it travels from x to x′. This relation replaces Equa-

tion 2.10 if extinction effects are considered and is also known as Beer’s Law [Bouguer, 1729].

The transmittance between a point and itself is always one: Tr (x↔x) = 1. Another useful

property is that the transmittance between three points along a line is multiplicative:

Tr (x↔x′′) = Tr (x↔x′)Tr (x′↔x′′), (4.10)

for all points x′ between x and x′′.

4.2.2 In-Scattering and Emission

In addition to loss of radiance, radiance may increase as it travels through the medium.

The same process that causes the radiance to reduce along ~ω due to out-scattering may cause

it to increase due to in-scattering from other directions. In effect, scattering causes a loss of

radiance along the incoming direction and a corresponding increase in radiance into the scattered

direction. The change in radiance due to in-scattering can be derived in a similar fashion to
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back-scattering isotropic-scattering forward-scattering

Figure 4.3: The phase function describes the angular distribution of light scattering at any point x within
participating media. In the simplest case, light is scattered equally in all directions (middle). Many natural
materials, however, scatter light preferentially in the backward (left) or forward (right) direction.

extinction and out-scattering above, but instead depends on Li , the in-scattered radiance:

(~ω ·∇i )L(x→~ω) =σs(x)Li (x→~ω), (4.11)

We explain in-scattered radiance in more detail in the next section.

Media, such as fire, may also emit radiance, Le , by spontaneously converting other forms

of energy into visible light. This emission leads to a gain in radiance expressed as:

(~ω ·∇e )L(x→~ω) =σa(x)Le (x→~ω). (4.12)

4.2.3 Medium Properties

The absorption σa and scattering coefficients σs , along with the phase function p dis-

cussed in the next section, fully define the local behavior of light in a participating medium. If

the medium coefficients are constant throughout the medium, then the medium is said to be

homogeneous. This can be an acceptable approximation in the case of uniform fog for instance.

Most media is heterogeneous, which means that the absorption and scattering coefficients may

vary throughout the medium.

Another descriptive property of the medium can be derived from the unitless ratio be-

tween the scattering and extinction coefficients, σs
σt

. This is called the scattering albedo, and it

gives the probability of a photon scattering at a particular location in the medium. An albedo of
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zero means that the particles of the medium do not scatter light, while an albedo of one means

that the particles do not absorb light. The albedo has a similar meaning as the average reflectivity

of a surface.

4.3 In-Scattered Radiance and the Phase Function

4.3.1 In-Scattered Radiance

In-scattered radiance Li (x→~ω) represents all the light which is scattered into the thin

beam along direction ~ω1. The computation of in-scatter radiance involves integrating incident

radiance over the whole sphere of directions,Ω4π,

Li (x→~ω) =
∫
Ω4π

p(x,~ω′→~ω)L(x←~ω′) d~ω′, (4.13)

where p(x,~ω′→~ω) is the phase function describing the angular distribution of light scattering at a

point in the medium (see Figure 4.3). Due to this function, in-scattered radiance is usually not

isotropic (unlike emission and absorption), but depends on the outgoing direction.

The computation of in-scattered radiance closely parallels the computation of reflected

radiance on surfaces. Note the similarity of in-scattered radiance in Equation 4.13 with reflected

radiance in Equation 2.14. The distinction is that the BRDF is replaced with the phase func-

tion, there is no cosine foreshortening term (since no surface is present), and the integration is

performed over the whole sphere of directions instead of the hemisphere.

4.3.2 Properties of the Phase Function

1. Reciprocity. Just like the BRDF, the phase function respects Helmholtz’s law of reciprocity,

so p(x,~ω′→~ω) = p(x,~ω′←~ω). To indicate this we use the following notation:

p(x,~ω′↔~ω). (4.14)

1Note that in-scattered radiance represents exitant, not incident, radiance. Hence, the notation Li (x→~ω) is used.
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Reciprocity

Figure 4.4: The phase function obeys Helmholtz’s reciprocity principle: the value of the function remains
unchanged if the direction of light is reversed. This is equivalent to swapping the location of the viewer and
the light source (right), i.e., p(x,~ω′→~ω) = p(x,~ω→~ω′).

Note that in this dissertation the incident and outgoing directions for the phase function

both point away from the evaluation location x2. Additionally, the phase function often

depends only on the angle θ between the incoming and outgoing directions, in which

case it can be expressed simply as p(x,θ), where θ = cos−1(−~ω ·~ω′). An illustration of these

concepts is provided in Figure 4.4.

2. Normalization. Unlike the BRDF the phase function has units of [1/sr]. It is also assumed

normalized based on the derivations in this dissertation. This means that it always integrates

to exactly one over the sphere of directions3:

∫
Ω4π

p(x,~ω′↔~ω) d~ω′ = 1, ∀~ω. (4.15)

4.3.3 Examples of Phase Functions

Many different phase functions have been developed in the literature. We briefly explain

some of the phase functions commonly used in computer graphics.

The Isotropic Phase Function

The equivalent to diffuse reflection is perfect isotropic scattering. The isotropic phase

function is a constant and, based on the constraint in Equation 4.15, it is straightforward to show

2Some texts instead follow the convention that one vector points into x and the other vectors points away from x.
3Some texts follow different derivations and instead define the phase function to integrate to the albedo, σs /σt , or

to 4π.
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that it equals

p I (x,~ω′↔~ω) = 1

4π
. (4.16)

Isotropic media scatters light uniformly in all directions regardless of the incoming direction.

The Henyey-Greenstein Phase Function

One of the most commonly used non-isotropic phase functions is the Henyey-Greenstein

phase function [1941], which was empirically derived to model the scattering of light by intergalac-

tic dust. Due to its simplicity the Henyey-Greenstein phase function has also been successfully

applied for simulating many other scattering materials, such as oceans, clouds, and skin.

The function only depends on the angle θ and is defined as:

pHG (x,θ) = 1− g 2

4π(1+ g 2 −2g cosθ)1.5 . (4.17)

The single parameter, g ∈ [−1,1], determines the relative strength of forward and backward

scattering.

The asymmetry parameter g has a physical meaning—it represents the average cosine

of the scattered directions. Positive values of g give forward scattering, and negative values give

backwards scattering. A value of g = 0 results in isotropic scattering. A convenient side-effect of

this definition of g is that more complex scattering functions can easily be approximated by the

Henyey-Greenstein function by computing g as:

g (x) =
∫
Ω4π

p(x,~ω′↔~ω) cosθ d~ω′. (4.18)

The Schlick Phase Function

Though the Henyey-Greenstein phase function is intuitive and flexible, the computation

of the fractional exponent in the denominator is relatively costly. In computer graphics, the

exact shape of the Henyey-Greenstein phase function is usually not essential. This led Blasi and
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Figure 4.5: Polar plots visualizing the Henyey-Greenstein and Schlick phase functions as functions of θ.
The Schlick phase function (red) closely approximates the shape of the Henyey-Greenstein phase function
(blue) and is more efficient to evaluate.

colleagues to develop a similar phase function, which is more efficient to evaluate [1993]. The

resulting Schlick phase function approximates the shape of the Henyey-Greenstein function as an

ellipsoid:

pS(x,θ) = 1−k2

4π(1+k cosθ)2 , (4.19)

where k ∈ [−1,1] acts similarly to the g parameter and controls the preferential scattering direction.

As with g , total backward scattering is obtained with k =−1, k = 1 gives total forward scattering,

and k = 0 corresponds to isotropic scattering. Pharr and Humphreys [2004] found that for

intermediate values of k, the polynomial equation

k ≈ 1.55g −0.55g 3 (4.20)

can be used to give accurate approximations to the Henyey-Greenstein phase function. The

Henyey-Greenstein and Schlick phase functions are shown in Figure 4.5 for three different values

of g .

Rayleigh Scattering

In 1871, Rayleigh derived expressions for the scattering of light off molecules of air [1871].

Rayleigh scattering is an approximation for the behavior of light as it scatters in media composed
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Figure 4.6: The Rayleigh scattering phase function (left) consists of a symmetric forward and backward
scattering contribution. The Hazy (middle) and Murky (right) phase functions are approximations to the
behavior of scattering in foggy atmospheres dictated by Lorenz-Mie theory.

of particles up to about a tenth of the wavelength of light. The model is derived by assuming

a random distribution of very small specular spheres, and the resulting phase function is fairly

simple:

pR (x,θ) = 3

16π
(1+cos2θ). (4.21)

The Rayleigh phase function is visualized in Figure 4.6.

Rayleigh scattering is also highly dependent on the wavelength of light. This is captured

by a wavelength-dependent scattering coefficient,

σs = 2π5

3

d 6

λ4

(
n2 −1

n2 +2

)2

, (4.22)

where λ is the wavelength of light, and d and n are the diameter and refractive index of the

particles, respectively. This wavelength dependence of Rayleigh scattering is what makes the sky

blue and sunsets red.

Lorenz-Mie Theory

Rayleigh scattering is just an approximation that works when the size of the particles is

small relative to the wavelength. When the particles are comparable to the wavelength of light,

such as water droplets in fog, the more complicated Lorenz-Mie theory of scattering becomes

applicable [Lorenz, 1890; Mie, 1908]. Lorenz-Mie theory can be used to derive phase functions
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for a homogeneous collection of spherical particles where any ratio of diameter to wavelength is

allowed. Mie scattering is based on more general theory derived from Maxwell’s equations.

Nishita et al. [1987] provide two empirically derived approximations to the complicated

Lorenz-Mie scattering functions for foggy atmospheres, one for “hazy” atmospheres, and one for

“murky” atmospheres:

pM H (x,θ) = 1

4π

(
1

2
+ 9

2

(
1+cosθ

2

)8)
(4.23)

pM M (x,θ) = 1

4π

(
1

2
+ 33

2

(
1+cosθ

2

)32)
. (4.24)

These phase functions are shown in Figure 4.6.

More recently, generalizations of Lorenz-Mie theory have been presented which can

compute the scattering properties of a collection of non-spherical particles within an absorbing

host medium [Frisvad et al., 2007].

4.4 The Volume Rendering Equation

4.4.1 The Radiative Transfer Equation

Given the four scattering events described in the previous sections we can begin to form a

complete model of how light behaves in a participating medium. By combining Equations 4.5,

4.11, and 4.12, the total change in radiance along the ray at a position x can be expressed as

(~ω ·∇)L(x→~ω) =−σa(x)L(x→~ω)︸ ︷︷ ︸
absorption

−σs(x)L(x→~ω)︸ ︷︷ ︸
out-scattering︸ ︷︷ ︸

extinction

+σa(x)Le (x→~ω)︸ ︷︷ ︸
emission

+σs(x)Li (x→~ω)︸ ︷︷ ︸
in-scattering

. (4.25)

This equation is known as the integro-differential form of the radiative transfer, or radia-

tive transport equation, or simply the RTE [Chandrasekhar, 1960], and it incorporates the four

possible types of interaction events that can occur within the medium (recall the illustration in

Figure 4.2).

By integrating both sides of Equation 4.25 and using the rendering equation (Equa-
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Figure 4.7: The radiance reaching the eye L(x←~ω) is the sum of the reduced radiance from the nearest
visible surface L(xs →~ω) and the accumulated in-scattered radiance Li (xt →−~ω) along a ray.

tion 2.17) as a boundary condition, it is possible to obtain a purely integral equation for the

radiance in the presence of participating media. The integral form of the RTE expresses the

radiance as a sum of three terms:

L(x←~ω) =Tr (x↔xs)L(xs →−~ω)︸ ︷︷ ︸
reduced surface radiance

+
∫ s

0
Tr (x↔xt )σa(x)Le (x→−~ω) dt︸ ︷︷ ︸

accumulated emitted radiance

+

∫ s

0
Tr (x↔xt )σs(xt )Li (xt →−~ω) dt︸ ︷︷ ︸

accumulated in-scattered radiance

, (4.26)

where L(x ←~ω) describes the radiance that reaches x from direction ~ω, s is the depth of the

medium from x in direction ~ω, xt = x+ t~ω with t ∈ (0, s), and xs = x+ s~ω is a point on a surface

past the medium (see Figure 4.7). The transmittance, Tr , models the reduction of radiance as it

travels through the medium, as described in Section 4.2.1.

The first term in Equation 4.26 represents surface radiance entering at the backside of the

medium, the second term incorporates the emission of radiance along the medium, and the last

term is radiance scattered within the medium. The in-scattered radiance is given by Equation 4.13.

In the remainder of this dissertation we will ignore the emission term since it is trivial to compute.

With this simplification, the relationship between incident and excitant radiance can be expressed
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as

L(x←~ω) =Tr (x↔xs)L(xs →−~ω)︸ ︷︷ ︸
reduced surface radiance

+
∫ s

0
Tr (x↔xt )σs(xt )Li (xt →−~ω) dt︸ ︷︷ ︸

accumulated in-scattered radiance

. (4.27)

This equation replaces the relation in Equation 2.10 when media scattering and absorption are

considered.

In computer graphics, this integral form of the radiative transfer equation is often referred

to as the volume rendering equation because it is the equation that must be solved in order to

render images with participating media. Unfortunately, the volume rendering equation is even

more complex than the regular rendering equation. It describes radiance within participating

media as a five-dimensional function over 3D positions in the volume and 2D directions over

the sphere. The radiance at any point in the medium depends on the radiance of all other

points in the medium as well as the radiance of all points on surfaces. In contrast, the regular

rendering equation is only a four-dimensional subset of this expression (2D surface locations and

2D directions). This makes the volume rendering equation extremely costly to solve.

4.5 Methods for Solving the Volume Rendering Equation

Simulating light transport in participating media has been studied extensively in the

literature. Many of the techniques used today were intially developed to study radiative heat

transfer and neutron transport in the 1950s and 60s [Kourgnaoff, 1952; Chandrasekhar, 1960].

Mishra1 and Prasad [1998] provide an excellent survey of this early work. It was not until Blinn’s

pioneering paper in 1982 [Blinn, 1982] that volume effects were considered in computer graphics.

Since that time a number of researchers have investigated ways to efficiently simulate volume

scattering in the context of computer graphics. We briefly summarize the most significant work

here and refer to the excellent survey by Cerezo et al. [2005] for a more comprehensive overview

of solving the RTE for computer graphics.
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4.5.1 Deterministic Methods

Some of the earliest research for participating media rendering extended discrete radios-

ity methods to handle isotropic volume scattering. Rushmeier and Torrance [1987] used the

zonal method [Hottel and Sarofim, 1967] which discretizes the volume rendering equation and

solves it over a collection of finite elements or zones. This early approach simulated volume-

volume, surface-volume, as well as surface-surface interactions but were impractical for all but

the simplest scenes due to the high storage costs and O(n7) computation complexity. As with

surface-base radiosity techniques, some of these issues were later addressed by using clustering

and hierarchical computation [Bhate, 1993; Sillion, 1995].

Deterministic methods were later augmented to handle anisotropic scattering. PN meth-

ods use a series approximation to replace the integro-differential RTE with a set of partial differ-

ential equations, which are expanded using N spherical harmonics terms. This approach was

introduce to graphics in 1984 by Kajiya and Herzen but had been used in radiative heat transfer

and neutron transport fields much earlier [Chandrasekhar, 1960; Kourgnaoff, 1952] and was origi-

nally introduced as early as 1917 by Jeans. Bhate and Tokuta [1992] extended the zonal method

with PN approximations by using spherical harmonics instead of constant basis functions to simu-

late anisotropic scattering. The approach was even more computationally expensive and required

the computation of O(n7 +N 2n6) form factors. An alternate approach is the discrete ordinates

method, which was first proposed by Chandrasekhar [1960] for simulating stellar and atmospheric

radiation. This method subdivides the radiosity leaving each zone into a collection of M discrete

directional bins and reduces the complexity to O(n7 +Mn6). Unfortunately, discrete ordinates

suffer from the “ray effect” [Lathrop, 1968] since light is propagated in discrete directions instead

of over the whole solid angle of the bins. Max [1994] reduced the ray effect by approximating

the spread through the whole bin and was able to improve efficiency to O(Mn3 logn +M 2n3) per

iteration.

One major advantage of radiosity techniques is that the solution is computed in world-

space. This allows the algorithms to exploit spatial coherence by computing the solution sparsely.

Unfortunately, volumetric finite element methods share the drawbacks of surface-based radiosity
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techniques. Scenes with complex geometry and volume densities cannot easily be handled since

the computation of light transport it strictly coupled to the geometric representation of the scene.

4.5.2 Stochastic Methods

Some of the most popular techniques to date are based on stochastic sampling and

Monte Carlo integration. Rushmeier [1988] extended the zonal method by using a Monte Carlo

pass to account for one bounce of anisotropic scattering. Extensions of path tracing to simulate

volumetric scattering in participating media have been suggested by Hanrahan and Krueger

[1993] and Pattanaik and Mudur [1993]. Extensions to bidirectional path tracing and Metropolis

light transport have also been proposed [Lafortune and Willems, 1996; Pauly et al., 2000]. Monte

Carlo approaches are attractive because of their sound underlying theoretical framework and

their generality. They are unbiased and guaranteed to converge to the exact solution. In addition,

it is straightforward to include heterogeneous media, anisotropic phase functions, and scattering

from surfaces. The downside of these approaches is that they suffer from noise that can only be

overcome with a huge computational effort.

One strategy to solve this issue is to make simplifying assumptions about the participat-

ing media. For example, homogeneous media with a high scattering albedo can be modeled

accurately using a diffusion approximation [Stam, 1995; Jensen et al., 2001b], which leads to very

efficient rendering algorithms. Premoze et al. [2004], under the assumption that the medium

is tenuous and strongly forward scattering, use a path integral formulation to derive efficient

rendering algorithms. Sun et al. [2005] render single scattering in real time, but without shadowing

effects.

In contrast, photon mapping [Jensen and Christensen, 1998] improves the efficiency

of path-tracing without making additional assumptions about the properties of the medium

being rendered. Similar to Monte Carlo methods, photon mapping handles isotropic, anisotropic,

homogeneous, and heterogeneous media of arbitrary albedo. A disadvantage of photon mapping

is that it introduces bias to the solution of the radiative transfer equation. In practice, however,

this bias is preferable to the noisy solutions of pure Monte Carlo methods. We cover the photon



71

mapping method in more detail in Chapter 7.

This dissertation focuses on biased Monte Carlo solutions to the radiative transport

equation. These techniques exploit the spatial coherence benefits associated with finite element

methods while still retaining the generality of Monte Carlo based approaches.



5
Radiance Caching in Participating Media

“A good action is never lost; it is a treasure laid up and
guarded for the doer’s need.”

—Edwin Markham, 1852–1940

IN this chapter we develop a novel method for efficiently rendering participating media using

Monte Carlo ray tracing. Our approach is inspired by the irradiance caching techniques

described in Chapter 3 but applied to light transport within participating media as described

in the previous chapter. Our method handles all types of light scattering, including anisotropic

scattering, and it works in both homogeneous and heterogeneous media.

5.1 Contributions

A key contribution of this chapter is a technique for computing gradients of radiance in

participating media. Computing illumination gradients is of interest for many applications and

has been investigated by many researchers [Ward and Heckbert, 1992; Arvo, 1994; Holzschuch

and Sillion, 1995, 1998; Igehy, 1999; Annen et al., 2004; Křivánek et al., 2005b; Durand et al., 2005;

Ramamoorthi et al., 2007]. However, no previous work has performed a first-order analysis of

light within participating media. We derive analytic expressions for the gradients of the radiative

transport equation. These gradients take the full path of the scattered light into account, including

the changing properties of the medium in the case of heterogeneous media. Moreover, the

gradients can be estimated using Monte Carlo ray tracing simultaneously with the in-scattered

radiance with negligible overhead.

72
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Our second contribution is a new radiance caching scheme for participating media. We

draw inspiration for our approach from irradiance caching methods for surfaces; however, we

compute, cache, and reuse estimates of the radiance within participating media. This caching

scheme uses the information in the radiance gradients to sparsely sample as well as interpolate

radiance within the medium, utilizing a novel, perceptually-based error metric. We compute

gradients for single scattering from lights and surfaces and for multiple scattering, and we use

a spherical harmonics representation in anisotropic media. We further exploit the information

in the gradients to improve the accuracy of interpolation. Volumetric radiance caching provides

several orders of magnitude speedup compared to path tracing and produces higher quality

results than volumetric photon mapping. Furthermore, it is view-driven and well suited for large

scenes where methods such as photon mapping become costly.

5.2 Overview

To compute the in-scattered radiance within participating media we use Monte Carlo ray

tracing based on a combination of ray marching and random-walk sampling. To simplify notation

we ignore the radiance emitted by the volume as it is trivial to compute. We use ray marching to

numerically integrate the radiance value seen directly by the observer. Ray marching solves the

volume rendering equation by discretizing the 1D integral along a ray using small steps through

the medium. Equation 4.27 is approximated as,

L(x←~ω) ≈Tr (x↔xs)L(xs →−~ω)+
(

S−1∑
t=0

Tr (x↔xt )σs(xt )Li (xt →−~ω)∆t

)
, (5.1)

where ∆t is the length of each segment along the ray and x0, . . . ,xs are the sample points for each

segment (x0 is the point where the ray enters the medium and xs is a point on a surface past the

medium). This approach is illustrated in Figure 5.1.

The ray marching processes samples the in-scattered radiance at discrete points along

the ray. The transmittance at each step can be computed incrementally by exploiting the multi-
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Figure 5.1: Ray marching computes lighting within participating media by dividing the ray into small
discrete segments. The lighting and properties of the medium are computed at the sample locations xi and
assumed constant within each segment. To avoid aliasing, the collection of all samples is offset along the
ray by a random amount ξ.

plicative property from Equation 4.10:

Tr (x↔xt ) = Tr (x↔xt−1)Tr (xt−1↔xt ). (5.2)

To avoid structured aliasing artifacts, the sample points are randomly chosen within the extent

of the segments. This can be accomplished using an independent random location within each

segment or by randomly offsetting the collection of samples as a whole [Pauly et al., 2000].

The most expensive part to compute in Equation 5.1 is the in-scattered radiance Li ,

because it involves integrating over all paths that carry radiance from any other point in the scene

to the current sample point xt along the eye ray. Our approach therefore focuses on the efficient

computation of this term.

It is possible to recursively solve for in-scattered radiance using volumetric path tracing.

This approach is, however, extremely costly since it typically requires tracing thousands of paths to

obtain noise-free results. Fortunately, the distribution of in-scattered radiance is often smooth in

large parts of the medium. We exploit this property by computing in-scattered radiance accurately

only at a sparse set of locations and using interpolation whenever possible.

To make the computation more practical, we divide the in-scattered radiance into two

components,

Li (x→~ω) = Ls(x→~ω)+Lm(x→~ω), (5.3)
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Li = Ls + Lm contributes to Ls contributes to Lm
Figure 5.2: Radiance in participating media is computed by our method using a combination of ray
marching and random-walk sampling. We split the computation of in-scattered radiance into single
scattering, Ls , and multiple scattering, Lm , terms.

where Ls and Lm represent single and multiple scattering, respectively (see Figure 5.2).

The single scattering term represents radiance that undergoes a single scattering event

along its path from a surface to the eye. Surfaces include light sources and any other surface that

reflects light due to direct or indirect illumination. Single scattering may be formulated as an

integration over the sphere, or over all surfaces.

The multiple scattering term incorporates radiance that scatters at least once in the

medium before it reaches x. This implies that the path from the surface to the eye includes

multiple scattering events. Incident radiance due to multiple scattering is more difficult to

evaluate than single scattering, as it leads to a recursive integral.

The distribution of in-scattered radiance is often smooth in large parts of the participating

medium. We take advantage of this property by caching radiance at a sparse set of locations, and

using extrapolation to evaluate the radiance at nearby points in the medium. We show that results

without visible errors are achievable with relatively few cached values, resulting in large speedups

compared to Monte Carlo ray tracing without caching. Furthermore, the use of caching does not

limit the type of media that can be rendered, and our method can easily be incorporated into

existing Monte Carlo ray tracers.

We improve the efficiency of the cache by not only storing the value of scattered radiance

at each cache point but also its gradient with respect to translation of the point. The gradient is
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Figure 5.3: Computing the single scattering radiance (left) and gradient (right). For single scattering
we distribute samples x′ on the area of the light source. The gradient ∇Ls is computed with respect to
translating the evaluation point x while keeping x′ fixed.

used to estimate the local smoothness and to improve the accuracy of extrapolation of cached

values. In the following sections, we explain two separate methods: one to compute the single

scattering contribution and its gradient (Section 5.3), and another to compute the multiple

scattering contribution and its gradient (Section 5.4). Finally, we detail how to use these quantities

in a practical radiance caching algorithm for participating media in Section 5.5.

5.3 Single Scattering

In this section, we describe how to compute the single scattering radiance Ls at a position

x and its gradient ∇Ls with respect to x. The derivation of the gradient is more convenient if we

write Ls as an integral over the surfaces of the scene, instead of the standard integral over the

sphere:

Ls(x→~ω) =
∫

A
p(x,~ω′↔~ω)Lr (x←x′)V (x↔x′) H(x←x′)dx′, (5.4)

where A denotes surface area and ~ω′ points from x towards x′. We illustrate our notation in

Figure 5.3. The term Lr (x←x′) represents the reduced radiance. It is given by the product of the

radiance leaving a surface at x′ towards x and the transmittance through the medium:

Lr (x←x′) = Tr (x↔x′)L(x′→x). (5.5)
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We also include a visibility function V (x↔x′), whose value is unity if x′ is visible from x; otherwise

it is zero. Finally, H is a geometry term,

H(x←x′) =
~n′· x−x′

||x−x′||
||x−x′||2 , (5.6)

due to the change of the integration variable, where ~n′ is the surface normal at x′. Note that

negative values of the dot product must be clamped to zero, but we omit this in our notation.

The single scattering gradient follows directly from Equation 5.4,

∇Ls(x→~ω) =
∫

A
∇(

p Lr V H
)

dx′ (5.7)

=
∫

A
(∇p)Lr V H +p (∇Lr )V H +p Lr (∇V ) H +p Lr V (∇H)dx′, (5.8)

where we omit the function arguments for brevity. The symbol ∇ always denotes a gradient with

respect to x. Intuitively, the gradient corresponds to the direction of maximum change of the

scattered radiance at x under an infinitesimal motion of x while keeping x′ fixed. This is illustrated

in Figure 5.3.

In the remainder of this section we examine the single scattering computation in more

detail. In Section 5.3.1 we discuss how to estimate Equation 5.4 and Equation 5.7 using Monte

Carlo integration and describe how to incorporate point light sources in Section 5.3.2. Evaluating

the radiance gradient relies on computing the gradient of each individual term in Equation 5.7. We

derive the gradient of the geometry term ∇H in Section 5.3.3 and present gradients for common

phase functions in Section 5.3.4. Finally, we discuss how to compute the gradient of the reduced

radiance term in detail in Section 5.3.5.

5.3.1 Monte Carlo Integration

We compute single scattering radiance values (Equation 5.4) using Monte Carlo ray

tracing, which leads to the following formula:

Ls(x→~ω) ≈ 1

N

N∑
j=1

p Lr V H

pdf (x′j )
. (5.9)
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Similarly, we use Monte Carlo estimation to evaluate the gradient of single scattering radiance

from Equation 5.7:

∇Ls(x→~ω) ≈ 1

N

N∑
j=1

(∇p)Lr V H +p (∇Lr )V H +p Lr V (∇H)

pdf (x′j )
. (5.10)

The radiance and the gradient share many of the same terms and are evaluated simultaneously.

Because the visibility function V is discontinuous, its “gradient” is not taken into account.

For the purposes of gradient computation, we currently assume constant visibility and discuss

the implications of this decision in Section 5.7.

Monte Carlo approximation relies on a set of samples x′j that are distributed on the

surfaces of the scene according to a probability density function pdf (x′). Surfaces include both

area light sources that emit light and any other surface in the scene that may reflect light.

To gather radiance emitted by area light sources, we place samples on their area. Our

method allows the use of arbitrary light source sampling techniques to optimize the sample distri-

bution. To account for radiance emitted by all other surfaces, we distribute samples uniformly

over the sphere of directions. Using the standard solid angle to area conversion, uniform sampling

on the sphere corresponds to a distribution

pdf (x′) =
~n′· x0−x′

||x0−x′||
||x0 −x′||2 , (5.11)

where~n′ is the surface normal at x′, and x0 is the location at which to compute the spherical

distribution. Conceptually, x0 is independent of the location x where we evaluate in-scattering.

Although in practice x0 and x usually coincide, pdf (x′) does not depend on x. Hence, it does not

contribute to the gradient.

5.3.2 Point Lights

Even though Equation 5.4 is formulated with respect to surface area, it is straightforward

to incorporate point lights. We account for the contribution of point lights to the Monte Carlo
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estimate of Ls by adding the following summand to Equation 5.9:

Ls(x→~ω) += p(x,~ω′↔~ω)Φp Tr (x↔ x′)V (x↔ x′) Hp (x′→ x), (5.12)

where Φp is the power of the light source and Hp describes the light’s fall-off characteristics. For a

uniform point light, we have

H u
p (x←x′) = 1

||x−x′||2 . (5.13)

For a Phong light, the fall-off term is

H p
p (x←x′) =

(
~n′· x−x′

||x−x′||
)s

||x−x′||2 , (5.14)

where s is the Phong exponent.

The contribution of a point light to the single scattering gradient is:

∇Ls(x→~ω) +=Φp
(
(∇p)Tr Hp +p (∇Tr ) Hp +p Tr (∇Hp )

)
. (5.15)

5.3.3 Gradient of Geometry Terms

Computing the radiance gradient in Equations 5.10 and 5.15 relies on the gradients of

several geometry terms. By differentiating the definitions in Equations 5.6, 5.13, and 5.14 we arrive

at the following gradient terms:

∇H(x←x′) =∇
(
~n · x−x′

||x−x′||
)

1

||x−x′||2 +~n · x−x′

||x−x′||∇
(

1

||x−x′||2
)

, (5.16)

∇H u
p (x←x′) =∇

(
1

||x−x′||2
)

, (5.17)

∇H p
p (x←x′) = s

(
~n · x−x′

||x−x′||
)s−1

∇
(
~n · x−x′

||x−x′||
)

1

||x−x′||2 +
(
~n · x−x′

||x−x′||
)s

∇
(

1

||x−x′||2
)

, (5.18)



80

where

∇
(
~n · x−x′

||x−x′||
)
= ~n

||x−x′|| −
(~n · (x−x′))(x−x′)

||x−x′||3 , (5.19)

∇
(

1

||x−x′||2
)
= −2(x−x′)

||x−x′||4 . (5.20)

5.3.4 Gradient of Phase Function

In isotropic media, the phase function is a constant, and its gradient vanishes. For

anisotropic media, we focus on the Henyey-Greenstein phase function pHG and the Schlick phase

function pS defined in Chapter 4.

These phase functions are 1D, only depending on the cosine of the angle between the

incident and outgoing directions. We express cos(θ) in terms of ~ω, x, and x′ as:

cos(θ) =~ω · x−x′

||x−x′|| . (5.21)

The gradients of the phase functions with respect to x are then

∇pHG(x,θ) = 3g (1− g 2)

4π(1+ g 2 −2g cosθ)2.5 ∇cosθ (5.22)

∇pS(x,θ) = k(1−k2)

2π(1+k cosθ)3 ∇cosθ, (5.23)

where

∇cos(θ) = cosθ
x−x′

‖x−x′‖2 − ~ω

‖x−x′‖ . (5.24)
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5.3.5 Reduced Radiance and Transmittance Gradient

For the sake of computing the gradient of the reduced radiance, we assume diffuse

surfaces and light sources. In this case, the gradient of the surface radiance L(x′→x) with respect

to x vanishes. However, it is straightforward to account for general radiance distributions by

adding a term for ∇L. With this simplification, the gradient of the reduced radiance is

∇Lr (x′→x) = L(x′→x)∇Tr (x′↔x),

and the gradient of the transmittance is

∇Tr (x′↔x) =−∇τ(x′↔x)Tr (x′↔x). (5.25)

Homogeneous Media. If the medium is homogeneous with constant extinction coefficient σt ,

then the optical thickness is

τ(x′↔x) =σt ||x−x′||, (5.26)

and its gradient is

∇τ(x′↔x) =σt∇(||x−x′||). (5.27)

Heterogeneous Media. In a heterogeneous medium, to compute optical thickness the extinction

needs to be integrated as

τ(x′↔x) =
∫ 1

0
σt (y(t ))||x′−x||d t , (5.28)

where we have parametrized the line segment between x′ and x as y(t ) = x+ t (x′−x).

The corresponding gradient is

∇τ(x′↔x) =
∫ 1

0
∇(
σt (y(t ))||x′−x||)d t . (5.29)
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Figure 5.4: In heterogeneous media, the transmittance (left) between two points x and x′ is evaluated
using ray marching with a step size ∆x and a random offset ξ. Within each step the extinction coefficient of
the medium is assumed to be constant. Our gradient computation not only takes into account the local
properties of the medium at x, but also the changing properties along the whole segment between x and x′.
For single scattering, we compute the gradient with respect to translation of x as x′ is kept fixed.

The optical thickness and its gradient can be expressed using Monte Carlo integration as

τ(x′↔x) ≈ 1

N

∑
j

σt (y(t j ))||x′−x||
pd f (t j )

, (5.30)

∇τ(x′↔x) ≈ 1

N

∑
j

∇(
σt (y(t j ))||x′−x||)

pd f (t j )
. (5.31)

We evaluate the two Monte Carlo integrals simultaneously using ray marching with a fixed step

size and a single random offset ξ (see Figure 5.4).

At a high level, the evaluation of transmittance aggregatesσt along a line segment, while its

gradient aggregates the contribution of ∇σt along the line segment. An important characteristic

of this gradient formulation is that it not only takes into account the local properties at x, it

incorporates how the properties change along the whole segment between x and x′. This implies

that our gradient computation contains meaningful information about how the transmittance

changes even when moving x out of the line connecting x and x′.

5.3.6 Isotropic and Anisotropic Scattering

Isotropic Media. In isotropic media, the phase function is a constant p = 1/4π. Therefore, the

scattered radiance and its gradient are independent of the outgoing direction ~ω, and all terms

that include the gradient of the phase function ∇p in Equations 5.10 and 5.15 vanish.

Anisotropic Media. For anisotropic media, the scattered radiance is a function of the outgoing

direction~ω, depending on the shape of the phase function. As phase functions are smooth, we can

compute a compact representation of the directional radiance distribution. We use a spherical
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harmonic expansion, although other spherical functions could be used. For each sample x′j with a

fixed incident direction ~ω′
j , we compute the spherical harmonic expansion of the phase function

as the dot product

p(x,~ω′
j ↔~ω) ≈

M∑
k=1

yk (~ω)pj ,k , (5.32)

where yk are the spherical harmonic functions, and pj ,k are the corresponding coefficients. We

use a single index for the spherical harmonics to simplify notation.

Applying this formulation to Equation 5.9 gives the following expression for scattered

radiance in anisotropic media:

Ls(x→~ω) ≈ 1

N

M∑
k=1

yk (~ω)
N∑

j=1

pj ,k Lr V H

pdf (x′j )
. (5.33)

In order to efficiently evaluate the lighting for arbitrary outgoing directions, we project the entire

in-scattered radiance in the above expression onto spherical harmonics. In anisotropic media,

we represent the single scattering radiance Ls using a vector of spherical harmonic coefficients,

Λs = {λs,k }, computed as:

λs,k = 1

N

N∑
j=1

pj ,k Lr V H

pdf (x′j )
, (5.34)

which allows us to evaluate Equation 5.33 for any direction ~ω using a simple dot product

Ls(x→~ω) ≈
M∑

k=1
yk (~ω)λs,k . (5.35)

We apply the same projection mechanism to the gradient computation. We denote the

spherical harmonic expansion of the gradient of the phase function as a function over outgoing

angle ~ω, by

∇p(x,~ω′
j ↔~ω) ≈

M∑
k=1

p ′
j ,k yk (~ω). (5.36)
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This leads to the following expression for the gradient:

∇Ls(x→~ω) ≈ 1

N

M∑
k=1

yk (~ω)
N∑

j=1

p ′
j ,k Lr V H +pj ,k (∇Lr )V H +pj ,k Lr V (∇H)

pdf (x′j )
. (5.37)

As with radiance, the entire gradient computation is projected onto spherical harmonics, resulting

in a vector of gradient coefficients,Λ′
s = {λ′

s,k }:

λ′
s,k = 1

N

N∑
j=1

p ′
j ,k Lr V H +pj ,k (∇Lr )V H +pj ,k Lr V (∇H)

pdf (x′j )
. (5.38)

The radiance gradient can be evaluated in any direction ~ω by taking the dot product of the

coefficient vectorΛ′
s with the basis functions, as in Equation 5.35.

5.4 Multiple Scattering

In this section we describe how we calculate the multiple scattering radiance Lm and

its gradient ∇Lm . We evaluate multiple scattering using standard Monte Carlo path tracing and

compute a Monte Carlo estimate of the gradient of the path tracing integral.

The radiance due to multiple scattering is an integral of radiance arriving from all other

points within the participating medium. We express this as

Lm(x→~ω) =
∫
Ω4π

∫ ∞

0
p(x,~ω′↔~ω)Tr (x′↔x)σs(x′)Li (x′→~ω′)V (x′↔x)dr ′d~ω′, (5.39)

where we parametrize the integration domain using polar coordinates (r ′,~ω′) centered at x so

x′ = x+ r ′~ω′. The Li (x′→~ω′) term is the in-scattered radiance at x′ towards x and needs to be

evaluated recursively. See Figure 5.5 for an illustration.

The gradient of multiple scattering is computed by differentiating Equation 5.39 with

respect to x:

∇Lm(x→~ω) =
∫
Ω4π

∫ ∞

0
p(x,~ω′↔~ω)∇(

Tr (x′↔x)σs(x′)Li (x′→~ω′)V (x′↔x)
)
dr ′d~ω′.

Note that with the chosen parametrization the incoming and outgoing directions do not change
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}
Figure 5.5: Computing the multiple scattering radiance (left) and gradient (right). For multiple scattering
we distribute samples x′ by generating random-walk paths starting at x. The gradient ∇Lm is computed by
considering the translation of x and the paths as a whole.

under translation of x, so there is no gradient term for the phase function. In homogeneous

media, the gradient of the transmittance vanishes. For the general case of heterogeneous media,

the gradients of transmittance and optical thickness are computed as in Equation 5.25 and 5.29.

However, in the multiple scattering case, ‖x−x′‖ does not change under a translation, and so the

∇(‖x−x′‖) term vanishes. This is illustrated in Figure 5.6.

5.4.1 Monte Carlo Integration

Just as with single scattering, we evaluate the radiance due to multiple scattering and its

gradient using Monte Carlo integration. The radiance is estimated by

Lm(x→~ω) ≈ 1

N

N∑
j=1

p Tr σs Li V

pdf (r ′
j ) pdf (~ω′

j )
. (5.40)

In practice, at the first scattering event we evaluate this expression using N samples. In order

to prevent exponential growth, all subsequent scattering events use only one random sample.

Hence, Equation 5.40 forms the start of N random-walk paths through the medium, with the

polar coordinates (r ′
j ,~ω′

j ) as random variables. We sample the radius according to

pdf (r ′
j ) =σt (x)e−σt (x)r ′

j . (5.41)

We distinguish between isotropic and anisotropic media when sampling directions, discussed in

more detail below.
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Figure 5.6: For multiple scattering we compute the transmittance (left) using ray marching just like in
the single scattering case. The gradient, however, is computed as both endpoints are translated together
(right).

The gradient ∇Lm(x→~ω) is also found using Monte Carlo sampling:

∇Lm(x→~ω) ≈ 1

N

N∑
j=1

p ((∇Tr )σsLi V +Tr (∇σs)Li V +Trσs(∇Li )V )

pdf (r ′
j ) pdf (~ω′

j )
. (5.42)

Intuitively, the gradient captures the change in radiance as each random-walk path is translated,

as a whole, by an infinitesimal amount. This is illustrated in Figure 5.5. As with single scattering,

we currently ignore the change in the visibility term.

5.4.2 Isotropic and Anisotropic Scattering

Isotropic Media. For isotropic media, we distribute the directions ~ω′
j uniformly, i.e., pdf (~ω′

j ) =
1/4π.

Anisotropic Media. For anisotropic media, the multiple scattered radiance depends on the

outgoing direction ~ω. As with the single scattering contribution, we use spherical harmonics to

represent the phase function p(x,~ω′↔~ω), which leads to expressions analogous to Equations 5.33

and 5.37. However, there is no term for the gradient of the phase function in multiple scattering,

as the angle between path vertices does not change under a translation of the whole path. We

project the multiple scattering radiance function and its gradient as vectors of spherical harmonic

coefficientsΛm = {λm,k } andΛ′
m = {λ′

m,k }.

We apply importance sampling according to the phase function at all but the first scat-

tering event, since the outgoing direction is given by the direction to the previous path vertex.

However, we always sample the direction at the first scattering event uniformly. The reason is that

the outgoing direction ~ω is not known a priori. It will be determined only when the cache point is
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evaluated for a certain view direction.

5.5 Algorithm

Using the groundwork laid out in the previous sections, we now describe a radiance

caching method for participating media. Our algorithm efficiently computes lighting within

participating media by sparsely sampling Ls and Lm and caching them for extrapolation. In

addition to computing single and multiple scattering separately as described in Section 5.2, we

separate our cache based on the expected frequency content of the radiance values. Specifically,

we maintain distinct cache points for single scattering from lights, single scattering from surfaces,

and multiple scattering. We call these single scattering, surface scattering, and multiple scattering

cache points. This allows our system to sample low-frequency components more sparsely.

The core algorithm for radiance caching in participating media is as follows. For each

point in the volume where we need to evaluate in-scattered radiance, we first query the cache for

a set of usable cache points. If we find any points, then we use the cached values to extrapolate

the radiance to this point, as described in Section 5.5.3. If there are no usable points, then we

compute the radiance and its gradient, as described in Sections 5.3 and 5.4, and store these values

in the cache. The procedure is performed for all three caches. The total in-scattered radiance is

the sum of the three contributions.

5.5.1 Cache Entry Storage

For efficient access to cache points, we use an octree. The data structure and lookup

procedure is similar to previous work on surface radiance caching techniques [Ward et al., 1988].

All cache entries store the in-scattered radiance and its gradients at a location in space,

as well as a valid radius to later determine if a cache entry is valid for extrapolation at a given

query location. Note that the in-scattered radiance is the amount of light that leaves a point in a

particular direction; thus, we must store the radiance over the full sphere of directions.

Isotropic Media. Since the in-scattered radiance does not depend on direction, each cache

entry stores it using three scalar values, one for each color channel. In addition, we compute and
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store the gradient for each channel separately for greater accuracy. The total storage requirement

for each isotropic entry is 16 floating point numbers. In total, the size of an isotropic cache entry

is 48 bytes, though this could easily be reduced using an RGBE [Ward, 1991] or 16-bit floating

point representation [Kainz et al., 2006].

Anisotropic Media. In anisotropic media, each Monte Carlo sample of the radiance has a dif-

ferent directional contribution that depends on the shape of the phase function. Because phase

functions are generally smooth, we capture this directional dependence using spherical harmon-

ics by caching the spherical harmonic coefficient vectorsΛs andΛm , as well as their corresponding

gradient coefficient vectorsΛ′
s andΛ′

m .

Our system supports storing spherical harmonic expansions to an arbitrary number

of coefficients. However, for scenes with area lights and moderately anisotropic media (e.g., a

Henyey-Greenstein phase function with |g | < 0.6), we have found that using M = 9 coefficients in

Equation 5.32 is sufficient to accurately represent the in-scattered radiance. Using nine coeffi-

cients, the full RGB representation of the in-scattered radiance requires 27 coefficients. Including

the cache sample location and valid radius, this gives 28 floating point values, or 112 bytes per

entry, assuming 32-bit values.

5.5.2 Valid Radius and Error Tolerance

Each cache point has a valid radius within which it is a candidate for extrapolation. To

compute this radius we have developed a perceptually-based error metric, which adapts to the

local smoothness of the radiance field.

To estimate a valid radius for cache points we define the notion of an “optimal radius.”

The optimal radius for a cache point is the largest radius such that the total relative L2 error over

the extrapolated region is below some error threshold ε. More formally, if L̂x0 (x) is the radiance

extrapolated from location x0 to x, then the optimal radius is given by

Ropt (x) = max
r


∫

x∈Ωr

∣∣L(x)− L̂x0 (x)
∣∣dx∫

x∈Ωr

L(x)dx
≤ ε

 , (5.43)
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Figure 5.7: Experimental validation of our error metric as compared to a numerically computed optimal
radius for a 1D scene with two point lights of differing strengths (left) and 20 equal strength point lights
(right). Though the log-space gradient matches the optimal radius in most situations, it produces infinite
radii where the gradient vanishes. These singularities become even more prominent with many light
sources. In both cases, our perceptually-based error metric robustly approximates the optimal radius even
in the presence of such saddle points in the radiance field.

where Ωr is the spherical domain of radius r around x0. We use the relative error because the

human visual system is more sensitive to contrast than absolute differences in intensity [Glassner,

1995]. Solving for Ropt (x) during rendering would be impractical since it requires knowledge of

the true radiance within the valid radius of any cache point. Our goal is therefore to devise an

error metric which approximates the optimal radius as closely as possible using only information

already available from the Monte Carlo samples at x.

The ratio of the radiance gradient to the radiance is a local measure of the contrast. It is

also equivalent to the log-space gradient of the radiance:

∇ ln(L) = ∇L

L
. (5.44)

Making the valid radius inversely proportional to the magnitude of the log-space gradient at x

makes sense at an intuitive level: areas where the radiance field has high contrast will be sampled

more densely than smoothly varying regions. Furthermore, using the log-space gradient instead

of the regular gradient means that the valid radius computation is independent of the absolute

intensity of the lighting in the scene.

In our 1D test cases this approach matches the behavior of the optimal radius well at many

locations (see Figure 5.7). Unfortunately, the log-space gradient is a completely local quantity and

can be a bad predictor of the contrast in the surrounding area. Specifically, the magnitude of the
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gradient can drop to zero, causing an infinite valid radius. A zero gradient, or saddle-point, can

naturally occur in many situations, e.g., between two lights.

Using the Monte Carlo samples, the reciprocal magnitude of the log-space gradient can

be expressed as:

L(x)

‖∇L(x)‖ =
∑

j L j (x)∥∥∑
j ∇L j (x)

∥∥ , (5.45)

where j represents the Monte Carlo samples over light sources (for single scattering), surfaces (for

surface scattering), and random-walk paths (for multiple scattering). However, instead of using

the log-space gradient directly, we use a modified metric designed to eliminate saddle-points.

The valid radius of cache points is computed as:

R(x) = ε
∑

j L j (x)∑
j

∥∥∇L j (x)
∥∥ , (5.46)

where ε is a user controlled global error tolerance parameter. By summing over gradient magni-

tudes instead of gradient directions in the denominator, we prevent the introduction of infinite

radii. In our 1D test cases this error metric matches the optimal radius remarkably well (see

Figure 5.7) and in practice produces very good cache point distributions.

For colored media, we compute the valid radius for the three color channels indepen-

dently and use the minimum. In anisotropic media, we use the zero-order spherical harmonic

coefficients to compute the radius.

In our implementation, the amount of error in the extrapolation is controlled by the

tolerance ε. A tolerance of 0 indicates that values should never be cached or reused. Setting ε= 1

indicates that the extrapolated radiance will be usable until it differs by about a factor of two from

the cached radiance value.

In areas that are occluded from all light sources, the radiance due to direct illumination

and its gradient are zero. This means that the valid radius of the direct cache is undefined. To

remedy this problem, we also compute an unshadowed gradient for the single scattering cache

by assuming that all light sources are visible. We then choose the smaller of the regular and the

unshadowed radii as the valid radius.
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Extrapolation in Homogeneous Medium
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PixelPixel
Figure 5.8: A comparison of extrapolation methods for a point-light scene in a homogeneous medium.
The top row shows renderings using three different extrapolation methods. The scanlines highlighted in
yellow are plotted in the graphs below. Our proposed exponential extrapolation scheme reconstructs the
sampled function more accurately than the other methods.

Finally, we set minimum and maximum radii for the cache points in both world and

screen space, and clamp gradients according to standard techniques when using radiance caching

methods [Křivánek et al., 2006].

5.5.3 The Extrapolated Radiance Estimate

Previous caching techniques for surfaces use constant or linear extrapolation to approxi-

mate the radiance at a given location from a set of cached points. Constant extrapolation reuses

the value at a cache entry for the new location, while linear extrapolation uses a constant slope to

extrapolate the radiance with distance. In participating media, however, light intensity falls off ex-

ponentially with distance. We exploit this property in extrapolating the in-scattered radiance from

cache points by exponentially extrapolating the cached values. We have found that exponential

extrapolation provides a smoother reconstruction of the radiance field than linear extrapolation.
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Extrapolation in Heterogeneous Medium
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Figure 5.9: A comparison of extrapolation methods for a point-light scene in a heterogeneous medium.
The top row shows renderings using three different extrapolation methods. The scanlines highlighted in
yellow are plotted in the graphs below. Our proposed exponential extrapolation scheme reconstructs the
sampled function more accurately than the other methods.

Exponential Extrapolation. Exponential extrapolation is equivalent to linear extrapolation in

log-space. The radiance at a point x is approximated from a set of cache points C whose valid

radii contain our query location by a weighted sum of extrapolated radiance values:

L(x) ≈ exp


∑

k∈C

(
ln(Lk )+ ∇Lk

Lk
· (x−xk )

)
w (dk )∑

k∈C
w (dk )

 (5.47)

where Lk , ∇Lk , xk , and rk are the radiance, gradient, position, and valid radius of cache point

k, respectively. The weighting function w is a smooth cubic, w(d) = 3d 2 − 2d 3. We define

dk = 1−||xk −x||/rk so that the weighting function has the most influence at the cache location,

and this influence falls off smoothly to zero at the valid radius.

Figures 5.8 and 5.9 compare constant, linear, and exponential extrapolation in a 2D slice

of a scene containing a point source in a participating medium. The images were rendered using
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Figure 5.10: A Cornell box filled with isotropic smoke. We perform an equal-time comparison of our
method to path tracing and perform a full lighting simulation including single scattering from lights, single
scattering from surfaces, and multiple scattering. Render times are reported underneath each image,
with the number of cache points in the single, surface, and multiple scattering caches in parentheses. A
visualization of the cache points used to render the far left image is shown in Figure 5.12.

the same cache point locations; the only difference is the method used to extrapolate the radiance.

Constant extrapolation is clearly a poor choice for extrapolation in participating media, as it

gives strong discontinuity artifacts from the jumps between points, while linear extrapolation

does a somewhat better job at approximating the change in radiance. Exponential extrapolation

most precisely matches a reference solution with almost no visible artifacts, as it more closely

approximates the real change in radiance over distance.

5.6 Results

We implemented the volumetric radiance caching algorithm in a Monte Carlo ray tracer,

and all our timings were made on an Intel Core 2 Duo 2.4 GHz machine using only one core. We

performed comparisons between path tracing, radiance caching, and photon mapping. Since

each rendering technique has its own set of parameters, we performed equal-time comparisons



94

Homogeneous Heterogeneous Homogeneous
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Figure 5.11: A Cornell box filled with anisotropic smoke. We perform an equal-time comparison of our
method to path tracing and perform a full lighting simulation including single scattering from lights, single
scattering from surfaces, and multiple scattering. We use a Henyey-Greenstein phase function with g = 0.4.
Render times are reported underneath each image, with the number of cache points in the single, surface,
and multiple scattering caches in parentheses.

while hand-picking the best parameters for each algorithm. All three methods make full use

of standard optimization techniques including Russian roulette, stratification, and importance

sampling, where applicable. All images were rendered at 1K horizontal resolution with up to 16

samples per pixel.

Figures 5.10 and 5.11 show a series of images of a Cornell box filled with smoke. We

compare our method to path tracing for a variety of participating media types. Render times

range from around 1.5 minutes for homogeneous media with isotropic scattering, to 7.5 minutes

in heterogeneous media with anisotropic scattering. In all four examples, path tracing exhibits

significant noise for the same render time. In the heterogeneous images, the scattering properties

are defined procedurally using several octaves of noise [Ebert et al., 2002]. For anisotropic scat-

tering, by projecting the full directional radiance field onto spherical harmonics, we are able to

correctly reuse cached values even for reflection rays on the mirror spheres. A visualization of the

radiance cache point locations from the homogeneous/isotropic image is shown in Figure 5.12.
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Figure 5.12: The bottom row shows a visualization of the single, surface, and multiple scattering cache
points using the radiance cache from the homogeneous image in Figure 5.10. The top row shows the
corresponding extrapolated radiance components (the radiance from surfaces past the medium is not
included). For display purposes, the multiple and surface scattering images have been raised by one and
three f-stops respectively.

Figure 5.13 shows a frame from an animation moving through light beams in the Sponza

atrium. In this scene, all lighting is provided using a single point light, so we do not cache single-

scattering but compute it directly. Computing multiple scattering is particularly challenging in

this scene and requires tracing thousands of paths to estimate the in-scattered radiance. Our

caching method is able to produce a noise-free result in 19 minutes. For walk-through style

animations where only the camera position changes, we are able to reuse the radiance cache for

subsequent frames, achieving an even greater speedup. Sponza is an extremely difficult scene for

photon mapping. We tried performing an equal-time comparison to photon mapping. However,

even by using projection maps, tracing photons for over 40 minutes produced less than 1K usable

photons.

Figure 5.14 shows a frame from an animation of evolving smoke, which took less than six

minutes to generate. In this scene, each frame is rendered using a separate cache. Our method is

able to produce flicker-free animations even when the cache is recomputed at each frame. With

the same render time the path tracing solution exhibits visible noise, which flickers significantly
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Path tracingRadiance caching Radiance caching

Figure 5.13: The Sponza atrium with beams of light and multiple scattering. With volumetric radiance
caching, this scene renders in 19 minutes using about 46K cache points and 79M cache queries. The
zoomed insets on the right provide an equal-time comparison to path tracing. The bottom image visualizes
the surface cache using a horizontal cross section near the floor of the hallway. The camera is located on
the right looking towards the left. Note the concentration of cache points near the brightly illuminated
regions of the floor. The radiance caching image was rendered with error tolerances set at 0.5 and 0.01 for
the surface and multiple scattering caches, respectively. For multiple scattering, our method traces 512
random-walk paths per cache point.

when animated. For this scene, we store about 9K cache points.

Figures 5.15 and 5.16 show a scene of two cars on a foggy road. This scene has a large

extent and is costly to render with methods such as photon mapping. Here, our caching method

fully exploits the smoothness in the radiance across the scene. In the same render time, we are

able to attain significant noise reduction compared to path tracing and a smoother reconstruction

than photon mapping using over eight million photons.

For all example scenes in this chapter, a large portion of render time is spent querying

for cache points within the octree (typically between one third and one half of total render time).

This is due to the large number of queries performed while ray marching through the medium

(in the millions) compared to the number of cache points created (in the thousands). However,

for the multiple scattering computation in our example scenes, we trace between 2K and 8K

random-walk paths. Due to this, it is important to note that computing a new cache point takes

about 100 to 1,000 times longer than querying within the octree.
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Path tracingRadiance caching Radiance caching

Figure 5.14: This still frame from an animation of heterogeneous smoke renders in 5.8 minutes using
9K cache points and 8.2M cache queries. Our method is able to produce flicker-free animation even
when recomputing a new cache for each frame. The highlighted region is shown zoomed-in on the right,
providing an equal-time comparison to path tracing. Error tolerances of 0.05, 1.0, and 1.0 were used for the
single, surface, and multiple scattering caches with 2K multiple scattering paths per cache point.

5.7 Summary and Discussion

Many promising avenues remain for combining the strengths of photon mapping and

radiance caching. Since photon mapping does not attempt to accelerate the computation of

single scattering, radiance caching could effectively accelerate this computation within a photon

mapping renderer. Another promising extension is to use our caching technique as a final gather

pass for photon mapping. Currently, in highly scattering scenes with many occluders, a large

number of multiple scattering rays are necessary using our method. The density estimation

in photon mapping provides a natural smoothing, which could reduce the number of multiple

scattering rays necessary and improve the cached result. Furthermore, photon mapping is able to

efficiently simulate multiple scattering in a variety of scenes because it is well suited for detecting

light paths difficult to sample from the eye. However, for smooth reconstruction a large number

of photons are required. Performing a final gather would also reduce the necessary number of

stored photons and improve the reconstruction quality as compared to regular photon mapping.

For isotropic media, final gather optimizations developed for surfaces [Christensen, 1999] could

be extended for volumetric final gather. Information from the photon map could also be used in

other ways – for instance, to provide an importance sampling function for computing the direct

and indirect in-scattered illumination.

One of the main challenges for our technique stems from ignoring the visibility gradient.
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Figure 5.15: Two cars in a dense fog on a road illuminated by 60 lights. Our radiance caching method
renders the cars scene in 20.35 minutes using only 175K cache points and 27M cache queries. The multiple
scattering computation traces 4K random-walk paths per cache point. The highlighted region is shown
zoomed-in on the right, providing an equal-time quality comparison between radiance caching and
path tracing. The error tolerances were set at 0.25 and 0.75 for the single and multiple scattering caches,
respectively.

Due to this simplification, our error metric is unable to adapt sample density at volumetric

shadow boundaries, forcing the user to set a lower global error tolerance to produce artifact-free

renderings. Incorporating the visibility gradient, both for extrapolation and in the error metric,

could significantly increase quality while reducing render times. We plan to address this limitation

in future work.

Caching the radiance and gradient computation using spherical harmonics is effective for

moderately anisotropic scattering. For highly directional scattering, this approach becomes less

beneficial. Since the cache points can potentially be reused from any viewing direction, our error

metric does not account for the outgoing direction when computing the valid radius. An alternate

approach could be to store radiance values in a 5D cache with associated outgoing directions.

Since, in this case, cache points would only be reused for similar outgoing directions, importance

sampling could be used even at the first bounce for multiple and surface scattering. Such an

approach would benefit significantly from a full 5D error metric that computes a valid radius

independently for the spatial and angular dimensions.
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Photon mapping Cache PointsRadiance caching

Figure 5.16: A equal-time, contrast-enhanced comparison between radiance caching and photon mapping
in the cars scene from Figure 5.15. The scene has a large extent, making it difficult to render with methods
such as photon mapping that compute scattering in the entire medium. Artifacts remain in the homo-
geneous medium even after storing 8M photons. On the right we show a horizontal cross section of the
single scattering cache points as seen from above. In this visualization, the camera is located at the bottom
looking up. Note the concentration of cache points around the street lights and headlights near the camera.
The error tolerances were set at 0.25 and 0.75 for the single and multiple scattering caches, respectively.

Although our method caches the results of integrating single and multiple scattering,

other expensive quantities could also be cached to further improve performance. For scenes with

a large visible extent and large image resolutions, cache queries dominate the render time due

to the repeated lookups necessary for integrating radiance along eye rays. Caching the radiance

integration along eye rays could provide for efficient reuse of the whole radiance computation

from neighboring pixels, completely eliminating the eye integration for a majority of the image.

Finally, the original surface irradiance caching algorithm could be extended to account

for the presence of participating media and coupled with our method. Since, however, there is

no distance to surfaces associated with volumetric cache points, this would be a challenging

undertaking. Also, the irradiance gradients would have to account for the change in optical

properties along a path as the point moves on the surface, similar to our scattering gradients.

5.8 Conclusion

In this chapter we presented a new method for caching radiance in the presence of

participating media. The method is general and adapts to scenes with arbitrary scattering and

absorbing properties. It works directly in both homogeneous and heterogeneous media, and can

handle both isotropic or anisotropic scattering. When rendering anisotropic media, we compactly

store the directional distribution of the radiance using spherical harmonics. Our method caches
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both single and multiple scattered radiance from light sources and surfaces while providing

significant gains in speed over traditional Monte Carlo ray tracing techniques.

Volumetric radiance caching is founded on using the gradients of a Monte Carlo formula-

tion of radiative transport to accurately predict the change in radiance throughout the scene. We

have shown how to compute these gradients and also how to use them to extrapolate the radiance

to new locations. This, combined with an exponential extrapolation technique that exploits the

properties of light in a medium, allow us to render high-quality images of scenes with a relatively

small number of cache points. Caches produced by our method handle complex illumination and

can be later reused for animations.
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6
Irradiance Gradients in the Presence of

Participating Media and Occlusions

“Write a wise saying and your name will live forever.”

—Unknown

THE irradiance caching [Ward et al., 1988] algorithm described in Chapter 3 is one of the most

successful acceleration strategies for solving the rendering equation using Monte Carlo

ray tracing. In the previous chapter we developed a complementary radiance caching algorithm

to efficiently solve the volume rendering equation within participating media by accounting

for surface-volume and volume-volume interactions of light. These two approaches can easily

be coupled to simulate all light transport by caching both on surfaces and within the medium.

However, irradiance caching and volumetric radiance caching both rely on accurate gradient

computations to improve the accuracy of interpolation. Participating media, unfortunately, affects

not only the irradiance but also the irradiance gradient on surfaces embedded within media.

6.1 Contributions

In Table 6.1 we summarize the most important previous techniques for computing il-

lumination gradients for irradiance caching. Unfortunately, none of these methods take into

account the full radiative transport equation, which leads to increased interpolation artifacts in

the presence of participating media. In this chapter we present extensions to these techniques

to reduce these problems. We develop novel gradients that consider absorption, emission, and

scattering in volumetric media, and the effect of surfaces occluding media. In particular, we

101
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present the following contributions:

1. We derive gradients to handle indirect illumination from surfaces in the presence of absorb-

ing media and occlusions. This generalization also allows us to handle non-Lambertian

reflectors.

2. We derive gradients of irradiance in the presence of scattering or emissive media and

account for surface-medium occlusion changes.

These two contributions enable, for the first time, the accurate computation of illumina-

tion gradients in the context of the full radiative transport equation. Without tracing any addi-

tional rays, the gradients described in this chapter are more accurate and contain significantly less

noise than gradients computed using expensive numerical techniques such as finite differencing.

The resulting gradient computations are easy to implement and straightforward to incorporate

into an irradiance caching framework. We show that the new gradients produce higher-quality

interpolation than previous techniques, which do not take into account full radiative transport.

Table 6.1: A comparison of the capabilities of illumination gradient techniques. The gradients derived
in this chapter take into account the full radiative transport equation, including the effects of absorbing,
emissive, and scattering participating media (PM). We support cache points on glossy surfaces (GCP), and
we consider effects of glossy indirect reflectors (GIR), visibility changes (V), indirect illumination (II), and
curved objects (CO).

Method PM GCP GIR V II CO

Ward and Heckbert [1992] X X X
Arvo [1994] X X
Křivánek et al. [2005b] X X X
Křivánek et al. [2005a] X X X X
Ramamoorthi et al. [2007] X X X X
Chapter 5 X X X X X
This Chapter X X X X X X
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6.2 Overview

As we saw in Chapter 2, irradiance E at a surface location x can be written as the cosine-

weighted integral of incident radiance,

E(x) =
∫
Ω

L(x←~ω) (~n ·~ω)d~ω. (6.1)

We are interested in computing the gradient ∇E(x) with respect to a translation of x.

In the presence of participating media, light transport obeys the radiative transfer equa-

tion from Equation 4.27. In this case we can interpret the incident radiance L(x←~ω) as the sum of

two separate contributions: the radiance Ls coming from surfaces that reflect illumination, and

the radiance Lm contributed by the participating medium, i.e.,

L(x←~ω) =Tr (x↔xs)L(xs →−~ω)︸ ︷︷ ︸
Ls (x←~ω)

+
∫ s

0
Tr (x↔xt )σs(xt )Li (xt →−~ω)d t︸ ︷︷ ︸

Lm (x←~ω)

, (6.2)

where xt = x+ t~ω with t ∈ (0, s), and s is the distance through the medium to the nearest surface at

xs = x+ s~ω. The outgoing radiance L(xs →−~ω) is computed by integrating the lighting and BRDF

at xs , and Tr (x↔xs) is the transmittance of the medium between x and xs .

To improve the clarity of our derivations, we split up the total irradiance in Equation 6.1

into irradiance from surfaces Es and irradiance from the medium Em such that

Es(x) =
∫
Ω

Ls(x←~ω) (~n ·~ω)d~ω, (6.3)

Em(x) =
∫
Ω

Lm(x←~ω) (~n ·~ω)d~ω, (6.4)

and E (x) = Es(x)+Em(x). The total gradient is simply ∇E =∇Es +∇Em . We derive gradients for the

irradiance from surfaces in Section 6.3 and for irradiance from participating media in Section 6.4.

We illustrate this process in Figure 6.1.

Note that in the following sections we only consider irradiance gradients for brevity, but all

of these computations could easily be projected onto spherical harmonics to obtain full radiance

gradients, as done in the previous chapter. Also, for clarity, we do not include media emission in
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(a) (b) (c) (d) (e)

Irradiance from Surfaces (Section 4) Irradiance from Media (Section 5)

Figure 6.1: Irradiance caching approximates irradiance by tracing rays in a hemisphere (a) and calculating
the radiance and distance to each hitpoint (b). Ward and Heckbert express irradiance gradients (c) by
computing ∇A j ,k (grey) of each cell under a translation of x, where the rate of motion of a cell boundary
is determined by the distance (blue) to the closer surface. Our method accounts for absorbing media by
additionally considering ∇L j ,k (red). We use ray marching (d) by sampling the in-scattered radiance at
discrete points xt . For each discrete “shell” we compute both a radiance gradient and a visibility gradient
(e) to account for surfaces occluding the medium. Conceptually, ∇V reduces the contribution of radiance
from shells (highlighted) beyond the occluder (blue).

our derivations. This can be trivially included since the emission and in-scattered terms are nearly

identical. We also restrict our derivations to translational gradients. We account for gradients on

curved surfaces by including a rotational gradient computed as described by Ward and Heckbert

[1992]. Unlike the translational gradient, participating media does not influence the computation

of the rotational gradient.

6.3 Irradiance Gradients for Surfaces

In this section we present a generalization of Ward and Heckbert [1992] and Křivánek

et al. [2005a] irradiance gradients. Our generalization relaxes the restriction that radiance arriving

at x from an indirect light source at x′ is constant under translation of x. This generalization

allows us to correctly handle scenes where the radiance may change due either to absorption by

participating media or glossy reflectors.

6.3.1 Irradiance Gradients

In the irradiance gradient computations of Ward and Heckbert [1992] and Křivánek et al.

[2005a], the irradiance integral from Equation 6.3 is estimated using the stratified Monte Carlo
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estimator introduced in Chapter 3,

Es(x) ≈
M−1∑
j=0

N−1∑
k=0

A j ,k Ls(x←~ω j ,k ) (~n ·~ω j ,k ), (6.5)

where we defined the relevant quantities in Table 3.1 and illustrated the stratified geometry in

Figure 3.4.

The contribution of each sample is the product of the radiance through the cell, Ls(x←
~ω j ,k ), and the area of the cell, A j ,k , and this contribution is weighted by the cosine term (~n ·
~ω j ,k ). The irradiance gradient considers how these terms change when translating the center of

projection by an infinitesimal amount. By differentiating Equation 6.5 we get:

∇Es(x) ≈
M−1∑
j=0

N−1∑
k=0

∇(A j ,k Ls(x←~ω j ,k ) (~n ·~ω j ,k )) (6.6)

=
M−1∑
j=0

N−1∑
k=0

(∇A j ,k Ls
j ,k + A j ,k ∇Ls

j ,k ) (~n ·~ω j ,k ),

where we have used Ls
j ,k = Ls(x←~ω j ,k ) for brevity. Translation in the tangent plane may induce

both a change in the area of a cell ∇A j ,k and a change in the radiance seen through a cell ∇Ls
j ,k .

Note that the cosine term does not change under translation, so the ∇(~n ·~ω j ,k ) term drops out.

The total surface irradiance gradient can be expressed as a sum of two terms,

∇Es(x) ≈∇AEs(x)+∇LEs(x), (6.7)

where ∇AEs(x) includes the gradient terms containing changing cell area ∇A j ,k , and ∇LEs(x)

incorporates the terms with changing cell radiance ∇Ls
j ,k .

Previous work on irradiance and radiance gradients only considers the rate of change of

each cell area, ∇A j ,k , but assumes that ∇Ls
j ,k = 0. In Section 3.6.2 we provided detailed derivations

of the cell area gradient contribution. In this chapter we consider the effects of ∇LEs(x), for which

we derive expressions in the following section.
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6.3.2 Gradient of Cell Radiance

By allowing the cell radiances to change with translation, we can include attenuation due

to participating media as well as glossy reflectors in the gradients. We additionally compute a

gradient ∇LEs that incorporates changes in cell radiance,

∇LEs(x) ≈
M−1∑
j=0

N−1∑
k=0

A j ,k ∇Ls
j ,k (~n ·~ω j ,k ), (6.8)

where the area of each cell is

A j ,k =
∫ φk+

φk-

∫ θ j+

θ j-

sinθdθdφ =⇒ (cosθ j-−cosθ j+ )(φk+−φk- ). (6.9)

For a cosine-weighted distribution, this gradient term reduces to the average of the cell gradients,

∇LEs(x) ≈ π

M N

M−1∑
j=0

N−1∑
k=0

∇Ls
j ,k . (6.10)

Using the definition of surface radiance from Equation 6.2, the gradient ∇Ls
j ,k is

∇Ls
j ,k =∇Tr (x↔xs)L(xs ,−~ω j ,k )+Tr (x↔xs)∇L(xs ,−~ω j ,k ). (6.11)

We compute the gradient of the transmittance term using the techniques described in the previous

chapter. Though we do not demonstrate this in our results, glossy reflectors can easily be handled

in our framework by computing the radiance gradient using the gradient of the BRDF at xs .

The final irradiance gradient is simply the sum of Ward and Heckbert’s original gradient

∇AEs(x) and our additional cell radiance gradient term ∇LEs(x) as expressed in Equation 6.7. In

Figure 6.2 we demonstrate the impact of adding the gradients of cell radiance. The resulting

irradiance gradients are more accurate, and the quality of interpolation in irradiance caching is

significantly improved.
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Figure 6.2: We compare irradiance caching and extrapolation using different gradient computation
techniques in a scene with an absorbing medium. The top row shows irradiance extrapolated over the
ground plane from a few cache points. The improved gradients from this chapter consider changes of
visibility and absorption by the medium. Our method from Chapter 5 ignores visibility and Ward and
Heckbert [1992] ignore absorption by the medium, which leads to increased artifacts. In the bottom row
we visualize the irradiance gradients computed per-pixel. The red and blue color coding shows absolute
values of the x and y components of the gradient, respectively. We computed gradients for each technique
using 1.8K gather rays per pixel and also a “ground truth” gradient using finite differences (FD). Since finite
difference gradients are extremely noisy, our reference uses 100 times more rays (180K rays/pixel). Our
method produces accurate gradients with few gather rays and converges to the reference solution using
finite differencing.

6.4 Irradiance Gradients for Media

In this section we consider the contribution of scattering media to the irradiance gradient.

Our derivation is based on a reformulation of the radiance from the medium, Lm , in Equation 6.2.

Instead of integrating to the closest visible surface, we introduce a visibility function and integrate

to infinity. We rewrite the media irradiance, Equation 6.4, as

Em(x) =
∫
Ω

∫ ∞

0
Tr (x↔xt )σs(xt )Li (xt →−~ω)V (x↔xt ) (~n ·~ω)dtd~ω, (6.12)

where we ignore the emission terms. The visibility function V returns one if the two arguments

are mutually visible, and zero otherwise. If we collect all factors except visibility in a new term

LV (x,xt ,~ω) = Tr (x↔xt )σs(xt )Li (xt ,−~ω)(~n ·~ω), which we call unshadowed radiance, the media
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Figure 6.3: This modification of the scene from Figure 6.2 contains an emissive medium. The improved
gradient formulation obtains accurate results by taking into account the medium and surface-medium
occlusions, whereas previous methods ignore these effects and suffer from artifacts.

irradiance reduces to a product of unshadowed radiance and visibility,

Em(x) =
∫
Ω

∫ ∞

0
LV (x,xt ,~ω)V (x↔xt )dtd~ω. (6.13)

Differentiation using the product rule leads to the gradient of media irradiance,

∇Em(x) =
∫
Ω

∫ ∞

0
∇LV V +LV ∇V d td~ω, (6.14)

where we have omitted the function arguments for brevity.

In the previous chapter, we derived gradients of multiple scattering within participating

media in a similar manner. In those derivations, however, we assumed visibility was constant,

and the gradient of V was ignored. In effect, we only considered the first term of Equation 6.14. In

order to obtain the full gradient, we now also compute the gradient of visibility, as described in

the following section.
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6.4.1 Visibility Gradient

In order to account for the visibility gradient, we need to compute the following quantity:

∇V Em(x) =
∫ ∞

0

∫
Ω

LV ∇V d~ωd t , (6.15)

=
∫ ∞

0
ṼΩ(x, t )d t , (6.16)

where we use ∇V to denote that this is a gradient only of the visibility component, and we swap

the order of integration to make the derivation more convenient. Additionally, we introduce the

shorthand ṼΩ for the hemispherical integral of LV ∇V .

If we consider a fixed t , ṼΩ computes the gradient of the weighted visibility integral over

the hemisphere. This is similar to Ward and Heckbert, except they compute the gradient of a

weighted radiance integral over the hemisphere. Therefore, by substituting the radiance function

with visibility, and replacing the weighting functions, we can compute this weighted visibility

gradient using Ward and Heckbert’s formulation. Intuitively, we are computing an irradiance

gradient in a scene where the radiance function encodes V as black occluders in front of a distant

environment map, LV . Applying these modifications to Equation 3.32 results in

ṼΩ ≈
N−1∑
k=0

(
ûk

M−1∑
j=1

∇ûk A j-,k (V j ,k −V j -1,k )LV ( j-,k)+ v̂k-

M−1∑
j=0

∇v̂k-
A j ,k- (V j ,k −V j ,k-1)LV ( j ,k-)

)
,

where the directional derivatives ∇ûk A j-,k and ∇v̂k-
A j ,k- are computed using Equations 3.42 and

3.46 and utilize the distance to occluders in their denominators. V j ,k is a binary function indicating

for each direction ~ω j ,k whether the distance s to the nearest surface is less than or greater than t :

V j ,k (t , s) =
{

0 if t ≥ s,

1 if t < s.
. (6.17)

In order to integrate over t we perform ray marching, which discretizes the medium into

“shells” as illustrated in Figure 6.1(d,e). Conceptually, we consider radiance from the medium as

coming from expanding shells of radius t about the evaluation point x and compute the visibility
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Figure 6.4: This modification of the scene from Figure 6.2 contains a spotlight and a scattering medium.
The improved gradient formulation obtains accurate results by taking into account the medium and
surface-medium occlusions, whereas previous methods ignore these effects.

gradient in Equation 6.16 as

∇V Em(x) ≈
S−1∑
t=0

ṼΩ∆t . (6.18)

In practice, however, ray marching is performed independently for each hemispherical direction,

which swaps the order of the summations back again.

In summary, for a fixed distance t , we compute LV , ∇LV as in Chapter 5, and we compute

a Ward and Heckbert-style gradient for LV ∇V by evaluating the unshadowed radiance along

visibility boundaries.

6.5 Implementation

Our new irradiance gradients can easily be added to a Monte Carlo renderer, which uses

irradiance caching and supports participating media. The irradiance caching algorithm stays

the same; just the gradient computation needs to be modified to account for the medium. Our

procedure is illustrated in Figure 6.1. We provide pseudo-code for computing Es and Em and the

gradients ∇Es and ∇Em in Algorithm 6.1 and describe the procedure in the following sections.
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Algorithm 6.1: COMPUTEGRADIENT(x,~n)

Data: x is the position and~n is the normal at the evaluation location.
Result: Es , Em , ∇Es , and ∇Em

begin1

foreach cell ( j ,k) do2

Determine distance s by tracing ray towards ~ω j ,k ;3

Compute L(xs ,−~ω j ,k ) and ∇L(xs ,−~ω j ,k );4

Ls(j,k)= L(xs ,−~ω j ,k );5

gLs(j,k)=∇L(xs ,−~ω j ,k );6

A ⇐ π
M ·N ;7

foreach cell ( j ,k) do8

Tr ⇐ 1;9

∇Tr ⇐ 0;10

foreach ray-marching step through the medium do11

Update Tr and ∇Tr ;12

Compute LV , and ∇LV as in Chapter 5;13

Compute LV∇V using Equation 6.17;14

Lm(j,k)+= LV A∆t ;15

gLm(j,k)+= (LV∇V +∇LV A)∆t ;16

gLs(j,k)= gLs(j,k)Tr +Ls(j,k)∇Tr ;17

Ls(j,k)*= Tr ;18

return Es = A
∑

j ,k Ls(j,k);19

return ∇Es = Equation 3.47+ A
∑

j ,k gLs(j,k);20

return Em =∑
j ,k Lm(j,k);21

return ∇Em =∑
j ,k gLm(j,k);22

end23

Initialization. The irradiance and gradient computation starts by creating a M ×N array, where

each element stores a HemiSample. This array is used to store the hemispherical samples needed

to compute the irradiance and the irradiance gradient. Each HemiSample stores the distance s,

the surface radiance and gradient Ls and gLs, and the media radiance and gradient Lm and gLm.

All these values are initialized to zero.

Sampling Surfaces. The algorithm starts by looping over each cell ( j ,k) and tracing a ray in

the ~ω j ,k direction, generated using a cosine-weighted distribution [Ward and Heckbert, 1992].

We save the hit distance to the nearest surface, s, within the HemiSample and store the radiance

L(xs ,−~ω j ,k ) in Ls. If the intersected surface at xs is glossy, we also compute a gradient∇L(xs ,−~ω j ,k )

and store this in gLs. At the end of this stage we have a full hemispherical discretization of the



112

00 50 100 150 200 250

0.01

0.00

0.02

0.03

0.04

0.05

0.06

0.07

Pixel

Gr
ad

ien
t M

ag
nit

ud
e

Absorbing Medium Scattering Medium
Gradient M

agnitude

50 100 150 200 250

0.02

0.04

0.06

0.08

0.10

0.12

Pixel
||∇E|| - This Chapter||∇E|| - Finite Difference ||∇E|| - Ward and Heckbert ‘92

Figure 6.5: Visualizations of the gradient magnitude, (left) along a scanline in Figure 6.2, and (right) along
a scanline in Figure 6.4. Our new gradient formulation correctly matches the profile of the finite difference
gradient but with significantly less noise. Since it ignores participating media, the original Ward and
Heckbert formulation does not produce the correct gradient in either of these situations.

scene, with a radiance, gradient, and distance to the nearest surface in each cell. The cell radiances

and gradients do not yet take into account participating media.

Sampling Media. In order to account for the media, we perform ray marching individually for

each cell ( j ,k). As mentioned in Section 6.4, the integration over the hemisphere is the outer loop.

For each cell, at each step in the medium we compute LV (xt ) and ∇LV (xt ) using the techniques

developed in Chapter 5. We also compute LV (xt )∇V (xt ) by evaluating Equation 6.17 for the (up

to) four boundaries of the current cell: ( j-,k-), ( j-,k+), ( j+,k-), and ( j+,k+). We then multiply the

terms by the cell area A j ,k and accumulate their contributions into Lm and gLm.

At each step through the medium we maintain the current value of the transmittance Tr

and its gradient ∇Tr . Once ray marching terminates, these values correspond to the transmittance

Tr (x↔xs) and transmittance gradient ∇Tr (x↔xs) from the evaluation location x to the surface at

xs . We use these transmittance values to augment the Ls and gLs values computed in the previous

stage in order to properly account for absorption by applying Equations 6.2 and 6.11.

Integrating. At the end of this process we integrate the irradiance and its gradient by summing

over all the HemiSamples. Additionally, we add Equation 3.47 to the surface irradiance gradient

to account for the changing cell areas.
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Figure 6.6: Relative errors for computing the irradiance and irradiance gradient for a single pixel in the
scene from Figure 6.3. The x-axis plots M , the number of divisions in elevation angle, and N is set to 2M .
Previous gradient methods converge to incorrect values, leading to high error even with many samples.

6.6 Results

We implemented our irradiance gradients within a global illumination renderer written in

C++. We compare our gradient method to Ward and Heckbert [1992] for a number of scenes. We

also compare to a modification of Chapter 5’s gradients, where we compute irradiance gradients

on surfaces by integrating over the hemisphere (instead of the whole sphere) and consider the

cosine-weighted BRDF (instead of the phase function). In all of our results comparing irradiance

caching, we only change the gradient method used. All other parameters, including the number

of evaluation rays and the resulting cache point locations, are kept exactly the same. All timings

are for an Intel Core 2 Duo 2.4 GHz machine using one core.

In Figures 6.2, 6.3, and 6.4 we demonstrate the importance of considering effects from

the medium for variations of a scene containing absorbing, emitting, and scattering media,

respectively. We directly visualize the x, y gradient components in these figures and compare

them to “reference” solutions computed using finite differences. These renderings were computed

at a resolution of 256×256 using 30×60 = 1,800 rays per evaluation. Our gradients match the

reference solutions more faithfully than previous techniques and contain less noise than finite

difference gradients computed using 180,000 evaluation rays per pixel. We demonstrate the

accuracy of our gradients in Figures 6.5 and 6.6. Figure 6.5 plots the gradient magnitude along a

scanline in the scenes from Figures 6.2 and 6.4. In Figure 6.6 we visualize the convergence rate

for the irradiance and gradient computed at a single pixel in the scene from Figure 6.3. Previous
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Figure 6.7: All the illumination on the walls of this room has first scattered off the floor or the bright
beam of light through the window. Our improved gradient computation significantly reduces extrapolation
artifacts (top). Using an “overture” pass, where the scene is re-rendered once all cache points are computed,
previous techniques still suffer from interpolation artifacts (bottom), while our method produces smooth
reconstruction.

techniques do not correctly capture the true gradient. The technique described in this chapter

matches the finite difference gradient and quickly converges to the correct solution.

Figure 6.7 features a room with a strong volumetric light beam entering an open window.

The walls and most of the floor in this scene are indirectly illuminated by this single beam of

light. Using Ward and Heckbert’s gradient computation, this scene renders in 3:17 minutes at a

horizontal resolution of 1K. Since this gradient method ignores the media, all light is incorrectly

assumed to come from surfaces during gradient computation. This results in significant artifacts.

Performing an “overture” re-rendering of the image is a common technique for improving the

quality of irradiance cache renderings. This allows for interpolation, instead of extrapolation, to

be used for the entire image. Even though the overture pass improves the quality of the rendering

by reducing sudden discontinuities, the inaccurate gradients result in distracting “ripples” on

the walls and floor. The gradients from Chapter 5 do account for the medium but fail to handle

visibility changes, which also leads to significant artifacts. The gradients from this chapter, on

the other hand, can correctly handle this scene and produce noticeably smoother reconstruction

of the indirect illumination. The overhead of the improved gradients is fairly negligible, and we

are able to render the same image in 3:25 minutes. The overture pass takes a fraction of the total

render time for each method, and completes in under four seconds.
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Figure 6.8: The classic Cornell box scene with a scattering medium. We compare the quality of irradiance
caching and provide two zoomed-in regions for each result. Ward’s gradient formulation does not consider
the medium, which results in inaccurate gradients and significant extrapolation artifacts. Our participating
media gradients from Chapter 5 do a much better job, but still suffer from artifacts due to occlusion
changes. The gradients from this chapter obtain the smoothest results by taking into account the media
and occlusions.

Figure 6.8 contains a modification of the classic Cornell box rendered at a resolution of

1K. Ward’s method produces distracting artifacts even after an overture pass. Gradients computed

using the techniques from Chapter 5 do a much better job in this scene, but still contain artifacts

in areas with occlusion changes. The gradients derived in this chapter produce smooth results

even in the initial pass. The overture pass takes less than five seconds for each method.

The disco light scene in Figure 6.9 presents a particular challenge for conventional gradi-

ent methods, since all lighting on surfaces is indirect lighting from the scattering medium. Due

to this, Ward and Heckbert’s gradients suffer from significant artifacts both on the surface of the

sphere and the ground plane. The gradients from Chapter 5, since they ignore visibility changes,

also suffer from artifacts. This is particularly noticeable on the ground near the base of the disco

light, where visibility changes are most prominent. The improved gradients are able to obtain

a smooth reconstruction of the irradiance on the first pass and we can render this scene at 1K

resolution in 10:33 minutes. This is only a slight overhead on top of the 10:30 minute render time

using Ward and Heckbert’s gradients. The overture pass takes less than seven seconds to compute

for each method.
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Figure 6.9: This disco light scene contains 21 light sources, but all lighting on surfaces is indirect. Ward’s
gradient formulation assumes all lighting (even from the media) arrives from surfaces, which results
in inaccurate gradients and significant extrapolation artifacts. The participating media gradients from
Chapter 5, however, do not take the visibility term into account. The gradients developed in this chapter
obtain the smoothest results by taking into account the media and occlusions.

6.7 Summary and Discussion

Our work on computing accurate irradiance gradients in scenes containing participating

media exposes a number of limitations of current techniques and, in the process, suggests several

exciting possibilities for future work.

Error Metric. In this chapter we were only concerned with improving the quality of interpolation

by computing more accurate gradients. However, another significant contributor to the efficiency

and quality of the irradiance caching method is the error metric used to compute valid radii of

cache points. The split-sphere model, which drives the error metric, is geometry-driven and

completely ignores lighting and all effects from participating media. This can lead to suboptimal

cache point distributions. A more general error metric is desirable, but it is not immediately clear

how to extend the split-sphere model to incorporate these effects. In Chapter 5 we derived an

error metric specifically for participating media, and Křivánek et al. [2006] introduced a neighbor

clamping technique. Creating a robust error metric that takes into account the local geometry as

well as lighting from surfaces and media is a difficult problem which warrants further work.
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Radiance Gradients. Though we presented all of our derivations within the context of irradiance,

it is trivial to apply our approach to radiance caching on surfaces. Křivánek et al. [2005a] showed

that, to compute radiance gradients, the cosine terms in Equations 6.5 and 6.6 can be replaced by

a set of basis functions. This projection enables efficiently storing the full radiance function as a

vector of coefficients and the radiance gradient as a corresponding set of gradient coefficients.

Radiance Gradients in Participating Media. In Chapter 5 we compute radiance gradients of

single scattering from lights, single scattering from surfaces, and multiple scattering, but ignore

visibility in all of these computations. This chapter provides the first step in computing visibility-

aware radiance gradients for caching within participating media.

Computing single scattering from surfaces is very similar to the surface irradiance pre-

sented in Section 6.3. Ward and Heckbert, however, only consider gradients in 2D along the

tangent plane. Our surface irradiance gradients could be extended to work in participating media

by additionally deriving expressions for the gradients of cell area with respect to motion along a

third axis.

Similarly, the definition of media irradiance in Equation 6.12 is nearly identical to the

computation of multiple scattering. Extending Ward and Heckbert’s stratified gradients to consider

motion along all three dimensions would also enable the use of a visibility gradient within the

multiple scattering gradient.

Gradients of single scattering from light sources cannot be handled using Ward and

Heckbert’s stratified gradients since these effects are typically not computed using hemispherical

integration. For point light sources, however, visibility gradients can be efficiently approximated

without tracing additional rays by using shadow maps and performing finite differencing. We,

in fact, implemented this extension and use it when computing the gradient of single-scattered

radiance embedded within the ∇LV term of Equation 6.14.

Visibility Gradient. Ward and Heckbert’s stratified gradient formulation is intuitive and works

well in practice; however, it is difficult to quantify its mathematical correctness since the gradient

is performed after discretization. More recently, Ramamoorthi et al. [2007] presented an elegant
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new visibility gradient formulation. Their approach is more mathematically rigorous since it

presents an analytic expression for the gradients and only then performs discretization of this

analytic expression. In Section 6.4.1 we modify Ward and Heckbert’s gradients to estimate visibility

gradients; however, an obvious alternative to this approach would be to directly use the gradients

presented by Ramamoorthi et al. This approach would allow for a completely analytic expression

for the media irradiance gradient. We explored this avenue, but Ramamoorthi’s visibility integra-

tion suffers from a weak singularity. Though this singularity can be avoided by using adaptive

sampling over the hemisphere, it makes it more cumbersome to integrate into the stratified ray

marching process needed within our context. Nevertheless, we still believe this is a promising

alternative and plan to investigate this approach further.

6.8 Conclusion

In this chapter we presented a method for accurately computing irradiance gradients

on surfaces in the presence of participating media and occlusions. We applied our gradient

derivations to the irradiance caching method and demonstrated that incorporating participating

media and visibility information within the gradient is important for high quality irradiance

interpolation in scenes containing these effects.
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7
The Photon Mapping Method

“I get by with a little help from my friends.”

—John Lennon, 1940–1980

PHOTON mapping is a practical approach for computing global illumination within complex

environments. Much like irradiance caching methods, photon mapping caches and reuses

illumination information in the scene for efficiency. Photon mapping has also been successfully

applied for computing lighting within, and in the presence of, participating media. In this

chapter we briefly introduce the photon mapping technique. This sets the foundation for our

contributions in the next chapter, which make volumetric photon mapping practical.

7.1 Algorithm Overview

Photon mapping, introduced by Jensen [1995; 1996; 1997; 1998; 2001], is a practical

approach for computing global illumination. At a high level, the algorithm consists of two main

steps:

Algorithm 7.1: PHOTONMAPPING()

PHOTONTRACING();1

RENDERUSINGPHOTONMAP();2

In the first step, a lighting simulation is performed by tracing packets of energy, or photons,

from light sources and storing these photons as they scatter within the scene. This processes

119
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Algorithm 7.2: PHOTONTRACING()

ne = 0;1

repeat2

(l, pdf (l )) = CHOOSELIGHT();3

(xp , ~ωp ,Φp ) = GENERATEPHOTON(l );4

TRACEPHOTON(xp , ~ωp ,
Φp

pdf (l ) );5

ne += 1;6

until photon map full ;7

Scale power of all photons by 1
ne

;8

results in a set of photon maps, which can be used to efficiently query lighting information. In

the second pass, the final image is rendered using Monte Carlo ray tracing. This rendering step is

made more efficient by exploiting the lighting information cached in the photon map. Radiance

can be evaluated at arbitrary points in the scene by locally computing the photon density within

the photon map.

7.2 Photon Tracing

In the first pass, photons are emitted from light sources and traced through the scene just

as rays are in ray tracing. The photon tracing pass is summarized in Algorithm 7.2. We describe

this procedure in the following sections.

7.2.1 Photon Emission

Intuitively, photon mapping works by splitting the energy emitted by each light source

into discrete packets called photons1. A number of photons are emitted from a light source,

and each photon represents a fraction of the total power of the light. Photon tracing starts by

generating a random photon at a light source. Each photon p includes a position and direction

xp ,~ωp , as well as an associated power,Φp . Any type of light source can be used to emit photons

by providing an appropriate GENERATEPHOTON procedure. Jensen provides details on how to

generate photons for emission from a variety of commonly used light sources [2001]. If multiple

1A “photon” in the photon mapping technique actually corresponds to a collection of physical photons.
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light sources are present, each time a photon is emitted, Russian roulette is used to choose the

emitting light source. More photons can be shot from brighter light sources by basing the roulette

probabilities on the power of the lights.

7.2.2 Photon Scattering

After a photon is generated for emission at a light source it is traced through the scene.

This process is encompassed in the TRACEPHOTON function and proceeds analogously to tracing

rays. When a photon intersects a surface it is either scattered or absorbed. Russian roulette is used

to probabilistically choose which of these events occurs, and the surface’s material properties

determine the corresponding probabilities. The TRACEPHOTON function terminates once the

photon is absorbed or it propagates out of the scene. If reflection or transmission occur, the

photon is scattered according to the BRDF. For perfect mirror surfaces, the scattered direction is

the mirror reflection direction, whereas for perfect Lambertian surfaces the direction is computed

according to a cosine distribution. It is possible to importance sample a scattering direction

from a wide range of other BRDFs as well. If importance sampling the BRDF is not possible then

a random scattering direction can be chosen, and the photon’s power then needs to be scaled

according to the BRDF.

7.2.3 Photon Storage

Whenever a photon hits a non-specular surface, it is stored in a global data structure

called a photon map. Photons hitting perfectly specular surfaces are not stored since this form of

illumination can be more effectively computed using Monte Carlo ray tracing during the rendering

pass. During rendering, illumination information is queried by performing range searches within

the photon map. The photons are inserted into a balanced kd-tree acceleration structure in order

to perform these range searches efficiently.

7.2.4 Importance-Driven Photon Mapping

The photon tracing procedure described so far is view-independent. This means that,

if the camera is aimed at a relatively small portion of the scene, many photons may be wasted
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in “unimportant” regions of the scene. Peter and Pietrek [1998] used the concept of importance

to concentrate photons in the parts of the scene where they contribute most to the final image.

Before tracing photons, they emitted importance particles (or “importons”) from the camera and

stored these in an importance map as they scattered at non-specular surfaces. The importance

map can be used to guide the reflection of photons [Peter and Pietrek, 1998], or to determine the

probability of storing each photon [Suykens and Willems, 2000; Keller and Wald, 2000]. These

approaches can dramatically reduce the required number of stored photons; however, the number

of emitted photons remains high. Peter and Pietrek [1998] and Christensen [Jensen et al., 2001a]

suggested ways to address this by using a set of “test” photons to determine important emission

directions; however, the robustness of these techniques has not been well tested in practice.

Christensen [2003] provides an in-depth survey of importance within computer graphics.

7.3 Radiance Estimation

After photon tracing finishes, the collection of stored photons represents the incident

illumination (flux) on surfaces. Each photon represents a fraction of the flux emitted either directly

by a light source or indirectly through intermediate scattering events.

Reflected radiance at a surface is computed used Equation 2.14:

L(x→~ω) =
∫
Ω

fr (x,~ω′↔~ω)L(x←~ω′) (~n ·~ω′) d~ω′. (7.1)

We can relate this to the flux stored in the photon map using Equation 2.2, which expresses the

relationship between radiance and flux:

L(x,~ω) = d 2Φ(x,~ω)

(~n ·~ω) d~ω dA(x)
. (7.2)
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Radiance Estimate Volumetric Radiance Estimate

Figure 7.1: The radiance estimate (Equation 7.5) and the volumetric radiance estimate (Equation 7.10)
compute outgoing radiance using density estimation by finding the nearest k photons to the query location
x. On surfaces, the contribution from each photon is weighted by the BRDF, accumulated, and divided
by the projected surface area of the bounding sphere. Within participating media, each photon is instead
weighted by the phase function, accumulated, and the result is divided by the volume of the bounding
sphere.

By combining these expressions we arrive at:

L(x→~ω) =
∫
Ω

fr (x,~ω′↔~ω)
d 2Φ(x,~ω′)

(~n ·~ω′) d~ω′ dA(x)
(~n ·~ω′) d~ω′, (7.3)

=
∫
Ω

fr (x,~ω′↔~ω)
d 2Φ(x,~ω′)
d~ω′ dA(x)

d~ω′. (7.4)

This integral can be approximated using the photon map. Since each photon p carries fluxΦp , the

local density of the photons can be used to estimate the above integral. The density is computed

by adding up the flux of the nearest photons in a small local region and dividing by the projected

area A of the sphere containing these photons (see Figure 7.1). The reflected radiance at a point x

in direction ~ω can be estimated using the radiance estimate as

L(x→~ω) ≈
k∑

p=1
fr (x,−~ωp↔~ω)

Φp (x←−~ωp )

A(x)
, (7.5)

where A(x) =πr (x)2 is a surface area of a small region around x.

This density estimation can be computed in a number of ways. The simplest approach

sets r to a constant value over the whole scene. This approach would involve finding all photons p

within a constant radius r sphere from the shading location x and applying the above expression.

Since photons lie on surfaces, the surface area A(x) corresponds to projecting the sphere onto

the surface and using the area of the resulting circle, A(x) = πr 2. The drawback of this simple
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approach is that a single radius may not be well suited for all regions of the scene. Jensen instead

proposed using the nearest neighbor method to estimate the local density. The nearest neighbor

method finds the nearest k photons from the query location x and sets the radius equal to the

distance to the kth photon from x, r (x) = dk (x). With this approach the search radius is allowed to

adapt to the local density of photons.

The radiance estimate in Equation 7.5 can be further improved in a number of ways. A

typical improvement is to weight the contribution of photons differently within the search radius.

Weighting the photon contributions with a smooth filtering kernel smooths the results while

reducing overblurring. This technique is called the generalized nearest neighbor method within

the density estimation literature [Silverman, 1986]. We review density estimation in more detail in

Appendix C.

7.4 Participating Media

In reality, light interacts not only with surfaces but also scatters and gets absorbed by the

medium between surfaces. Jensen and Christensen extended the photon mapping method to sim-

ulate global illumination within participating media [1998]. This extension requires modification

to both the photon tracing and the rendering portion of the photon mapping algorithm.

7.4.1 Photon Tracing

In the presence of participating media, when a photon is emitted or reflected off a surface,

it travels through the medium for some distance until it is either scattered or absorbed. As we saw

in Chapter 4, the transmittance Tr describes the reduction of radiance as it travels through the

medium due to absorption and out-scattering. Photon tracing can be augmented to propagate

and store photons within the participating medium by probabilistically choosing the distance

to the next interaction. The photon is advanced through the medium by this distance, at which

point an interaction with the medium is simulated. At each interaction location, the photon is

stored in a volume photon map.
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Figure 7.2: Photon mapping starts by emitting photons from light sources. In the presence of participating
media, photons are stored not only on surfaces, but also within the medium.

Sampling Propagation Distance

Recall from Chapter 4 that the transmittance Tr actually gives the probability that a

photon can travel unobstructed between two points in a medium. The propagation distance

should therefore be computed by importance sampling the transmittance term. Given a random

number ξ ∈ (0,1], this can be accomplished with the following expression for d :

d(xp ) =− log(ξ)

σ̄t (xp )
, (7.6)

where the corresponding probability density is

pdf (d) = e−σ̄t (xp )d . (7.7)

In defining the above two equations, we introduced the term σ̄t (xp ). We have the freedom

to define this parameter as any positive value; however, our goal is to use a value which results in

a distance distribution proportional to the transmittance term Tr .

Homogeneous Media. For homogeneous media, if we set σ̄t (xp ) to the medium’s extinction

coefficient, σ̄t (xp ) =σt , then the PDF above will be exactly proportional to the transmittance.

Heterogeneous Media. Distributing the distance according to transmittance is much more

difficult in heterogeneous media and in general can only be approximated. The optimal solution

would set σ̄t (xp ) to the mean extinction coefficient between xp and the next interaction event
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Algorithm 7.3: VOLUMETRICPHOTONTRACING(xp , ~ωp ,Φp )

d =− log(ξ)
σ̄t (xp ) ;1

pdf (d) = e−σ̄t (xp )d ;2

while no surface between xp and xp +d~ωp do3

Φp ∗= e−σt (xp )d /pdf (d);4

xp += d~ωp ;5

STOREPHOTON(xp , ~ωp , Φp );6

if ξ< σs
σt

then7

return;8

~ωp = COMPUTESCATTEREDDIRECTION(xp , ~ωp );9

d =− log(ξ)
σ̄t (xp ) ;10

pdf (d) = e−σ̄t (xp )d ;11

return;12

at xp +d~ω. Clearly this is not a practical approach since it requires knowledge of the distance

d , which we are trying to compute in the first place! One approximate solution is to set the

parameter to the extinction coefficient at the current scattering event, σ̄t (xp ) =σt (xp ). In highly

heterogeneous media this can lead to fairly erratic distance values, and care must be taken to

ensure that σ̄t > 0. Another option is to compute the average extinction coefficient over the entire

medium and use this as the value of σ̄t (xp ) for all xp . A more accurate, but potentially costly,

approach is to choose the random value ξ and then incrementally compute Tr by taking small

steps along ~ω using ray marching. The next scattering event will occur where Tr = ξ.

Volumetric Scattering

At an interaction location, the photon can be either absorbed or scattered, and Russian

roulette is used to choose between these two events. The ratio between the absorption and

extinction coefficients describes the probability of absorption:

Pr {absorb} = σa

σt
. (7.8)

If the photon is not absorbed, it will be scattered into another direction through the medium. This

direction can be computed by importance sampling the phase function.
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Figure 7.3: Volumetric photon mapping uses ray marching to accumulate in-scattered radiance along the
length of an eye ray through the medium. At each discrete sample point the nearest photons are gathered,
and the in-scattered radiance is approximated using the volumetric radiance estimate.

The volumetric photon tracing process is illustrated in Figure 7.2 and summarized in

Algorithm 7.3.

7.4.2 Ray Marching and the Volumetric Radiance Estimate

During rendering, volumetric photon mapping uses ray marching (Equation 5.1) to nu-

merically integrate the volume rendering equation for radiance seen directly by the observer:

L(x←~ω) ≈Tr (x↔xs)L(xs →−~ω)+
(

S−1∑
t=0

Tr (x↔xt )σs(xt )Li (xt →−~ω)∆t

)
. (7.9)

This is illustrated in Figure 7.3. The most expensive part to compute in Equation 7.9 is the in-

scattered radiance Li , because it involves accounting for all light arriving at each point xt along the

ray from any other point in the scene. Instead of computing these values independently for each

location, volumetric photon mapping gains efficiency by reusing the computation performed

during the photon tracing stage. The in-scattered radiance is approximated using the volumetric

radiance estimate by gathering photons within a small spherical neighborhood of radius r around

each sample location xt ,

Li (xt ,~ω) ≈
k∑

p=1
p(xt ,~ω↔~ωp )

Φp (x→−~ωp )

V(x)
, (7.10)

where V(x) = 4

3
πdk (x)3 is the volume of the sphere containing the nearest k photons. This is

known as the volume radiance estimate and is illustrated in Figure 7.1.
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The Beam Radiance Estimate

“Scattering is easier than gathering.”

—Irish Proverb

THE volumetric photon mapping [Jensen and Christensen, 1998] technique described in

the previous chapter can efficiently simulate scattering in participating media without

making simplifying assumptions about the properties of the medium being rendered. Similar to

the volumetric radiance caching technique developed in Chapter 5, photon mapping handles

isotropic, anisotropic, homogeneous, and heterogeneous media of arbitrary albedo. Photon

mapping gains efficiency by reusing a small collection of photons to estimate in-scattered radiance

at all locations in the scene using density estimation.

Just like in volumetric radiance caching, a ray marching process is used to integrate the

contribution of radiance directly seen by the camera. In volumetric photon mapping, however,

the radiance estimate, which is evaluated at each step during ray marching, requires costly range

queries within the photon map. Minimizing the number of queries is desirable; however, if not

enough sample points are used, the result is likely to be noisy. On the other hand, increasing the

number of sample points is very costly and can slow down rendering significantly. Even with a

fixed number of samples, finding an optimal distribution of sample points along the ray is difficult.

Moreover, the ray marching formulation is suboptimal, firstly because it may gather the same

photons more than once if the spherical neighborhoods overlap and, secondly, because it can

lead to noise if the step size is too large and photons are omitted (see Figure 8.1).

In this chapter we develop a novel radiance estimate technique for participating me-
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Conventional Gathering Beam Gathering

Gathered Other photonsMissedDouble-counted

Figure 8.1: Conventional gathering (left) searches for photons in a sphere around numerous samples along
the ray. This is inefficient because it can double-count photons if the searches overlap (blue) and it can
miss important photons (orange) if the step-size becomes too large. The method described in this chapter
(right) assigns a radius to each photon and performs a single range search to find all photons along the
length of the entire ray.

dia, which eliminates this problem. To accomplish this, we use a theoretical reformulation of

volumetric photon mapping. The technique developed in this chapter replaces the multiple

point-queries performed during ray marching with a single beam-query, which explicitly gathers

all photons along the length of an entire ray. These photons are used to estimate the accumulated

in-scattered radiance arriving from a particular direction and need to be gathered only once per

ray. This method handles both fixed and adaptive kernels, is significantly faster than conventional

volumetric photon mapping, and produces images with less noise.

8.1 Contributions

In this chapter, we propose a novel approach for computing the contribution of in-

scattered radiance. We gather photons along viewing rays and analytically compute their contri-

butions, without point sampling. We present the following contributions:

• We combine the theory from Veach [1997] and Pauly et al. [2000] to derive a reformulation

of volumetric photon mapping as a solution to the measurement equation. This theory

allows for arbitrary measurements of radiance to be computed within participating media,

where a measurement is simply an integral of the radiance multiplied with a weighting
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function.

• Using this new theory, we present an improved radiance estimate for volumetric photon

mapping based on “beam gathering.” This technique eliminates the need for stepping

through the medium to find photons. Instead, it gathers all photons along a ray. We show

how to efficiently implement this new gathering technique for both fixed and adaptive

smoothing kernels and demonstrate that our method produces images with less noise than

conventional photon mapping.

The rest of this chapter is organized as follows. In Section 8.2, we reformulate volumetric

photon mapping in terms of the measurement equation and show how the photon map can be

used to estimate any measurement of radiance within the scene. In Section 8.3, we present our

new beam radiance estimate using this theory and describe the data structures needed to evaluate

it efficiently. Finally, we show comparisons of our approach to conventional photon mapping in

Section 8.4 and discuss avenues of future work in Section 8.5.

8.2 Reformulation of Volumetric Photon Mapping

Our technique queries once for photons along the length of an entire ray, instead of

multiple times near points along the ray (see Figure 8.1). More formally, whereas regular photon

mapping estimates Li at discrete points using Equation 7.10, our main contribution is to directly

estimate

∫ s

0
Tr (x↔xt )σs(xt )Li (xt →~ω)dt (8.1)

along rays.

Though the explanation of photon mapping from the previous chapter is appealing at

an intuitive level, it does not rigorously present the algorithm as a numerical solution to the RTE.

Furthermore, this explanation is heavily tied to the geometric interpretation of gathering photons

within a disc (on surfaces) or within a sphere (in participating media). In order to avoid these

limitations and use the photon map to estimate general radiometric quantities in the volume,
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such as Equation 8.1, we use a more flexible derivation of particle tracing methods presented

by Veach [1997]. We extend this derivation to handle participating media by combining it with

the generalized path integral formulation of the radiative transport equation [Pauly et al., 2000]

(Section 8.2.1) and show how to represent particle tracing algorithms like volumetric photon

mapping in terms of the measurement equation (Sections 8.2.2 and 8.2.3). Finally, we show how

to use the same photon maps to estimate more general quantities of radiance (Section 8.2.4).

8.2.1 Generalized Path Integral Formulation

We use the path integral formulation of the RTE, which arises by recursively expanding

the right hand side of Equation 4.27. Instead of expressing the radiance equilibrium recursively,

the resulting path integral formulation is a sum over light-carrying paths of different lengths. In

order to do this, we define the path space, the corresponding differential measure, and generalized

radiometric terms using notation inspired by Pauly et al. [2000].

A light path x̄l
k is a set of k +1 vertices xi . Each path is classified according to its path

characteristic l ∈N, which determines for each vertex whether it is in the volume or on a surface.

This allows us to integrate over different measures for scattering events at surfaces and within the

volume. We define the path characteristic l of a path x̄l
k such that the ith bit of l , bi (l ), equals 1 if

vertex xi is on a surface and bi (l ) = 0 if it is in the volume. The space of all paths of length k with

characteristic l is therefore:

Xl
k =

{
x̄l

k = x0,x1, . . . ,xk

∣∣∣xi ∈
{
V, if bi (l ) = 0

A, if bi (l ) = 1

}
, (8.2)

for 1 ≤ k < ∞ and 0 ≤ l < 2k+1, and where V and A are the media volume and surface area,

respectively (see Figure 8.2 for an illustration of this notation). We define the corresponding

differential measure at a path vertex xi as:

dµl (xi ) =
{

dV(xi ), if xi ∈V, i.e. when bi (l ) = 0

dA(xi ), if xi ∈A, i.e. when bi (l ) = 1
. (8.3)

Additionally, in order to express Equation 4.27 in terms of paths we need to transform the
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integration domain from solid angle (Ω andΩ4π), to area or volume (A and V) depending on the

type of scattering event. This transformation is achieved using the generalized geometry term:

Ĝ(x↔y) = V (x↔y)Dx(y)Dy(x)σ(x)Tr (x↔y)∥∥x−y
∥∥2 (8.4)

where

Dx(y) =
{

1, if x ∈V
~n(x) ·~ωxy, if x ∈A . (8.5)

We define ~ωxy to be the unit direction vector from x to y, and Dy(x) is defined symmetrically to

Dx(y) for both cases. The visibility function, V , is defined in Equation 2.191. The σ(x) function

returns the scattering coefficient σs(x) if x ∈V and 1 otherwise. Note that Equation 8.4 simplifies

to the regular geometry term if no participating media is present.

Similarly, we generalize scattering events and emitted radiance. We define f̂ to be the

generalized scattering function combining the phase function and the surface BRDF

f̂ (xi ) =
{

p(xi+1→xi →xi−1), if xi ∈V
fr (xi+1→xi →xi−1), if xi ∈A

, (8.6)

and L̂e is the generalized emitted radiance

L̂e (xi →xi−1) =
{
σa (xi )
σs (xi ) Le (xi →xi−1), xi ∈V
Le (xi →xi−1), xi ∈A

, (8.7)

where we multiply by σa
σs

because the emitted radiance in a volume needs to be multiplied by the

absorption, not the scattering, coefficient.

Given this notation, the generalized path integral formulation expresses the outgoing

radiance at x1 towards x0 as a sum over all possible light paths arriving at x1. This includes light

paths of all lengths k, as well as all possible characteristics l for each length

L(x1→x0) =
∞∑

k=1

2k+1−1∑
l=0

L̄(x̄l
k ). (8.8)

1Note that unlike G , to simplify notation we include the visibility function in Ĝ .
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Figure 8.2: An example path, x̄13
3 , with length k = 3. The path characteristic, l = 1101b = 13, concatenates

the type of scattering event from each path vertex. The radiance transported along the path L̄(x̄13
3 ) is the

emitted radiance at the light multiplied by a series of scattering events (blue) and geometry terms (green).

L̄(x̄l
k ) measures the amount of radiance transported along a path x̄l

k and is defined as

L̄(x̄l
k ) =

∫
µl (xk )

· · ·
∫
µl (x2)

L̂e (xk →xk−1)

(
k−1∏
j=1

f̂ (x j )Ĝ(x j+1↔x j )

)
dµl (x2) · · ·dµl (xk ). (8.9)

The radiance transported along an example path is shown in Figure 8.2.

8.2.2 The Measurement Equation

Many global illumination algorithms can be described in terms of the measurement

equation. The measurement equation describes an abstract measurement of incident radiance

taken over some set of rays in a scene:

I = 〈We ,L〉 =
∫
V

∫
Ω4π

We (x→~ω)L(x←~ω)d~ωdV(x). (8.10)

The importance function We represents an abstract measuring sensor and is defined over the

whole ray space V×Ω4π (though typically We is non-zero for only a small subset of this domain).

Path tracing, for instance, measures the contribution of radiance arriving over the area of

a pixel. Radiosity algorithms integrate the contribution of radiance over basis functions defined

on the scene geometry. Both of these approaches can be described using Equation 8.10 with an

appropriate importance function.

In his dissertation, Veach [1997] showed how particle tracing methods for surface illu-
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mination can also be expressed as a solution to the measurement equation by using the path

integral form of the rendering equation. We extend this idea and use the generalized path integral

formulation to describe volumetric photon tracing in the same way.

8.2.3 Volumetric Photon Tracing

Photon tracing methods can be thought of as a way of generating samples from the scene’s

equilibrium radiance distribution and then using this single collection of samples to render the

entire image. The photon tracing stage generates N weighted sample rays, or photons, (αi ,xi ,~ωi ),

where each (xi ,~ωi ) is a ray and αi is a corresponding weight. Our goal is to use these samples to

take unbiased estimates of the radiance as a weighted sum,

E

[
1

N

N∑
i=1

We (xi →~ωi )αi

]
= 〈We ,L〉, (8.11)

for an arbitrary importance function We . We must therefore determine the proper distribution of

samples for Equation 8.11 to hold.

We start by manipulating the measurement equation on the right-hand side. To ex-

press the measurement equation using paths, we expand Equation 8.10 in terms of the outgoing

radiance and convert to area form, introducing an additional geometry term,

〈We ,L〉 =
∫
µl (x1)

∫
µl (x0)

We (x0→x1)L(x1→x0)Ĝ(x1↔x0) dµl (x0) dµl (x1). (8.12)

By combining with Equations 8.8 and 8.9 and moving the summations outside the integrals, this

becomes

∞∑
k=1

2k+1−1∑
l=0

[∫
µl (xk )
· · ·

∫
µl (x0)

We (x0→x1) L̂e (xk →xk−1)

(
k−1∏
j=1

f̂ (x j )Ĝ(x j+1↔x j )

)
Ĝ(x1↔x0)dµl (x0) · · ·dµl (xk )

]
.

The Monte Carlo estimator for this expression using N samples is

E

[
1

N

N∑
i=1

We (xi ,0→xi ,1)Ri

]
, (8.13)
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where each Ri is a random-walk path of length ki generated using Russian roulette,

Ri =
L̂e (xi ,ki →xi ,ki−1 )

pdf (xi ,ki ,xi ,ki−1)

ki−1∏
j=1

(
1

qi , j

f̂ (xi , j )Ĝ(xi , j+1↔xi , j )

pdf (xi , j−1)

)
Ĝ(xi ,1↔xi ,0), (8.14)

and qi , j was the probability of terminating Ri at the j th vertex. Comparing Equation 8.13 with 8.11

we see that in order to satisfy the requirements we need to set αi = Ri .

Connection to Conventional Photon Tracing. Though derived in a different fashion, Equa-

tion 8.14 is exactly how conventional photon mapping distributes photons within the scene.

For instance, for a diffuse area light, photons are emitted using a cosine distribution with the

power of the light source. In Equation 8.14, photons are emitted with the radiance of the light

source divided by the pdf of choosing a position and direction on the light. These quantities are

equivalent. Hence the particles generated above represent differential flux. The correspondence

between the photon powers [Jensen and Christensen, 1998] and the sample weights is ∆Φi = αi
N .

8.2.4 Radiance Estimation Using the Measurement Equation

The main advantage of the reformulation in Section 8.2.3 is that it naturally accom-

modates computation of any measurement of radiance within the scene simply by using an

appropriately defined importance function We . In this section, we first show how the conven-

tional estimate for in-scattered radiance can be expressed as a measurement. We then go one

step further and show how to derive a beam radiance estimate which approximates Equation 8.1

along rays directly.

Conventional Radiance Estimate. The conventional radiance estimate approximates the value

of the in-scattered radiance Li at fixed points within the scene. To express this using the theory

from Section 8.2, we need to transform Equation 4.13 into the measurement equation. Since the

measurement equation is an integral over all of ray space (V×Ω4π), we artificially expand Li to
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also integrate over the volume

Li (xt →~ω) =
∫
Ω4π

p(xt ,~ω↔~ωt)L(xt ←~ωt)d~ωt (8.15)

=
∫
V

∫
Ω4π

δ(‖x′−xt‖) p(x′,~ω↔~ωt)L(xt ←~ωt)d~ωt dV(x′).

In order to keep the expressions equivalent when we add the integration over volume, we also

introduce a Dirac delta function δ.

The bottom row of the above equation is now the measurement equation, where We =
δ(‖x′−xt‖)p(x′,~ω↔~ωt). Hence we can compute an unbiased estimate using the photon map by

evaluating Equation 8.11 with this importance function. However, in order to obtain a useful

estimate of radiance at all points in the scene, a normalized kernel function is used in place of

the delta function. This is where bias is introduced in the photon mapping method. Another

interpretation is that by replacing the delta function with a kernel, photon mapping computes

an unbiased estimate of blurred radiance. Jensen and Christensen [1998] use a constant three-

dimensional kernel with a radius based on the kth nearest neighbor. This results in the following

radiance estimate by applying Equation 8.11

Li (xt →~ω) ≈
∫
V

∫
Ω4π

Kt (‖x′−xt‖) p(x′,~ω↔~ωt)L(xt ←~ωt)d~ωt dV(x′), (8.16)

≈ 1

N

N∑
i=1

Kt (‖xi −xt‖) p(xi ,~ω↔~ωi)αi (8.17)

where the kernel Kt is defined as

Kt (r ) =
{

3
4πdk (xt )3 if r ∈ [0,dk (xt )]

0 otherwise
, (8.18)

and dk (xt ) is the distance from xt to the kth nearest photon. Note that this is equivalent to the

conventional volumetric radiance estimate in Equation 7.10.

Beam Radiance Estimate. A similar procedure can be used to derive an estimate for the accu-

mulated in-scattered radiance along an entire ray. To accomplish this, we first expand out Li
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Figure 8.3: In the beam radiance estimate, x′ is parametrized in cylindrical coordinates, (t ,θ,r ), about the
ray (x,~ω). An unbiased estimate would only consider points directly on the ray, while a biased version uses
a kernel (shown in grey) to blur the radiance within a beam.

in Equation 8.1 and then artificially inflate the resulting expression to integrate over the whole

volume:

∫ s

0

∫
Ω4π

Tr (x↔xt)σs(xt) p(xt ,~ω↔~ωt)L(xt ←~ωt)d~ωt d t = (8.19)∫
R

∫ 2π

0

∫
R

∫
Ω4π

δ(r ) (H(t )−H(t − s))Tr (x↔x′)σs(x′) p(x′,~ω↔~ωt)L(x′←~ωt)d~ωt dr dθdt . (8.20)

R is the set of real numbers and x′ is expressed in cylindrical coordinates, (t ,θ,r ), about (x,~ω),

where r is the radius to the ray (see Figure 8.3). We have added a Dirac delta function δ as

before, and the Heaviside step functions (H(x) = 1 when x > 0 and 0 otherwise) constrain the

computation to t ∈ (0, s). Equation 8.20 is now equivalent to the measurement equation, where the

integral over volume has been converted into cylindrical coordinates and where We = δ(r )(H (t )−
H(t − s))Tr (x↔x′)σs(x′)p(x′,~ω↔~ωt).

Since the probability of photons landing exactly on the ray (x,~ω) is zero, we introduce

bias by blurring the radiance and replacing the delta and step functions with a smooth kernel, K .

This integral can then be estimated with the measurement equation using the photons as

∫
R

∫ 2π

0

∫
R

∫
Ω4π

K (t ,θ,r )Tr (x↔x′)σs(x′) p(x′,~ω↔~ωt)L(x′←~ωt)d~ωt dr dθdt =

1

N

N∑
i=1

K (ti ,θi ,ri )Tr (x↔xi )σs(xi ) p(xi ,~ω↔~ωi)αi , (8.21)

where (ti ,θi ,ri ) = xi are the cylindrical coordinates of photon i about the ray.

The blurring in the conventional radiance estimate is spherical, and so the kernel needs
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Figure 8.4: After photons have been distributed in the scene, our algorithm constructs a balanced kd-tree
(left). We assign a valid radius to each photon by querying in the kd-tree (middle). Finally, we rapidly
construct a bounding-box hierarchy over the photon-discs (right) by reusing the same hierarchical structure
(shown in red) as the kd-tree.

to be normalized for 3D. However, with the beam radiance estimate, we blur in two dimensions

(perpendicular to the ray) since the radiance we are computing already includes the integration

along the ray itself. Therefore, the kernel in the beam estimate is normalized for 2D.

8.2.5 Kernel Radiance Estimation

For both the conventional and beam radiance estimates, the characteristics of the bias

and blur are determined by the smoothing function chosen. Several options exist for applying a

smoothing kernel to the photon map data.

The kernel method uses a fixed-radius smoothing kernel and results in a uniform blur of

radiance within the scene. In practice, using a fixed-width circular kernel implies that in order

to evaluate the beam radiance estimate (Equation 8.21) using the photon map (Equation 8.11)

we only need to consider photons which are located within a fixed-radius cylinder about the ray

(x,~ω). Alternatively, the equivalent dual interpretation considers each photon as the center of an

oriented disc facing the ray and all photon-discs that intersect the ray need to be found.

If the density of photons varies significantly it can be difficult to choose a single radius

that works well for all regions of the scene. This can be solved by allowing the size and shape of

the blurring kernel to vary spatially. In conventional photon mapping, the kth nearest neighbor

method (k-NN) is used to adapt the kernel width to the local density. Generalizing point-based

k-NN to a visually comparable range search along rays is challenging. However, spatial variation
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can easily be applied to the dual photon-discs interpretation using the variable kernel method

(VK) [Breiman et al., 1977]. A smoothing kernel is “attached” to each photon, and the radius of the

kernel is allowed to vary from one photon to another, based on the local density. In contrast to

k-NN estimation, where the kernel widths vary based on the distance from the evaluation location

to the data points, in the VK method the kernel widths only depend on the data points themselves.

In order to facilitate this, the method relies on a pilot estimate of the local density at each data

point in order to assign the kernel widths. We review these and other density estimation methods

in more detail in Appendix C. This is the approach we take.

8.3 Algorithm

In order to use the dual interpretation to evaluate the beam radiance estimate (Equa-

tion 8.21), we need an efficient way of locating all photon-discs that intersect an arbitrary ray.

Additionally, to use variable width kernels we need to efficiently compute a radius for each photon

in the photon map. At a high level, our volumetric photon mapping technique performs the five

steps in Algorithm 8.1. Steps 1 and 2 are identical to conventional photon mapping, while 3–5 are

unique to our approach and are explained in more detail below.

Photon Radius Computation. We augment the traditional photon map by associating a radius

with each photon. For fixed width kernels the radius is a constant for all photons and does not

need to be explicitly stored. For variable width kernels using the VK method, we perform a density

estimation at each photon to assign a radius. At each photon we compute the local density by

estimating the distance to the kth nearest photon and use this as the photon-disc’s radius. This

pilot estimate is performed using the photon map kd-tree. The value k plays the same role as in

the conventional radiance estimate: it controls the amount of blur.

As an optimization, we only search for the nearest n ¿ k photons and estimate the

necessary radius for k photons. By assuming locally uniform photon density, if dn(xi ) is the

distance to the nth photon from photon i , we estimate the radius as ri = dn(xi ) 3
√

k
n . The n

parameter controls the sensitivity of the computed radius to the local variation in density. Very

small values of n, n < 5, can produce noisy radii, which change drastically between neighboring



140

Algorithm 8.1: Beam photon mapping.

Shoot photons from light sources.1

Construct a balanced kd-tree for the photons.2

Assign a radius for each photon.3

Construct a bounding-box hierarchy over the photon-discs.4

Use the photon BBH to render the image.5

photons, while large values are more expensive to compute. In practice, we have found that

n = p
k works well as a default value, and this value was used for all our scenes, significantly

accelerating the preprocessing step.

Bounding Box Hierarchy Construction. In order to efficiently locate all photons-discs which

intersect a ray, we construct a bounding box hierarchy. Heuristics for constructing efficient BBHs

have been extensively studied within the context of ray tracing [Wald et al., 2007]. However, the

performance characteristics of our ray intersections are different than for regular ray tracing since

we are interested in all intersections, not just the first intersection along a ray. Furthermore, the

best heuristics tend to induce long construction times. We employ a rapid construction scheme

by exploiting the information in the photon map kd-tree and reusing that hierarchy for our BBH.

For each photon in the photon map, we compute the bounding box of all descendant

photon-discs. The bounding box of each node encloses the node’s photon radius and the bounding

boxes of its two child nodes. The computation starts at the leaves and propagates upwards through

the tree. This procedure results in a balanced median-split-style BBH, but unlike traditional BBHs

our hierarchy contains photons at interior nodes, not just at the leaves. Figure 8.4 illustrates the

relationship between the kd-tree and the BBH. The BBH can be constructed by passing the root of

the photon map kd-tree to Algorithm 8.2.

Given a balanced kd-tree, this linear-time construction procedure is extremely fast and

produces BBHs which can be efficiently traversed for nearby photons during rendering. After the

BBH is constructed the photon map kd-tree is no longer used and can be freed from memory.

Using a BBH and a per-photon radius, an additional seven floating-point values need to be stored,

increasing the size of each photon from 20 bytes to 46 bytes.
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Algorithm 8.2: CONSTRUCTBBH(p)

Data: p is a node in a balanced photon map.
Result: The subtree at p contains a valid BBH.
begin1

B ⇐ BOUNDINGBOX(p.position, p.radius);2

if p.leftChild then3

B ⇐ B ∪ CONSTRUCTBBH(p.leftChild);4

end5

if p.rightChild then6

B ⇐ B ∪ CONSTRUCTBBH(p.rightChild);7

end8

p.bbox ⇐ B ;9

return B10

end11

The Beam Radiance Estimate. During rendering we estimate the accumulated in-scattered

radiance (Equation 8.1) along viewing rays by locating all photons whose bounding spheres

intersect the ray. These photons are found using a standard ray-BBH intersection traversal. The

contribution from each photon (αi ,xi ,~ωi ) is accumulated using Equation 8.21; however, with the

variable kernel method, a kernel Ki is defined per photon. This leads to the following radiance

estimate

1

N

N∑
i=1

Ki (x,~ω, s,xi ,ri )Tr (x↔x′i )σs(x′i ) p(xi ,~ω↔~ωi)αi , (8.22)

Table 8.1: Rendering parameters and timings, in seconds, (s), and minutes, (m), for all example scenes.
Statistics relating to the photon tracing preprocess are shown in the first set of columns. We compare
our beam radiance estimate method (B) to conventional photon mapping (C) with both a fixed width
kernel and an adaptive width kernel. The r column represents the fixed-width kernel radius, while r+ is the
maximum search radius and the number of nearest neighbors is k.

Photon Tracing Preprocess Fixed Radius Render Adaptive Radius Render

Scene N Shoot (s) Balance (s) Radius (s) r ∆t C (m) B (m) r+ k ∆t C (m) B (m)

Cornell 0.4M 1.50 0.30 2.0 0.4 0.40 3:19 3:00 0.6 1.5K 0.80 4:03 3:35
Stage 1M 3.25 0.76 5.0 0.3 0.20 4:21 4:15 0.5 0.5K 0.70 6:38 6:22
Cars 2M 19.0 1.50 2.0 0.4 1.25 1:30 1:30 0.5 1K 1.25 2:02 1:53
Lighthouse 1M 2.83 0.78 6.0 0.4 0.25 1:07 0:59 0.5 0.4K 1.00 1:12 1:05
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where x′i = x+ ti~ω is the projection of the photon location xi onto the ray’s direction ~ω, and

ti = (xi −x) ·~ω. We define the kernel as

Ki (x,~ω, s,xi ,ri ) =
{

r−2
i K2

(
di
ri

)
if di ∈ [0,ri ]

0 otherwise
, (8.23)

where ri is the pre-computed radius for photon i . We use Silverman’s two-dimensional biweight

kernel [Silverman, 1986] along the ray, K2(x) = 3π−1(1− x2)2, where di is the shortest distance

from photon i to the ray. We chose this kernel because it is smooth, efficient to evaluate, and

has local support. Equation 8.22 is the beam radiance estimate, and it replaces the ray marching

computation from conventional photon mapping (second term in Equation 7.9).

Heterogeneous Media. For homogeneous media, the transmission terms, Tr (x↔x′i ), can be

computed explicitly for each photon during gathering. Beam gathering in heterogeneous media

can also be handled efficiently by first marching along the ray and saving the transmission

values in a 1D lookup table. Then, during gathering, each photon’s transmission is computed

by interpolating within the lookup table. This preprocess needs to be performed independently

for each ray, just prior to gathering, so the lookup table can be reused. Furthermore, if single

scattering is simulated separately by directly sampling light sources, the lookup table can be

populated during this marching step.

8.4 Results

We compared our beam gathering technique against conventional volumetric photon

mapping using ray marching. In order to isolate just the performance of the photon gathering

methods, we use the photon map for both single and multiple scattering. We compared results on

four test scenes: Cars, Lighthouse, Stage, and a Cornell box. For each scene we compare using a

fixed gathering radius for both types of estimates, and we also compare the conventional estimate

using k-NN to the beam estimate using the VK method. The images were all rendered with a

maximum dimension of 1024 pixels with up to four samples per pixels on an Intel Core 2 Duo 2.4

GHz machine using one core.
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Approx. Equal Time

k-NN (6:38) Fixed (4:21)

Conventional Radiance Estimate
Reference Solution

k-NN (5:18:33) Fixed (2:38:57)

Beam Radiance Estimate

Adaptive (6:22) Fixed (4:15)

Figure 8.5: A comparison between the convention radiance estimate and our beam radiance estimate
on the Stage scene with render times provided as (hours:minutes:seconds). Our method (right) produces
images with much less noise than an equal time rendering using conventional volumetric photon mapping
(middle) for both a fixed radius and an adaptive radius gathering approach. Our method does not require
stepping but matches the quality of conventional photon mapping if a very small step size is used (left).

In our experimental setup, we first choose suitable gathering parameters (search radius

and number of nearest neighbors k) and render the scenes using our method. We then use

the same parameters using conventional photon mapping but tune the minimum step-size ∆t

to obtain approximately equal render times. Note that ∆t is the minimum step-size and that

exponential stepping is used to sample the ray according to transmission. Finally, we render a

high-quality result with conventional photon mapping using a very small step size as a “reference.”

We show visual comparisons of the methods in Figures 8.5 and 8.6. All images of each

scene are rendered using the same photon map. The only differences in quality and performance

are due to the gathering method used. We used the Henyey-Greenstein phase function for all

Table 8.2: Medium scattering properties and photon tracing statistics for the four example scenes. N is the
total number of photons stored.

Medium Parameters Photon Tracing

Scene σs σa g N Shoot (s) Balance (s) Radius (s)

Cornell 0.225 0.225 0.00 0.4M 1.50 0.30 2.0
Stage 0.225 0.225 0.75 1M 3.25 0.76 5.0
Cars 0.06 0.015 0.00 2M 19.0 1.50 2.0
Lighthouse 0.24 0.010 0.75 1M 2.83 0.78 6.0
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scenes. The render times, gathering parameters and timings for constructing the photon maps

are listed in Table 8.1. We report the scattering parameters for all the example scenes in Table 8.2.

In all cases, our method produces significantly higher-quality images than conventional

photon mapping. This is because querying once for all photons along a ray is more efficient than

repeatedly querying for photons near numerous samples along the ray. Not surprisingly, we see

that the reduced blurring of the adaptive kernel gathering methods is essential for scenes like the

Stage and Lighthouse, where concentrated beams of light are visible. However, at the same render

time, this advantage is difficult to discern in the conventional photon mapping images.

Though the k-NN and VK methods both adapt the width of the kernel to the local photon

density, they are distinct approaches which result in similar, but not identical, density estimates.

This is what accounts for the small differences in blurring between our adaptive results and the

k-NN “reference” images. However, as our results show, the same value of k produces visually

comparable renderings using the two methods.

8.5 Summary and Discussion

In this chapter, we showed how volumetric photon mapping can be expressed as a solution

to the measurement equation. This formulation showed that any measurement of radiance within

participating media can be estimated using the photon map. We applied this formulation by

using the photon map to directly estimate accumulated in-scattered radiance along rays. This

approach was implemented using an efficient beam gathering method, which can be used for

both fixed and adaptive width kernels. The resulting algorithm produces images with significantly

less noise than conventional volumetric photon mapping using the same render time.

8.6 Acknowledgements

This chapter is, in part, a reproduction of the material published in Wojciech Jarosz,

Matthias Zwicker, and Henrik Wann Jensen. “The Beam Radiance Estimate for Volumetric Photon

Mapping.” In Computer Graphics Forum (Proceedings of Eurographics 2008), 27(2):557–566,

2008; as well as the extended technical report Wojciech Jarosz, Matthias Zwicker, and Henrik



145

k-NN (14:00) Fixed (11:00) k-NN (2:02) Fixed (1:30)

Fi
xe

d
k-

N
N

/A
da

pt
iv

e

Adaptive (1:53) Fixed (1:30)

Approx. Equal Time
Conventional Radiance Estimate

Reference Solution
Beam Radiance Estimate

k-NN (52:45) Fixed (18:37) k-NN (1:12) Fixed (1:07)

Fi
xe

d
k-

N
N

/A
da

pt
iv

e

Adaptive (1:05) Fixed (0:59)

k-NN (16:23) Fixed (14:43) k-NN (4:03) Fixed (3:19) Adaptive (3:35) Fixed (3:00)

Figure 8.6: Visual comparison for the Cornell box, Cars, and Lighthouse scenes.
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9
Conclusions

“This is not the end. It is not even the beginning of the
end. But it is, perhaps, the end of the beginning.”

—Winston Churchill, 1874–1965

IN this dissertation we sought to develop efficient algorithms for simulating light transport

within arbitrary participating media. We provided missing derivations for the split-sphere

model, which is central to the success of the irradiance caching algorithm. We also provided full

derivations of the irradiance gradient computation, extended them to participating media, and

have developed a reformulation of the volumetric photon mapping method. These theoretical

examinations have provided insights which have directly led to several significant steps towards

our goal.

We introduced two concrete approaches for efficient light transport within participating

media: volumetric radiance caching and volumetric photon mapping using beam radiance

estimation. These techniques share many similarities. Both approaches are based around a

Monte Carlo ray tracing framework. This grants the algorithms a level of generality which is not

attainable with finite element or analytic methods. Both methods also exploit the smooth nature

of illumination within participating media by reusing illumination computations across the scene.

This property is key to the efficiency of the methods. The techniques impose no restrictions on

the properties and representation of the medium being rendered. They can efficiently compute

single and multiple scattering in heterogeneous media with anisotropic phase functions.

We have also introduced improvements to the irradiance caching method to properly

account for participating media. We derived gradients of the radiative transfer equation which

147
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correctly account for scatter, absorption, and emission, and which incorporate changes in occlu-

sion. This allows irradiance caching to be used effectively even in scenes containing participating

media.

Volumetric radiance caching and photon mapping also contain significant differences.

Radiance caching is a view-dependent approach which only computes lighting within the visible

portion of the scene. This makes the algorithm well suited for scenes with a large extent or scenes

where only a very small portion of the scene is visible to the camera. In contrast, photon mapping

simulates lighting within the whole scene. This can be a significant drawback if there are many

light sources that do not contribute much to the chosen view. On the other hand, photon mapping

is the only available method which can efficiently simulate volumetric caustics. These differences

actually provide a great benefit by making the approaches complementary. We believe a more

general and robust algorithm can be achieved by using volumetric radiance caching as a final

gather pass for photon mapping. The photon mapping reformulation we presented also suggests

interesting possibilities for other custom-designed radiance estimates. A final gather radiance

estimate could be designed which collects photons along all hemispherical beams instead of just

along the beam of a single ray.



A
Monte Carlo Integration

THE techniques developed in this dissertation are all Monte Carlo methods. Monte Carlo

methods are numerical techniques which rely on random sampling to approximate their

results. Monte Carlo integration applies this process to the numerical estimation of integrals. In

this appendix we review the fundamental concepts of Monte Carlo integration upon which our

methods are based. From this discussion we will see why Monte Carlo methods are a particularly

attractive choice for the multidimensional integration problems common in computer graphics.

Good references for Monte Carlo integration in the context of computer graphics include Pharr

and Humphreys [2004], Dutré et al. [2006], and Veach [1997].

The term “Monte Carlo methods” originated at the Los Alamos National Laboratory in

the late 1940s during the development of the atomic bomb [Metropolis and Ulam, 1949]. Not

surprisingly, the development of these methods also corresponds with the invention of the first

electronic computers, which greatly accelerated the computation of repetitive numerical tasks.

Metropolis [1987] provides a detailed account of the origins of the Monte Carlo method.

Las Vegas algorithms are another class of method which rely on randomization to compute

their results. However, in contrast to Las Vegas algorithms, which always produce the exact or

correct solution, the accuracy of Monte Carlo methods can only be analyzed from a statistical

viewpoint. Because of this, we first review some basic principles from probability theory before

formally describing Monte Carlo integration.

149
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A.1 Probability Background

In order to define Monte Carlo integration, we start by reviewing some basic ideas from

probability.

A.1.1 Random Variables

A random variable X is a function that maps outcomes of a random process to numbers. A

random variable can be either discrete (e.g., the roll of a six-sided die where a fixed set of outcomes

is possible, X = {1,2,3,4,5,6}), or continuous (e.g., a person’s height, which can take on real values

R). In computer graphics we more commonly deal with continuous random variables which take

on values over ranges of continuous domains (e.g., the real numbers R or the sphere of directions

Ω).

A.1.2 Cumulative Distributions and Density Functions

The cumulative distribution function, or CDF, of a random variable X is the probability

that a value chosen from the variable’s distribution is less than or equal to some thresold x:

cdf (x) = Pr {X ≤ x} . (A.1)

The corresponding probability density function, or PDF, is the derivative of the CDF:

pdf (x) = d

d x
cdf (x). (A.2)

CDFs are always monotonically increasing, which means that the PDF is always non-negative.

An important relationship arises from the above two equations, which allows us to compute the

probability that a random variable lies within an interval:

Pr {a ≤ X ≤ b} =
∫ b

a
pdf (x) dx. (A.3)
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From this expression it is clear that the PDF must always integrate to one over the full extent of its

domain.

A.1.3 Expected Values and Variance

The expected value or expectation of a random variable Y = f (X ) over a domain µ(x) is

defined as

E [Y ] =
∫
µ(x)

f (x)pdf (x) dµ(x), (A.4)

while its variance is

σ2[Y ] = E
[
(Y −E [Y ])2] , (A.5)

where σ, the standard deviation, is the square root of the variance. From these definitions it is

easy to show that for any constant a,

E [a Y ] = a E [Y ], (A.6)

σ2[a Y ] = a2σ2[Y ]. (A.7)

Furthermore, the expected value of a sum of random variables Yi is the sum of their expected

values:

E

[∑
i

Yi

]
=∑

i
E [Yi ]. (A.8)

From these properties it is possible to derive a simpler expression for the variance:

σ2[Y ] = E
[
Y 2]−E [Y ]2 . (A.9)
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Additionally, if the random variables are uncorrelated, a summation property also holds for the

variance1:

σ2

[∑
i

Yi

]
=∑

i
σ2[Yi ]. (A.10)

A.2 The Monte Carlo Estimator

The Basic Estimator. Monte Carlo integration uses random sampling of a function to numeri-

cally compute an estimate of its integral. Suppose that we want to integrate the one-dimensional

function f (x) from a to b:

F =
∫ b

a
f (x) dx. (A.11)

We can approximate this integral by averaging samples of the function f at uniform random points

within the interval. Given a set of N uniform random variables Xi ∈ [a,b) with a corresponding

PDF of 1/(b −a), the Monte Carlo estimator for computing F is

〈
F N 〉= (b −a)

1

N −1

N∑
i=0

f (Xi ), (A.12)

The random variable Xi ∈ [a,b) can be constructed by warping a canonical random number

uniformly distributed between zero and one, ξi ∈ [0,1):

Xi = a +ξi (b −a). (A.13)

Using this construction, we can expand the estimator to:

〈
F N 〉= (b −a)

1

N

N−1∑
i=0

f (a +ξi (b −a)) . (A.14)

1This property is often made with the stronger condition that the variables are independent; however, it suffices for
them to be uncorrelated.
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Since
〈

F N
〉

is a function of Xi , it is itself a random variable. We use this notation to clarify that〈
F N

〉
is an approximation of F using N samples.

Intuitively, the Monte Carlo estimator in Equation A.12 computes the mean value of the

function f (x) over the interval a to b, and then multiplies this mean by the length of the interval

(b − a). By moving (b − a) into the summation, the estimator can be thought of as choosing a

height at a random evaluation of the function and averaging a set of rectangular areas computed

by multiplying this height by the interval length (b −a). These two interpretations are illustrated

in Figure A.1.

A.2.1 Expected Value and Convergence

It is easy to show that the expected value of
〈

F N
〉

is in fact F :

E
[〈

F N 〉]= E

[
(b −a)

1

N

N−1∑
i=0

f (Xi )

]
,

= (b −a)
1

N

N−1∑
i=0

E
[

f (Xi )
]

, from Equations A.8 and A.6

= (b −a)
1

N

N−1∑
i=0

∫ b

a
f (x)pdf (x) dx, from Equation A.4

= 1

N

N−1∑
i=0

∫ b

a
f (x) dx, since pdf (x) = 1/(b −a)

=
∫ b

a
f (x) dx,

= F. (A.15)

Furthermore, as we increase the number of samples N , the estimator
〈

F N
〉

becomes a closer and

closer approximation of F . Due to the Strong Law of Large Numbers, in the limit we can guarantee

that we have the exact solution:

Pr

{
lim

N→∞
〈

F N 〉= F

}
= 1. (A.16)

In practice we are interested in knowing just how quickly this estimate converges to a
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Figure A.1: An illustration of the two interpretations of the basic Monte Carlo estimator in Equation A.12
using four samples: computing the mean value, or height, of the function and multiplying by the interval
length (top), or computing the average of several rectangular areas (bottom).

sufficiently accurate solution. This can be analyzed by determining the convergence rate of the

estimators variance. In the next section we will show that the standard deviation is proportional

to:

σ
[〈

F N 〉]∝ 1p
N

. (A.17)

Unfortunately, this means that we must quadruple the number of samples in order to reduce the

error by half!

Standard integration techniques exist which converge much faster in one dimension;

however, these techniques suffer from the curse of dimensionality, where the convergence rate

becomes exponentially worse with increased dimensions. The basic Monte Carlo estimator above

can easily be extended to multiple dimensions, and, in contrast to deterministic quadrature

techniques, the convergence rate for Monte Carlo is independent of the number of dimensions

in the integral. This makes Monte Carlo integration the only practical technique for many high

dimensional integration problems, such as those encountered when computing global illumina-

tion.
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A.2.2 Multidimensional Integration

Monte Carlo integration can be generalized to use random variables drawn from arbitrary

PDFs and to compute multidimensional integrals, such as

F =
∫
µ(x)

f (x) dµ(x), (A.18)

with the following modification to Equation A.12:

〈
F N 〉= 1

N

N−1∑
i=0

f (Xi )

pdf (Xi )
. (A.19)

It is similarly easy to show that this generalized estimator also has the correct expected value:

E
[〈

F N 〉]= E

[
1

N

N−1∑
i=0

f (Xi )

pdf (Xi )

]
,

= 1

N

N−1∑
i=0

E

[
f (Xi )

pdf (Xi )

]
,

= 1

N

N−1∑
i=0

∫
Ω

f (x)

pdf (x)
pdf (x) dx,

= 1

N

N−1∑
i=0

∫
Ω

f (x) dx,

=
∫
Ω

f (x) dx,

= F. (A.20)

In addition to the convergence rate, a secondary benefit of Monte Carlo integration over

traditional numerical integration techniques is the ease of extending it to multiple dimensions.

Deterministic quadrature techniques require using N d samples for a d-dimensional integral.

In contrast, Monte Carlo techniques provide the freedom of choosing any arbitrary number of

samples.

As mentioned previously, the Monte Carlo estimator has a constant O(
p

N ) convergence

rate in any dimension. However, in many situations it is possible to do much better. The efficiency

of Monte Carlo integration can be significantly improved using a variety of techniques, which we
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discuss in the next section.

A.3 Variance Reduction

Sources of Variance. In order to improve the quality of Monte Carlo integration we need to

reduce variance. Since the samples in Monte Carlo integration are independent, using Equa-

tion A.10, the variance of
〈

F N
〉

can be simplified to:

σ2 [〈
F N 〉]=σ2

[
1

N

N−1∑
i=0

f (Xi )

pdf (Xi )

]

= 1

N 2

N−1∑
i=0

σ2
[

f (Xi )

pdf (Xi )

]

= 1

N 2

N−1∑
i=0

σ2 [Yi ]

= 1

N
σ2 [Y ] , (A.21)

and hence,

σ
[〈

F N 〉]= 1p
N
σ [Y ] , (A.22)

where Yi = f (Xi )/pdf (Xi ) and Y represents the evaluation of any specific Yi , e.g., Y = Y1.

This derivation proves our earlier statement that the standard deviation converges with

O(
p

N ). Moreover, this expression shows that by reducing the variance of each Yi we can reduce

the overall variance of
〈

F N
〉

.

Variance-reduction techniques try to make each Yi as constant as possible in order to

reduce the overall error of the estimator. A significant amount of research has been put into this

area, leading to a number of complementary techniques. Most of these methods rely on exploiting

some previous knowledge of the function being integrated.
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A.3.1 Importance Sampling

Importance sampling reduces variance by observing that we have the freedom to choose

the PDF used during integration. By choosing samples from a distribution pdf (x), which has a

similar shape as the function f (x) being integrated, variance is reduced. Intuitively, importance

sampling attempts to place more samples where the contribution of the integrand is high, or

“important.” If we can properly guess the important regions during integration, the variance of

the standard Monte Carlo estimator can be significantly reduced.

The Perfect Estimator

To demonstrate the effect of importance sampling, consider a PDF which is exactly

proportional to the function being integrated, pdf (x) = c f (x) for some normalization constant c .

Since c is a constant, if we apply this PDF to the Monte Carlo estimator in Equation A.19, each

sample Xi would have the same value,

Yi = f (Xi )

pdf (Xi )
= ���f (Xi )

c���f (Xi )
= 1

c
. (A.23)

By using this PDF we have succeeded at reducing the variance of each Yi . In fact, since each Yi

returns the same value, the overall variance is zero!

Since the PDF must integrate to one, it is easy to derive the value of c:

c = 1∫
f (x) d x

. (A.24)

This unfortunately shows us that determining the normalization constant c in the PDF involves

solving the integral we are interested in estimating in the first place. This best case is therefore

not a realistic situation. In practice, all validly constructed PDFs will still produce a convergence

rate of σ∝p
N ; however, by choosing a PDF that is similar to f (x), we can make the variance

arbitrarily low.

The only restriction on the PDF, in order to maintain the correct expected value from

Equation A.20, is that it must be non-zero everywhere where the function f (x) is non-zero.
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Figure A.2: Comparison of three probability density functions. The PDF on the right provides variance
reduction over the uniform PDF in the center. However, using the PDF on the left would significantly
increase variance over simple uniform sampling.

Importance sampling should not be used carelessly however. Though we can decrease the

variance by using a “good” importance function, we can also make the variance arbitrarily large

by choosing an importance function that increases the variance of Y . Figure A.2 shows a uniform

PDF, as well as examples of PDFs which reduce and increase the overall variance.

Importance Sampling Complex Functions

Most of the time, the integrand f (x) is very complicated, and we cannot guess its full

behavior ahead of time. However, we may know something about its general structure. For

instance, the integrand function f (x) may in fact be the combination of more than one function,

e.g., f (x) = g (x)h(x). In these situations, it may not be possible to create a PDF exactly propor-

tional to f (x), but, if we know one of the functions in advance, we may be able to construct a

PDF proportional to a portion of f (x), e.g., pdfg (x) ∝ g (x). In this situation, the Monte Carlo

estimator simplifies to:

〈
F N 〉= 1

N

N−1∑
i=0

f (Xi )

pdfg (Xi )
,

= 1

N

N−1∑
i=0

g (Xi )h(Xi )

c g (Xi )
,

= 1

c N

N−1∑
i=0

h(Xi ). (A.25)

Since h(x) will in general be smoother than the full g (x)h(x), the variance of the Monte Carlo

estimator is reduced.
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Multiple Importance Sampling

What if we could also create a PDF which is proportional to h(x), pdfh ∝ h(x)? Should we

sample according to pdfh or pdfg ? As it turns out, we don’t have to choose. We can benefit from

distributing samples independently from each PDF and combining the results using multiple

importance sampling [Veach and Guibas, 1995; Veach, 1997].

A.3.2 Control Variates

Control variates is another variance-reduction technique which relies on some prior

knowledge of the behavior of f . The idea behind control variates is to find a function g which can

be analytically integrated and subtract it from the integral of f :

F =
∫ b

a
f (x) dx,

=
∫ b

a
f (x)− g (x) dx +

∫ b

a
g (x) dx,

=
∫ b

a
f (x)− g (x) dx +G . (A.26)

We can then apply Monte Carlo integration to the modified integrand f (x)− g (x):

〈
F N

c

〉= (
1

N

N−1∑
i=0

f (Xi )− g (Xi )

pdf (Xi )

)
+G , (A.27)

where the value of the integral G is known exactly.

If f (Xi ) and g (Xi ) are correlated, then the variance of
〈

F N
〉

is reduced. For control

variates, g should be chosen so that f − g is nearly constant. In contrast, with importance

sampling we tried to choose a PDF, pdf = g , so that f /g was nearly constant.

As with importance sampling, we can obtain optimal results by choosing a g such that

Yi = f (Xi )− g (Xi )

pdf (Xi )
(A.28)

is a constant. Unfortunately, this again requires knowledge of the true integral F .
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Another way to think about control variates is by rewriting Equation A.27 as

〈
F N

c

〉= (
1

N

N−1∑
i=0

f (Xi )

pdf (Xi )

)
+

(
G − 1

N

N−1∑
i=0

g (Xi )

pdf (Xi )

)
,

= 〈
F N 〉+G −〈

GN 〉
, (A.29)

where the same set of random samples Xi are used in both summations. Using this formulation,

control variates can be interpreted as computing the difference between the exact integral G

and its Monte Carlo approximation
〈
GN

〉
, and then adding this difference to our original Monte

Carlo estimator
〈

F N
〉

. The idea is to detect what type of errors are introduced during Monte Carlo

sampling of a known integral. If g and f are correlated, then we can expect the same errors to be

present in the integral of f , so we can remove them.

A.3.3 Uniform Sample Placement

Importance sampling probabilistically places more samples where the function is deemed

more important. The problem with this is that it does not eliminate sample “clumping,” as the

PDF only dictates the expected number, not the actual number, of samples in any given region.

Intuitively, sample clumping is wasteful, since a sample that is very close to another does not

provide much new information about the function being integrated. In order to obtain the best

solution, we want to maximize the amount of information we gain from each sample.

Stratified Sampling

One powerful variance-reduction technique that addresses this problem is called stratified

sampling. Stratified sampling works by splitting up the original integral into a sum of integrals

over sub-domains. In its simplest form, stratified sampling divides the domain [a,b] into N

sub-domains (or strata) and places a random sample within each of these intervals. If using a



161

uniform PDF, with ξi ∈ [0,1), this can be expressed as

〈
F N

s

〉= (b −a)

N

N−1∑
i=0

f (Xi ) ,

= (b −a)

N

N−1∑
i=0

f
(
a + i+ξi

N (b −a)
)

= (b −a)

N

N−1∑
i=0

f
(
a +ξN

i (b −a)
)

. (A.30)

Compare this estimator to the expanded basic estimator in Equation A.14. Most of the time,

stratification can be added by simply replacing a canonical random number ξi ∈ [0,1) with a

sequence of stratified random numbers in the same range ξN
i = i+ξi

N .

It can be shown that stratified sampling can never result in higher variance than pure

random sampling. In fact, stratified sampling is asymptotically better, since the error reduces

linearly with the number of samples, σ∝ 1/N . Therefore, whenever possible, stratified sampling

should be used.

Stratified sampling does place more restrictions on the sampling process. This can

become problematic when, for instance, the number of samples is not known in advance. Fur-

thermore, though it is possible to extend stratified sampling to higher dimensions, in general, N d

strata would need to be created for a d dimensional domain. This explosion of samples can make

fine-grained control of simulation times difficult.

Comparison to Deterministic Quadrature. Stratified sampling incorporates ideas from deter-

ministic quadrature, while still retaining the statistical properties of Monte Carlo integration. It is

informative to compare Equation A.30 to a simple Riemann summation of the integral:

F =
∫ b

a
f (x) dx ≈

N−1∑
i=0

f (xi )∆x, (A.31)

≈
N−1∑
i=0

f
(
a + i

N (b −a)
) (b −a)

N
, (A.32)

≈ (b −a)

N

N−1∑
i=0

f
(
a + i

N (b −a)
)

. (A.33)
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Figure A.3: Deterministic quadrature techniques such as a Riemann summation (left) sample the func-
tion at regular intervals. Conceptually, stratified Monte Carlo integration (right) performs a very similar
summation, but instead evaluates the function at a random location within each of the strata.

In effect, the only difference between the Riemann sum and the stratified estimator in Equa-

tion A.30 is that Riemann summation evaluates the function at deterministic locations within the

domain (the start of each stratum in the above example) whereas stratified Monte Carlo places

the samples randomly within each stratum. This distinction is illustrated in Figure A.3.

Other Approaches

There is a wide range of other methods to more uniformly distribute samples. We illustrate

some of these approaches in Figure A.4. Other stratification approaches developed include N-

Rooks [Shirley, 1990] or Latin hypercube sampling [McKay et al., 1979], multi-jittered [Chiu et al.,

1994] and orthogonal array sampling [Owen, 1992], and multi-stage N-Rooks sampling [Wang

and Sung, 1999]. Veach [1997] provides a good overview of these approaches.

Several advanced techniques go beyond analyzing just the variance of the Monte Carlo

estimator. One approach is to measure the quality of the sample distribution based on frequency

analysis of the variance. This analysis shows that, to minimize variance while avoiding aliasing

artifacts beyond the Nyquist limit, a sample distribution conforming to a blue-noise frequency

spectrum is desirable [Cook, 1986; Mitchell, 1991]. In fact, this distribution of samples has been

observed in the placement of photoreceptors in the eye of the rhesus monkey [Yellott, 1983].

Another technique is to compute the discrepancy [Shirley, 1991] of the points, which
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Random Stratified N-Rooks

Multi-Jittered Quasi-Random Poisson-Disc
Figure A.4: An illustration comparing several 2D sampling approaches each using 16 samples. Purely
random sampling (top left) can suffer from clumping, which increases variance by undersampling other
regions of the integrand. All of the other approaches illustrated try to minimize this clumping to reduce
variance.

measures how much the density of the points varies from one location to the next. Quasi-Monte

Carlo techniques take this a step further and completely replace the use of pseudo-random

numbers with judiciously tailored deterministic sequences. These quasi-random numbers are

constructed explicitly to minimize clumping by reducing the discrepancy of the point set. Quasi-

Monte Carlo sampling is therefore also referred to as low-discrepency sampling. Niederreiter

[1992] provides an excellent theoretical introduction to Quasi-Monte Carlo techniques. Quasi-

Monte Carlo techniques were introduced to computer graphics by Keller. See his dissertation and

recent technical report for a thorough introduction [1998; 2003].
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A.3.4 Adaptive Sampling

Like importance sampling, adaptive sampling is another technique which tries to in-

telligently place more samples where they will provide the most benefit. However, importance

sampling requires some a priori knowledge of the function being integrated, whereas adaptive

sampling relaxes this requirement by inferring this information on the fly during the sampling

process.

Adaptive sampling tries to reduce variance by making adaptive decisions based on the

samples taken so far and placing future samples in areas of high variance. The motivation for this

approach is that regions of the integrand which are smooth can be well approximated using only

a few samples, whereas regions with rapid variation require more samples to faithfully capture

the behavior of the integrand.

A number of adaptive sampling techniques have been developed in computer graphics,

most of which deal exclusively with adaptively sampling the image plane. In addition to intro-

ducting ray tracing, Whitted [1980] also proposed the use of a hierarchical adaptive sampling

technique to increase the sample density around image discontinuities. Several other researchers

have proposed stochastic adaptive sampling of the image plane [Dippé and Wold, 1985; Mitchell,

1987; Painter and Sloan, 1989; Mitchell, 1991].

Though adaptive sampling can be a very effective optimization technique, a number of

issues complicate its use in practice. Firstly, choosing a robust adaptive refinement criterion can

be very difficult and application specific. This can be particularly challenging in the context of

Monte Carlo ray tracing since each Monte Carlo sample contains significant variance, making

features and noise indistinguishable during adaptive sample refinement. Nevertheless, successful

applications of Monte Carlo adaptive sampling in computer graphics do exist. For instance,

the irradiance caching algorithm described in Chapter 3 and our volumetric radiance caching

scheme developed in Chapter 6 are in essence approaches for adaptively sampling the indirect

illumination on surfaces and within media, respectively. Another consideration with adaptive

sampling is that, unlike importance sampling, it can introduce unbounded systematic errors

unless special precautions are taken [Kirk and Arvo, 1991]. This systematic error, called bias, is



165

discussed in the next section.

A.3.5 Biased Monte Carlo

Estimators that always produce the correct expected value (like the ones we have consid-

ered so far) are called unbiased estimators. By using unbiased estimators, due to Equation A.15,

we can be confident that the expected value of the estimator, using any number of samples, will

always be correct. The only error in unbiased estimators is variance.

However, it is also possible to construct estimators which do not satisfy Equation A.15.

These estimators are called biased, since, in addition to variance, they also contain a systematic

bias:

β
[〈

F N 〉]= E
[〈

F N 〉]−F, (A.34)

which is the difference in the expected value of the estimator and the actual value of the integral.

A biased estimator is called consistent if it converges to the correct result with more

samples. Hence, consistent biased estimators satisfy Equation A.16 but not Equation A.15. A

simple example of a consistent but biased estimator for I would be

F ≈ (b −a)
1

N +1

N−1∑
i=0

f (Xi ). (A.35)

It is easy to see that this estimator does not have the correct expected value, but as we increase

the number of samples it does converge to the solution.

Sometimes it is useful to use biased estimators if they result in significantly reduced

variance. All the techniques developed in this dissertation are consistent biased Monte Carlo

methods, which introduce bias for exactly this purpose.

Sometimes, a more informative way to think about biased estimators is that they compute

unbiased estimates of the wrong answer! In effect, biased estimators replace the integral I with

a different integral Ī , which has some desirable properties. For instance, it could be easier to

integrate, or it could have lower variance. In a consistent estimator, as we increase the number of

samples, the properties of Ī start to resemble the true function I more closely.
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This alternative interpretation can be useful because it provides higher level knowledge

about the exact form of the bias introduced. For instance, in Chapter 8 we proved that photon

mapping actually computes an unbiased estimate of the blurred radiance. The amount of blur is

directly controlled by the size and number of photons in the radiance estimate. This also makes it

clear that photon mapping is consistent, since as we decrease the amount of blur to zero, the bias

disappears.



B
Spherical Harmonics

SPHERICAL harmonics are a frequency-space basis for representing functions defined over

the sphere. They are the spherical analogue of the 1D Fourier series. Spherical harmonics

arise in many physical problems ranging from the computation of atomic electron configurations

to the representation of gravitational and magnetic fields of planetary bodies. They also appear

in the solutions of the Schrödinger equation in spherical coordinates. Spherical harmonics are

therefore often covered in textbooks from these fields [MacRobert and Sneddon, 1967; Tinkham,

2003].

Spherical harmonics also have direct applicability in computer graphics. Light transport

involves many quantities defined over the spherical and hemispherical domains, making spherical

harmonics a natural basis for representing these functions. Early applications of spherical har-

monics to computer graphics include the work by Cabral et al. [1987] and Sillion et al. [1991]. More

recently, several in-depth introductions have appeared in the graphics literature [Ramamoorthi,

2002; Green, 2003; Wyman, 2004; Sloan, 2008].

In this appendix, we briefly review the spherical harmonics as they relate to computer

graphics. We define the basis and examine several important properties arising from this defini-

tion.
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B.1 Definition

A harmonic is a function that satisfies Laplace’s equation:

∇2 f = 0. (B.1)

As their name suggests, the spherical harmonics are an infinite set of harmonic functions defined

on the sphere. They arise from solving the angular portion of Laplace’s equation in spherical

coordinates using separation of variables. The spherical harmonic basis functions derived in this

fashion take on complex values, but a complementary, strictly real-valued, set of harmonics can

also be defined. Since in computer graphics we typically only encounter real-valued functions,

we restrict our discussion to the real-valued basis.

If we represent a direction vector ~ω using the standard spherical parameterization,

~ω= (
sinθcosφ, sinθ sinφ,cosθ

)
, (B.2)

then the real spherical harmonic basis functions are defined as:

ym
l (θ,φ) =


p

2K m
l cos(mφ)P m

l (cosθ) if m > 0,

K 0
l P 0

l (cosθ) if m = 0,
p

2K m
l sin(−mφ)P−m

l (cosθ) if m < 0.

(B.3)

where K m
l are the normalization constants

K m
l =

√
(2l +1)

4π

(l −|m|)!

(l +|m|)!
, (B.4)

and P m
l are the associated Legendre polynomials. There are many ways to define the associated

Legendre polynomials but the most numerically robust way to evaluate them is using a set of
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recurrence relations [Press et al., 1992]1:

P 0
0 (z) = 1, (B.5)

P m
m (z) = (2m −1)!!(1− z2)m/2, (B.6)

P m
m+1(z) = z(2m +1)P m

m (z), (B.7)

P m
l (z) = z(2l −1)

l −m
P m

l−1(z)− (l +m −1)

l −m
P m

l−2(z). (B.8)

The basis functions are indexed according to two integer constants, the order, l , and the

degree, m2. These satisfy the constraint that l ∈ N and −l ≤ m ≤ l ; thus, there are 2l +1 basis

functions of order l .

The order l determines the frequency of the basis functions over the sphere. The spherical

harmonics may be written either as trigonometric functions of the spherical coordinates θ and

φ as above, or alternately as polynomials of the cartesian coordinates x, y , and z. Using the

cartesian representation, each ym
l for a fixed l corresponds to a polynomial of maximum order l

in x, y , and z.

1We omit the Condon-Shortley phase factor [Condon and Shortley, 1951] of (−1)m which is sometimes includes in
the definition of P m

l or ym
l since this simplifies our notation.

2The order l is also sometimes refered to as the band index, and in quantum mechanics, l and m are refered to as
“quantum numbers” and the spherical harmonics “states.”
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The first few spherical harmonics, in both spherical and cartesian coordinates, expand to:

Spherical Cartesian

l = 0 y0
0(θ,φ) =

√
1

4π

√
1

4π
,

l = 1



y−1
1 (θ,φ) =

√
3

4π
sinφsinθ

y0
1(θ,φ) =

√
3

4π
cosθ

y1
1(θ,φ) =

√
3

4π
cosφsinθ

√
3

4π
x,√

3

4π
z,√

3

4π
y,

l = 2



y−2
2 (θ,φ) =

√
15

4π
sinφcosφsin2θ

y−1
2 (θ,φ) =

√
15

4π
sinφsinθcosθ

y0
2(θ,φ) =

√
5

16π
(3cos2θ−1)

y1
2(θ,φ) =

√
15

4π
cosφsinθcosθ

y2
2(θ,φ) =

√
15

16π
(cos2φ− sin2φ)sin2θ

√
15

4π
x y,√

15

4π
y z,√

5

16π
(3z2 −1),√

15

8π
xz,√

15

32π
(x2 − y2).

We illustrate the first basis functions in Figure B.1.

B.2 Projection and Expansion

The spherical harmonics define a complete basis over the sphere. Thus, any real-valued

spherical function f may be expanded as a linear combination of the basis functions

f (~ω) =
∞∑

l=0

l∑
m=−l

ym
l (~ω) f m

l , (B.9)

where the coefficients f m
l are computed by projecting f onto each basis function ym

l

f m
l =

∫
Ω4π

ym
l (~ω) f (~ω)d~ω. (B.10)

Just as with the Fourier series, this expansion is exact as long as l goes to infinity; however, this

requires an infinite number of coefficients. By limiting the number of bands to l = n −1 we retain
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2

Figure B.1: Plots of the real-valued spherical harmonic basis functions. Green indicates positive values and
red indicates negative values.

only the frequencies of the function up to some threshold, obtaining an nth order band-limited

approximation f̃ of the original function f :

f̃ (~ω) =
n−1∑
l=0

l∑
m=−l

ym
l (~ω) f m

l . (B.11)

Low-frequency functions can be well approximated using only a few bands, and as the number of

coefficients increases, higher frequency signals can be approximated more accurately.

It is often convenient to reformulate the indexing scheme to use a single parameter

i = l (l +1)+m. With this convension it is easy to see that an nth order approximation can be

reconstructed using n2 coefficients,

f̃ (~ω) =
n2−1∑
i=0

yi (~ω) fi . (B.12)
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B.3 Properties

The spherical harmonic functions have many basic properties that make them particularly

convenient for use in computer graphics.

1. Convolution. Since the spherical harmonic basis is effectively a Fourier domain basis

defined over the sphere, it inherits a similar frequency space convolution property. If

h(z) is a circularly symmetric kernel, then the convolution h? f is equivalent to weighted

multiplication in the SH domain

(h? f )m
l =

√
4π

2l +1
h0

l f m
l . (B.13)

The convolution property allows for efficient computation of prefiltered environment maps

and irradiance environment maps [Ramamoorthi and Hanrahan, 2001].

2. Orthonormality. The spherical harmonics are orthogonal for different l and different m.

This means that the inner product of any two distinct basis functions is zero. Furthermore,

the normalization constant K m
l ensures that the inner product of a basis function with itself

is one. This can be expressed mathematically as

∫
Ω4π

yi (~ω) y j (~ω)d~ω= δi j , (B.14)

where δi j is the Kronecker delta function.

The efficient projection and expansion operations described above are made possible by

the fact that the SH basis is orthonormal. Many other useful and efficient operations also

result from this important property.

3. Double Product Integral. The orthonormality property provides for a very simple expres-

sion to compute the integrated product of two functions represented in the SH basis. The
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integral product of two SH functions ã(~ω) and b̃(~ω) can be expanded as

∫
Ω4π

ã(~ω) b̃(~ω)d~ω=
∫
Ω4π

(∑
i

ai yi (~ω)

) (∑
j

b j y j (~ω)

)
d~ω, (B.15)

=∑
i

∑
j

ai b j

∫
Ω4π

yi (~ω) y j (~ω)d~ω︸ ︷︷ ︸
Ci j

, (B.16)

where Ci j are called the coupling coefficients, which, due to the definition of orthonormal-

ity in Equation B.14, are simply Ci j = δi j . This simple form for the coupling coefficients

introduces significant sparsity in the expression above, leading to the simplification:

∫
Ω4π

ã(~ω) b̃(~ω)d~ω=∑
i

∑
j

ai b j Ci j , (B.17)

=∑
i

∑
j

ai b j δi j , (B.18)

=∑
i

ai bi . (B.19)

This expression states that the integrated product of two SH functions is simply the dot

product of their coefficient vectors. The double product integral is of particular interest in

computer graphics since it means lighting can be computed very efficiently in the frequency

domain. If both the lighting and the cosine-weighted BRDF are represented in the SH basis,

then the lighting integral can be computed using a simple dot product. This property is

exploited by many PRT techniques [Sloan et al., 2002; Kautz et al., 2002].

4. Triple Product Integral. In many applications, the product integral of not just two, but

three SH functions is of particular interest. This product can be expanded as

∫
Ω4π

ã(~ω) b̃(~ω) c̃(~ω)d~ω=
∫
Ω4π

(∑
i

ai yi (~ω)

) (∑
j

b j y j (~ω)

) (∑
k

ck yk (~ω)

)
d~ω, (B.20)

=∑
i

∑
j

∑
k

ai b j ck

∫
Ω4π

yi (~ω) y j (~ω) yk (~ω)d~ω, (B.21)

=∑
i

∑
j

∑
k

ai b j ck Ci j k , (B.22)
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which gives rise to the tripling coefficients, Ci j k . Unlike double product integrals, which

have an incredibly simple form and reduce to a single dot product, the triple product integral

is seemingly much more complicated. Fortunately, the set of tripling coefficients is also

sparse, so not all the individual coefficients need to be explicitly computed and stored. For

spherical harmonics, the Ci j k correspond to Clebsch-Gordan coefficients, whose analytic

values and properties are well studied [Tinkham, 2003].

5. Double Product Projection. The tripling coefficients also arise when computing the prod-

uct of two spherical harmonic functions directly in the SH basis. We can compute the i th

coefficient of the SH projection of the product c(~ω) = a(~ω)b(~ω) as

ci =
∫
Ω4π

yi (~ω)c(~ω)d~ω, (B.23)

=
∫
Ω4π

yi (~ω) a(~ω)b(~ω)d~ω, (B.24)

=
∫
Ω4π

yi (~ω)

(∑
j

a j y j (~ω)

) (∑
k

bk yk (~ω)

)
d~ω, (B.25)

=∑
j

∑
k

a j bk

∫
Ω4π

yi (~ω) y j (~ω) yk (~ω)d~ω, (B.26)

=∑
j

∑
k

a j bk Ci j k . (B.27)

This expression states that the i th coefficient of c is a linear combination of the, up to,

j ×k coefficients from a and b. The weighting of these terms is determined by the triping

coefficients, which are independent of the particular choice of a and b. In effect, if we wish

to efficiently compute the product projection of many pairs of functions, we only need to

compute the tripling coefficients once.

The product projection simplifies further if we know one of the functions beforehand.

For instance, if b(~ω) is fixed, then we can construct a transfer matrix, M, which directly

transforms coefficients of any arbitrary function ã into the coefficients of the product c̃
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using a single vector-matrix multiplication:

ci =
∫
Ω4π

yi (~ω) a(~ω)b(~ω)d~ω, (B.28)

=
∫
Ω4π

yi (~ω)

(∑
j

a j y j (~ω)

)
b(~ω)d~ω, (B.29)

=∑
j

a j

∫
Ω4π

yi (~ω) y j (~ω)b(~ω)d~ω, (B.30)

=∑
j

a j Mi j . (B.31)

6. Rotational Invariance. The SH basis functions are rotationally invariant, which means

that if g is a rotated copy of f , i.e.,

g (~ω) = f (R~ω), (B.32)

for any 3×3 rotation matrix R, then

g̃ (~ω) = f̃ (R~ω). (B.33)

This property means that, in order to evaluate a rotated SH function g̃ , we can either

rotate the lookup into the unrotated approximation f̃ or lookup directly into the rotated

approximation g̃ . This property implies that spherical harmonic projection produces no

aliasing.

7. Rotation. Spherical harmonics also support efficient rotation. This means that if we know

f̃ , we can compute the SH coefficients of the rotated function g̃ exactly by just applying a

linear transformation to the projection coefficients of f̃ . This linear transformation is itself

a higher-dimensional rotation matrix, R̃, where the i th coefficient of the rotated function g
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is simply:

gi =
∑

j
f j R̃i j . (B.34)

Due to the rotation invariance property, the coefficients in one band of f only influence

the same band of coefficients in the rotated representation g . This leads to the following

block-sparse structure:

R̃ =



1 0 0 0 0 0 0 0 0 · · ·
0 X X X 0 0 0 0 0 · · ·
0 X X X 0 0 0 0 0 · · ·
0 X X X 0 0 0 0 0 · · ·
0 0 0 0 X X X X X · · ·
0 0 0 0 X X X X X · · ·
0 0 0 0 X X X X X · · ·
0 0 0 0 X X X X X · · ·
0 0 0 0 X X X X X · · ·
...

...
...

...
...

...
...

...
...

. . .



. (B.35)

Several methods have been proposed for efficiently computing this coefficient transforma-

tion. Analytic forms can be derived for axis-aligned rotations, which can then be combined

using Euler angle decomposition to construct rotations about arbitrary axes [Kautz et al.,

2002]. This approach is only practical for low-order coefficients, and rotations of higher

order SH functions are more efficiently implemented using recurrence relations [Ivanic

and Ruedenberg, 1996, 1998; Blanco et al., 1997; Choi et al., 1999; Pinchon and Hoggan,

2007]. Křivánek et al. [2005c] instead proposed a fast approximate SH rotation method for

small angles, which uses a truncated Taylor expansion of the rotation matrix. Green [2003]

provides a more detailed summary of available methods.

If the function f has circular symmetry about the z-axis, then its projection consists only

of zonal harmonics (only the m = 0 SH basis functions). Zonal harmonics (ZH) are an

important subset of the full set of SH basis functions since they often lead to more efficient
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operations. Furthermore, circularly symmetric functions are common in graphics. Most

phase functions discussed in Chapter 4, for instance, exhibit circular symmetry.

Since ZH functions only have one non-zero coefficient per band, they can be rotated much

more efficiently. This means that only one column of each band-matrix is needed:

R̃ =



1 0 0 0 0 0 0 0 0 · · ·
0 0 X 0 0 0 0 0 0 · · ·
0 0 X 0 0 0 0 0 0 · · ·
0 0 X 0 0 0 0 0 0 · · ·
0 0 0 0 0 0 X 0 0 · · ·
0 0 0 0 0 0 X 0 0 · · ·
0 0 0 0 0 0 X 0 0 · · ·
0 0 0 0 0 0 X 0 0 · · ·
0 0 0 0 0 0 X 0 0 · · ·
...

...
...

...
...

...
...

...
...

. . .



. (B.36)

The non-zero elements in this matrix have an easy analytic form. To rotate a zonal harmonic

function into direction ~d we simply need to apply the formula:

g m
l =

√
4π

2l +1
f 0

l ym
l (~d). (B.37)

Note the similarity of this equation to the convolution in Equation B.13. In effect, rotation

of a circularly symmetric function is the same as convolving a kernel with a delta function

at the desired rotation axis.



C
Density Estimation

DENSITY estimation is a common problem that occurs in many different fields. We may, for

instance, want to determine the likelihood of heart attack for a particular age group given

a large collection of medical reports. We may also be interested in the geographical distribution

of a particular group of people, using census reports or a telephone survey. Another application

could be in predicting the outcome of a natural phenomenon based on observations of its past

behavior, such as the eruption interval of a geyser. In the context of computer graphics, we may

also wish to determine the intensity of light in a medium based on the distribution of photons in

the scene. All of these problems are concerned with the same basic problem of density estimation.

Density estimation is a research area in statistics and has been studied extensively in

this field. Density estimation has also been used in the field of computer graphics [Zareski et al.,

1995; Shirley et al., 1995; Walter et al., 1997; Walter, 1998]. The volumetric photon mapping

technique developed in Chapter 8, as well as the original photon mapping method upon which

it is based [Jensen, 1996, 2001; Jensen and Christensen, 1998], can be thought of as a density

estimation process and relies on tools developed in statistical modeling.

In this chapter we provide a brief overview of the theory of density estimation as well

as review some of the available approaches. More in-depth introduction to these concepts can

be found in the classical text by Silverman [1986] as well as Scott [1992]. Other references in the

computer graphics literature include Dutré et al. [2006] and Walter [1998].
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C.1 Introduction

In density estimation we are interested in determining an unknown function f , given only

random samples or observations distributed according to this function. More formally, the goal

of density estimation is to infer the probability density function, or PDF, from observations of a

random variable. We have already discussed the use of PDFs and random variables in Appendix A

with the goal of numerically integrating functions. Density estimation is concerned with a related,

but inverse, problem: given a set of random samples, determine what PDF was used to create

them.

Density estimation approaches can be broadly classified into two groups: parametric

density estimation and non-parametric density estimation.

Parametric Methods. Parametric methods make strict a priori assumptions about the form of

the underlying density function. For instance, a parametric approach may assume the random

variables have a Gaussian distribution or the PDF is a polynomial of a particular degree. Such

assumptions significantly simplify the problem, since only the parameters of the chosen family

of functions need to be determined. In the case of a normal distribution, the density estimation

process reduces to determining the mean µ and standard deviation σ of the sample points.

Non-Parametric Methods. Oftentimes it is not possible to make such strict assumptions about

the form of the underlying density function. Non-parametric approaches are more appropriate

in these situations. These techniques make few assumptions about the density function and

allow the data to drive the estimation process more directly. In the context of computer graphics,

non-parametric approaches are typically the most appropriate, and we will focus on these in the

remaining sections.

C.2 Histograms

The simplest form of density estimation is the histogram method. This approach subdi-

vides the domain into bins and counts the number of samples nb which fall into each bin. The
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local probability density is obtained by dividing the number of samples in each bin by the total

number of samples N and the bin width h. This can be expressed as

f̂ (x) = nb

N h
for xb ≤ x < xb+1, (C.1)

where xb and xb+1 are the extents of bin b, and h = xb+1 − xb . We use f̂ to denote a density

estimate of the probability density function f .

The histogram method has a number of advantages. It is easy to implement and provides

results which are straightforward to visualize and intuitive to interpret. Also, it is easy to show

that f̂ is a valid PDF since it is always non-negative and integrates to one over the entire domain.

However, histograms have many problems, which motivated the developed of more advanced

methods.

One issue with histograms is that the resulting density function is not smooth. In fact,

it has zero derivatives everywhere, except at the bin transitions, where its derivative is infinite.

This issue can be catastrophic in applications, such as clustering, which rely on following the

derivative to find local maxima. In computer graphics, this issue is not as extreme, but the

derivative discontinuities can lead to objectionable artifacts, which can be avoided with more

advanced techniques.

Another issue with histograms is that the choice of bin transition locations, even when

keeping h fixed, can significantly affect the resulting PDF. This extra degree of freedom is com-

pletely independent of the underlying data and is simply a side effect of the estimation method

itself.

Several approaches have been developed to address some of these concerns. Orthogonal

series estimation, discussed in the next section, directly addresses the issue of discontinuity. The

naïve estimator and all its generalizations come about by attempting to remove the choice of

absolute bin positions.
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C.3 Orthogonal Series Estimation

Histograms yield a single average value within each bin, which leads to discontinuities.

In order to construct smoother approximations of the underlying PDF, it is possible to directly

estimate a higher-order function within each bin. By choosing the functions at neighboring

bins to match at the transitions, we can further construct approximations of the PDF which are

differentiable everywhere.

To compute higher-order approximations, we decompose the PDF within each bin b as a

weighted sum of basis functions Ψb, j (x):

f̂ (x) =∑
j

fb, j Ψb, j (x). (C.2)

The fb, j terms are coefficients which scale the contribution of each basis function j within

each bin b. These are defined as the inner product of the density function f and the dual basis

functions Ψ̃b, j :

fb, j =
∫

f (x)Ψ̃b, j dx. (C.3)

The dual basis function Ψ̃b, j are obtained using an orthogonality constraint. Specifically, for any

fixed bin b the inner product of Ψ̃b, j with any of the basis functionsΨb, j should be:

∫
Ψ̃b, j (x)Ψb,k (x) dx = δ j ,k . (C.4)

The coefficients can be estimated from the random samples using a Monte Carlo estimate

of Equation C.3:

fb, j ≈
1

N

N−1∑
i=0

f (xi )Ψ̃b, j (xs)

pdf (xi )
(C.5)

≈ 1

N

N−1∑
i=0

Ψ̃b, j (xi ). (C.6)
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Relation to Histograms. In the case of a constant basis function within each bin, the orthogonal

series estimator reverts to the histogram method. In this case the single dual basis function for

bin b is

Ψ̃b(x) =
{

1
h if xb ≤ x < xb+1,

0 otherwise.
(C.7)

It is easy to see that this basis function results in the histogram estimator in Equation C.1.

C.4 Naïve Estimator

Another generalization of the histogram method, which Silverman [1986] calls the naïve

estimator, addresses the choice of bin locations. The main idea behind this method is to use the

estimation point to adaptively determine the bin locations, thereby eliminating it as an extra

parameter. This estimator can be written as:

f̂ (x) = nx

N 2h
, (C.8)

where nx is the number of sample points which fall within the interval [x−h, x+h). Comparing the

above estimator to Equation C.1 we see that it is equivalent to a histogram where the estimation

point x is used as the center of the bin, and the bin width is 2h. Therefore, the naïve estimator is

always globally a valid PDF, i.e., it is non-negative and integrates to one.

It can be informative to rewrite Equation C.8 by introducting the weighting function w :

w(t ) =
{

1
2 if |t | < 1,

0 otherwise.
(C.9)

Using this notation, we can express the naïve estimator as

f̂ (x) = 1

N h

N−1∑
i=0

w
( x −xi

h

)
, (C.10)

where xi are the data samples. In this form, it is easy to see that the naïve estimator places a

“box” of width 2h and height (2hN )−1 at each data point and sums up the contributions. This
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interpretation is useful in deriving the kernel estimator, which we discuss in the next section.

C.5 Kernel Estimator

Though the naïve estimator eliminates the problem of choosing the bin locations, it does

not address some of the other limitations of the histogram method. The kernel method generalizes

the naïve estimator to eliminate the discontinuous nature of the resulting PDF.

By examining Equation C.10 we observe that the reason for discontinuities is due to

our particular choice of weighting function w , which has zero derivatives and discontinuities at

|x| = 1. In fact, it is easy to show that the naïve estimator inherits all the differential properties

of the weighting function since it is a simple sum. We can therefore improve the smoothness of

the estimator by improving the smoothness of the weighting function. We accomplish this by

replacing w with a smooth kernel function K . Our only restriction is that K must integrate to one:

∫ ∞

−∞
K (t ) dt = 1. (C.11)

With this restriction in place, we can define the kernel estimator as

f̂ (x) = 1

N h

N−1∑
i=0

K
( x −xi

h

)
, (C.12)

where h controls the amount of smoothing and is called the window width or bandwidth of the

kernel. To make the notation more concise, it is often convenient to set Kh(t ) = (h−1)K (h−1t ) and

express the kernel estimator simply as

f̂ (x) = 1

N

N−1∑
i=0

Kh(x −xi ). (C.13)

Typically we will choose K to be a smooth, symmetric function, which has a strong

influence at x = xi and decreased influence as the distance x − xi increases. Some common

examples include the normalized Gaussian kernel, the bi-weight kernel, and the Epanechnikov

kernel [Silverman, 1986]. Analogous to our interpretation of the naïve estimator as a sum of
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“boxes” at the data point, the kernel estimator is a sum of smooth “bumps” at the data points. Also

note that if we use a constant kernel, then the kernel method reverts to the naïve estimator.

The kernel method can also be interpreted as a blurring process, or a convolution opera-

tion on the data points. If we consider the data points as Dirac delta impulses, δ, then the kernel

method can be written as

f̂ (x) = Kh(x)?

(
1

N

N−1∑
i=0

δ(x −xi )

)
(C.14)

=
∫ ∞

−∞
Kh(x)

(
1

N

N−1∑
i=0

δ(x −xi )

)
dx, (C.15)

= 1

N

N−1∑
i=0

Kh(x −xi ). (C.16)

C.6 Locally Adaptive Estimators

In developing all the estimators so far, we have ignored one important consideration.

The window width, or, in the case of the histogram the bin width, plays an important role in the

behavior of the resulting density function.

At a high level, the bandwidth determines the amount of smoothing that is performed on

the sample data. It is important to set this parameter properly. Choosing a value that is too small

will result in under-smoothing and erratic fluctuations in the estimator which are not present in

the original PDF. On the other hand, using a very large value may over-smooth the data, potentially

eliminating important features of the underlying PDF. In practice it is very hard to choose an

optimal bandwidth without knowing something about the density function itself.

More formally, this tradeoff can be expressed as trying to minimize the sum of the global

bias and variance of the estimator. As we increase the bandwidth, we are smoothing the true

PDF, which reduces variance but introduces bias. In contrast, if we decrease the bandwidth, we

decrease the bias but increase variance. When we need to choose a bandwidth parameter for the

whole domain of the data, a common technique is to try to minimize the mean integrated squared
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error:

MISE( f̂ ) = E
∫ [

f̂ (x)− f (x)
]2

dx, (C.17)

=
∫

V
[

f̂ (x)
]+β[

f̂ (x)
]2

dx, (C.18)

which is the sum of the integrated variance and the integrated squared bias. Computing the

MISE exactly requires information about the unknown true density f . However, since the density

estimator f̂ is a function of a random variable, it is itself a random variable. We can therefore

apply the tools from Appendix A to estimate the variance and the bias of f̂ .

Unfortunately, a single bandwidth may not be optimal for all regions of the domain. For

instance, a single bandwidth value may over-smooth features in high density regions and, at the

same time, under-smooth regions in the “tails” of the distribution where few samples are present.

Locally adaptive methods attempt to address this issue by allowing the bandwidth to change

across the domain of the PDF. We will consider two different approaches for adaptively modify the

kernel bandwidth [Jones, 1990]. The first class of techniques, called balloon estimators, vary the

bandwidth based on the evaluation point x. The second set of techniques, called sample-point

estimators, vary the bandwidth based on the data points xi .

C.6.1 Balloon Estimator

The general form of the balloon estimator is given by

f̂ (x) = 1

N h(x)

N−1∑
i=0

K

(
x −xi

h(x)

)
, (C.19)

= 1

N

N−1∑
i=0

Khx (x −xi ), (C.20)

where h(x) is the bandwidth as a function of x, the evaluation location.

The balloon estimator was introduced by Loftsgaarden and Quesenberry [1965] in the

form of the kth nearest neighbor estimator, which can be written in the form of Equation C.19

by using a constant kernel and setting h(x) = dk (x) where dk (x) returns the distance to the kth

nearest data point to x. In fact, Silverman [1986] refers to (a slightly more restricted version of)
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Equation C.19 as the generalized kth nearest neighbor estimator.

The balloon estimator unfortunately suffers from a number of inefficiencies, especially

in the univariate case. Firstly, the PDF derived using a balloon estimator will not, in general,

integrate to one over the entire domain. If a global estimate of the PDF is needed, then this

can be problematic. In computer graphics, however, this is not generally a major problem since

we typically only care about the pointwise behavior of the estimated density. Another problem

with the nearest neighbor estimator is that the bandwidth is a discontinuous function, and these

discontinuities manifest themselves directly in the resulting PDF. This is true even if the chosen

kernel is itself smooth. In computer graphics this can lead to mach banding and other visual

artifacts.

C.6.2 Sample-point Estimator

The second type of local bandwidth estimator is called the sample-point estimator. The

general form of the sample-point estimator is given by

f̂ (x) = 1

N

N−1∑
i=0

1

h(xi )
K

(
x −xi

h(xi )

)
, (C.21)

= 1

N

N−1∑
i=0

Khxi
(x −xi ). (C.22)

Note that the only difference to the balloon estimator in Equation C.19 is that the bandwidth h(xi )

is a function of the sample points xi and not the evaluation point x. The sample-point estimator

was first introduced by Breiman et al. [1977] under the name of the variable kernel method.

Just as in the regular kernel estimator, the sample-point estimator places a kernel at each

data point, but these kernels are allowed to vary in size from one data point to another. Typically,

the bandwidth of a data point is chosen based on the local density of samples in the vicinity. This

requires performing a pilot estimate to compute the local density at each data point and assign

the bandwidths.

Sample-point estimators do have a number of benefits over balloon estimators. Firstly,

since each kernel is normalized, the estimator itself is a valid PDF, which integrates to one.

Furthermore, unlike the balloon estimator, the sample-point estimator inherits all the differential



187

properties of the kernel functions and can therefore be made fully continuious. Another practical

advantage of sample-point estimators is that the extent of each sample point is known before

density evaluation begins. This often allows for simpler and more efficient data structures to be

used during density evaluation. The beam radiance estimate developed in Chapter 8 exploits

exactly this property of sample-point estimators.
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relationship to radiance, 12
irradiance caching, 23–29

k-NN, see nearest neighbor method
kth nearest neighbor method, see nearest neigh-

bor method

Law of Large Numbers, 153
Lorenz-Mie theory, 65

measurement equation, 133–134
Monte Carlo, 5, 24

and participating media
brief history, 70–71

biased, 165
consistent, 165
estimator, 152–156

convergence of, 153
convergence rate, 154
convergence rate, proof of, 156
expected value of, 153
multidimensional integrals, 155

integration, 33, 48, 70, 77, 149–166
in volumetric radiance caching, 77–78

multiple importance sampling, 159
Quasi-Monte Carlo, 35, 162–163
ray tracing, 5, 72, 73, 100, 101, 120, 121

history of, 20–21

stratified, 26, 104
stratified sampling, 160
unbiased, 5, 165
variance reduction, 156

multiple scattering, 75

nearest neighbor method, 124, 185
special case of balloon estimator, 185

optical depth, see optical thickness
optical thickness, 59, 85

gradient of, 81
in heterogeneous media, 81
in homogeneous media, 81

out-scattering event, 57–58

participating media
assumptions about, 56

PDF, see probability density function
phase function, 61

gradient of, 80
Henyey-Greenstein, 63
isotropic, 62
Lorenz-Mie, 65
properties of, 61–62
Rayleigh, 64
Schlick, 63

phosphorescence
seequantum optics

phosphorescence, 199
photon mapping, 119–127
power, see flux
probability density function, 150

quantum optics, 8
fluorescence, 9
phosphorescence, 9

radiance, 10
in-scattered, see in-scattered radiance
incident vs. exitant, 12–14
multiple scattered, see multiple scatter-

ing
single scattered, see single scattering

radiance caching
for participating media, 72–100
for surfaces, 33–36

radiance estimate
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illustrated, 123
in media

beam, 136–138, 140–142
conventional, 127, 135–136

on surfaces, 123
radiant exitance, 9

relationship to radiance, 12
radiant power, see flux
radiative tranport equation, see radiative trans-

fer equation
radiative transfer equation

integral form, 67
integro-differential form, 66
non-emissive form, 68

radiosity
algorithm, 19–20, 69–70
radiometric quantity, 9

relationship to radiance, 12
random variable, 150

continuous, 150
discrete, 150

random-walk, 73, 75, 85, 86, 90, 96, 98, 135
ray marching, 73–75, 82, 86, 96, 104, 109

illustrated, 74
ray optics, see geometric optics
Rayleigh scattering, 64
reciprocity

of BRDF, 15
of phase function, 61–62

illustrated, 62
reduced radiance, 59, 76
rendering equation

area form, 17–19
hemispherical form, 16–17

scattering albedo, see albedo
scattering coefficient, 57, 58

and Rayleigh scattering, 65
scattering media, see participating media
σa , see absorption coefficient
σs , see scattering coefficient
σt , see extinction coefficient
single scattering, 75–77
spherical harmonics, 167–177

PN method and, 69
definition of, 168–170
expansion of, 170–171

projection onto, 170–171
properties of, 172–177

convolution, 172
double product integral, 172–173
double product projection, 174–175
orthonormality, 172
rotation, 175–177
rotational invariance, 175
triple product integral, 173–174

volumetric radiance caching and, 82–84,
86, 88

zonal harmonics, 176–177
rotation of, 177

zonal method and, 69
split-sphere model, 27–29

derivation of, 30–31
illustrated, 28

standard deviation, 151

τ, see optical thickness
transmittance, 58

gradient of, 81
properties of, 59

variable kernel method, 139, 186
special case of sample-point estimator,

186
variance, 151

properties of, 151, 152
visibility function, 18, 77, 107, 132

gradient of, 78, 97, 109–110, 117–118
VK, see variable kernel method
volume rendering equation, see radiative trans-

fer equation

wave optics, 8
diffraction, 9
interference, 9
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