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Figure 1: We present novel importance sampling techniques for constructing paths in participating media and apply them to unidirectional and
bidirectional path tracing. By generalizing traditional shadow connections (0-connection) to longer, importance sampled connection subpaths
(2- and 3-connection) we obtain 5× to 37× reduction in RMS error (see zoom-ins), corresponding to 25× to 1444× reduction in render time.

Abstract

Central to all Monte Carlo-based rendering algorithms is the
construction of light transport paths from the light sources to
the eye. Existing rendering approaches sample path vertices
incrementally when constructing these light transport paths. The
resulting probability density is thus a product of the conditional
densities of each local sampling step, constructed without explicit
control over the form of the final joint distribution of the complete
path. We analyze why current incremental construction schemes
often lead to high variance in the presence of participating media,
and reveal that such approaches are an unnecessary legacy inherited
from traditional surface-based rendering algorithms. We devise
joint importance sampling of path vertices in participating media
to construct paths that explicitly account for the product of all
scattering and geometry terms along a sequence of vertices instead
of just locally at a single vertex. This leads to a number of practical
importance sampling routines to explicitly construct single- and
double-scattering subpaths in anisotropically-scattering media.
We demonstrate the benefit of our new sampling techniques,
integrating them into several path-based rendering algorithms such
as path tracing, bidirectional path tracing, and many-light methods.
We also use our sampling routines to generalize deterministic
shadow connections to connection subpaths consisting of two
or three random decisions, to efficiently simulate higher-order
multiple scattering. Our algorithms significantly reduce noise and
increase performance in renderings with both isotropic and highly
anisotropic, low-order scattering.
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1 Introduction

Faithfully simulating light transport in participating media is a chal-
lenging problem with important applications across many diverse
fields, such as medical imaging and nuclear physics, as well as com-
puter graphics. Over the last three decades, the computer graphics
community has adapted and developed a sizable arsenal of meth-
ods for rendering participating media. Though no single method
outperforms all others in every situation, we now have efficient
approximations for rendering specific scattering scenarios, includ-
ing: general Monte Carlo integration [Kajiya 1986; Pauly et al.
2000], (semi-)analytic approximations [Sun et al. 2005; Pegoraro
et al. 2009; Walter et al. 2009], the diffusion approximation [Stam
1995; Jensen et al. 2001; D’Eon and Irving 2011], and the Feynman
path integral approximation [Tessendorf 1987; Premože et al. 2003;
Premože et al. 2004]. Though these methods are each well-suited
for specific scattering scenarios, a common limitation of all these
methods is their inefficiency or inaccuracy in handling participating
media with highly anisotropic scattering and moderate albedo. We
fill this important gap and improve general Monte Carlo integra-
tion techniques such as path tracing, which are typically slow for
this class of media, by developing a set of importance sampling
techniques that significantly improve rendering performance.

Path-sampling approaches traditionally construct light transport
paths by sequentially sampling local scattering events. Unfortu-
nately, this incremental construction sacrifices a global view of the
path’s contribution, and can lead to significant variance in the final
estimator. In fact, though not widely known in computer graphics, it
has long been known in related fields [Kalos 1963] that methods like
volumetric path tracing with explicit shadow connections suffer from
infinite variance when participating media surrounds light sources.

In the face of these challenges, we propose joint path importance
sampling to construct paths in participating media while accounting
for the product of anisotropic phase functions and geometric terms
across sequences of path vertices. Though importance sampling the
BRDF, the lighting, or their product has been investigated for single-
bounce surface illumination, generalizations to multiple bounces
(a sequence of vertices) are challenging due to the curse of dimen-
sionality. Extensions to participating media additionally require
sampling a propagation distance, which increases the dimensionality
even further. We instead exploit this extra dimension as a degree
of freedom, along with symmetries uniquely present in media light
transport, to make joint importance sampling of path vertices practi-
cal. We develop several novel path importance sampling techniques
for participating media, introducing connection subpaths to join a
light and the eye with two additional intermediate vertices while
accounting for the product of phase functions and geometry terms.

Contributions and overview. In summary, we present the fol-
lowing theoretical and practical contributions:
• We express previous sampling methods for participating media

as general path sampling and connection strategies in a unified
framework under the path integral formulation (Section 3).
• We derive analytic formulas for exact importance sampling of

the product of geometry terms for a sequence of vertices (three
path segments) joining two given subpaths (Section 5).
• We exploit unique symmetries in volumetric light transport to

build compact tabulations for importance sampling the product of
geometry and anisotropic phase function terms across a sequence
of vertices joining two given subpaths (Section 6).
• We demonstrate the versatility of our new sampling techniques,

applying them to several rendering algorithms—such as path
tracing, bidirectional path tracing, and many-light rendering
(Section 7)—significantly improving rendering quality by more
accurately modeling transport along longer light subpaths.

2 Related Work

Central to all Monte Carlo-based rendering algorithms is the task of
sampling light transport paths that connect light sources to the eye.
Veach [1997] formalized this idea with the path integral formulation
of light transport for surfaces, and Pauly et al. [2000] extended it to
participating media. The path integrand can be factorized into the
product of several terms, such as the geometry, transmittance, and
scattering terms. For Monte Carlo integration, one ideally wishes to
sample paths with a probability density function (PDF) proportional
to that integrand. In prior work, subpaths are typically constructed
incrementally, vertex-by-vertex, followed by a deterministic subpath
connection. This yields path PDFs that do not account for some
high-variance terms. We introduce a new set of importance sampling
techniques for constructing connection subpaths which join light
and eye subpaths with two additional intermediate vertices (three
segments). In contrast to deterministic connections, our approach ac-
counts for the product of several geometry and scattering terms along
the connection subpath, leading to significant variance reduction.

Surface rendering. Various techniques can be employed atop ba-
sic importance sampling. Product sampling [Burke et al. 2005; Clar-
berg et al. 2005; Clarberg and Akenine-Möller 2008; Tsai et al. 2008;
Jarosz et al. 2009] can account for the product of BRDF and lighting,
but only for a single bounce of illumination, and with high memory
and computation costs. Multiple importance sampling (MIS) [Veach
and Guibas 1995] can combine several PDFs—such as for BRDF
or light importance sampling [Pharr and Humphreys 2010]—while
preserving the strengths of each individual technique. Bidirectional
path tracing employs MIS to combine sampling techniques based
on connecting two independent subpaths, each constructed incre-
mentally. However, the resulting combined joint path PDF remains
a simple linear combination of the PDFs of the individual tech-
niques, as opposed to the product of all path integrand terms. While
Metropolis light transport and its variants [Veach and Guibas 1997;
Pauly et al. 2000; Cline et al. 2005; Jakob and Marschner 2012b]
do sample light paths with density proportional to the full integrand,
they usually suffer from sample correlation and are in most practical
cases outperformed by classic Monte Carlo approaches based on
independent samples. Our sampling techniques are also compatible
with MIS and, since they directly importance sample according to
transport along a sequence of path vertices, improve efficiency over
the combination of existing sampling techniques.

Volume rendering. Incremental, vertex-by-vertex path construc-
tion in participating media traditionally proceeds by sampling the di-
rection of the next path segment proportionally to the phase function,
and choosing the propagation distance along the segment proportion-
ally to transmittance [Woodcock et al. 1965; Raab et al. 2008]. Kulla
and Fajardo [2012] observed that the geometry term is often respon-
sible for more variance than the transmittance term and proposed
equiangular sampling to choose the propagation distance propor-
tionally to the geometry term when computing single scattering in
isotropic media. Recent extensions to density estimation [Jensen
1996; Jensen and Christensen 1998] have proposed using lines, in-
stead of vertices, as the eye [Jarosz et al. 2008] and light [Sun et al.
2010; Jarosz et al. 2011] path building block, leading to significant
improvements. Inspired by this line of work, Novák et al. [2012] an-
alyzed many-light rendering in anisotropically-scattering media and
showed that such line-based path construction can provably reduce
singularities in many-light rendering (see Křivánek et al. [2012] for
a comprehensive survey of many-light techniques). We show that
the methods of Kulla and Fajardo [2012] and Novák et al. [2012] can
be interpreted as general path sampling techniques and employed for
path construction in bidirectional path sampling algorithms using
both segments (lines) and vertices. We unify and formalize these
approaches with joint importance sampling, and propose new joint
path sampling techniques for more substantial variance reduction.
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Neutron transport & radiative transfer. Many of these sophisti-
cated participating media rendering techniques have been adapted
(and sometimes unknowingly reinvented) from the neutron transport
and radiative transfer literatures, which have a much longer history of
investigating these problems [Chandrasekar 1960; Spanier and Gel-
bard 1969]. Density estimation in volumetric photon mapping uses a
collision estimator, and the path segment improvements [Jarosz et al.
2011; Novák et al. 2012] share similarity with, and extend upon,
track length estimators [Spanier 1966]. Volumetric path tracing
with shadow connections corresponds to the uncollided flux (UCF)
estimator used in neutron transport simulations since the early 1960s.

Kalos [1963] proved that the UCF estimator has infinite variance
(due to a 1/r2 singularity in the geometry term) and, even worse, its
use leads to an abysmal 1/ 3

√
N convergence rate [Kalos 1963; Dubi

et al. 1982]. To remedy this problem, he proposed the once collided
flux (OCF) estimator—which samples an extra path vertex when
forming the connection—and proved that this strategy reduces the or-
der of the singularity to 1/r and recovers the more favorable 1/

√
N

convergence rate. Since this seminal work, many researchers have
suggested improvements or simplifications to the OCF [Steinberg
and Kalos 1971; Kalli and Cashwell 1977; Rief et al. 1984; Raab and
Beikert 1999]. Notable examples include the use of an equiangular
approach (similar to Kulla and Fajardo’s [2012]) to sample the extra
vertex [Kalli and Cashwell 1977; Rief et al. 1984]. Much like Kalos’
OCF estimator and its extensions, we sample additional path vertices
to reduce singularities; however, we go a step further by considering
not just one but two vertices, while also accounting for all geometry
terms and anisotropic phase functions along the connecting subpath.

3 Background

To position our contribution, we present a unified formulation of sev-
eral existing rendering methods as different sampling techniques un-
der the path integral framework [Veach 1997]. This will allow us to
discuss interrelations, identify respective weaknesses, and motivate
our new approaches with respect to existing work. We first briefly
review the extended path integral framework for scenes with partici-
pating media [Jakob and Marschner 2012a], before discussing and
comparing current techniques for sampling and connecting paths.

3.1 Path Integral Framework

Image pixel intensity I is computed as an integral over the space Ω
of light transport paths: I =

∫
Ω
f(x) dµ(x). Here, x = x0, . . . ,xk

is a length-k path with k ≥ 1 segments and k + 1 vertices, where
the first vertex x0 is on a light source, the last vertex xk is on the eye
lens, and x1, . . . ,xk−1 are scattering points on surfaces and in me-
dia. The differential measure on the path space dµ(x) corresponds
to area integration for surface vertices and volume integration for
medium vertices. The measurement contribution function f(x) is
the product of the geometry throughput G(x), scattering throughput
ρ(x), path transmittance Tr(x), and path visibility V (x):

f(x) = G(x)ρ(x)Tr(x)V (x), (1)

where

G(x) =
∏k−1
i=0 G(xi,xi+1) ρ(x) =

∏k
i=0 ρ(xi)

Tr(x) =
∏k−1
i=0 Tr(xi,xi+1) V (x) =

∏k−1
i=0 V (xi,xi+1)

.

We illustrate these terms in the diagram below.

surface

medium

We overloadG, Tr and V to apply to both entire paths and individual
segments (or vertices, for ρ). The geometry term for a segment xy is
given byG(x,y)= D(x→y)D(y→x)

‖x−y‖2 , whereD(x→y) = |nx ·ωxy|
if x is on a surface and D(x→ y) = 1 if x is in a medium, and
likewise for D(y→x). The transmittance of segment xy is given

by Tr(x,y) = exp
(
−
∫ ‖x−y‖

0
σt(x + tωxy) dt

)
and V (x,y) is

its binary visibility. We define the scattering term ρ(xi) as

ρ(xi)=


Le(x0→x1) if i = 0,
We(xk−1→xk) if i = k,
ρs(xi−1→xi→xi+1) if xi on surface, and
ρp(xi−1→xi→xi+1)σs(xi) if xi in medium,

(2)

where ρs and ρp are the BSDF and phase function, and we treat the
emission Le and sensor importance We as special scattering events.

3.2 Path Probability Density for Existing Techniques

The variance of a Monte Carlo path integral estimator (the amount
of image noise) depends on the probability density for sampling
paths. The path probability density p(x) is given by the joint density
of the individual vertices, expressed with respect to the path space
measure µ, i.e. p(x) = p(x0, . . . ,xk). This joint PDF is fully de-
termined by the path sampling technique used to generate the path.
For traditional techniques based on incremental, vertex-by-vertex
path construction, the joint PDF is the product of the conditional
PDFs p(xi|vertices sampled before xi) for sampling each path ver-
tex. Ideally the joint PDF should be chosen to be exactly proportional
to the full path contribution function f(x) in Equation (1), however
this is not feasible in practice and so only certain terms of f(x) are
importance sampled. The resulting estimator’s variance depends di-
rectly on the variability of the ignored (and/or approximated) terms.

We will analyze the different joint path PDFs induced by existing un-
biased participating media rendering algorithms. We will motivate
our new sampling techniques by identifying terms in the contri-
bution function that are not importance sampled by each existing
technique’s joint PDF, and interpret all techniques as general path
sampling and connection strategies. Since we focus on media, and in
the interest of simplifying our exposition, we assume from this point
forward that all scattering vertices correspond to volume scattering
events (i.e. that G(x,y) = 1/‖x−y‖2). We use an example length-3
path abcd depicted in Figure 2 throughout our discussions.

Measures and measure conversion. We express all directional
PDFs p(ω) w.r.t. the solid angle measure, all distance PDFs p(t) w.r.t.
the Euclidean length on R1, and all medium vertex PDFs p(x) w.r.t.
the Euclidean volume on R3. Converting from the solid angle×length
product measure to the volume measure requires multiplication by a
corresponding geometry term G.

Unidirectional transmittance-based path sampling. A simple
method to construct paths is to first sample a vertex d on the eye
sensor from a PDF p(d) proportional to importance, and to incre-
mentally add vertices until we randomly hit a light source, yielding
a simple version of path tracing [Kajiya 1986] (Figure 2a). Given
vertex c in the medium with incident direction ωdc, the next path
vertex b is sampled as follows: first, a direction ωcb is sampled pro-
portionally to the phase function at c, i.e. p(ωcb |ωdc, c) ∝ ρ(c).
The propagation distance tcb along ωcb is then sampled proportion-
ally to transmittance1 with PDF p(tcb | c, ωcb). The direction ωcb

1Surface scattering occurs if tcb is beyond the nearest surface intersection
along the ray (c, ωcb). We disregard this technicality here for clarity.
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transmittance-sampled subpath vertex connection vertex
scattering-sampled subpath direction

(2-random-decision subpath)
d) segment-segment connection

(1-random-decision subpath)
c) vertex-segment connection

(0-random-decision subpath)
b) vertex-vertex connection

(no connection)
a) unidirectional sampling

Figure 2: A comparison of various existing techniques for sampling light transport paths in a medium. The pink connection vertices are
sampled from line distributions that are conditioned on the endpoints and/or end-lines of the light and eye subpaths.

and distance tcb determine the next vertex b, with conditional PDF:

p(b |ωdc, c) = p(ωcb |ωdc, c) p(tcb | c, ωcb)G(b, c), (3)

where G(b, c) is needed to convert the PDF to the volume measure.

The joint path PDF of this purely unidirectional sampling procedure
is the product of p(d) (proportional to emitted importance) with
the PDF in Equation (3) for every other vertex (Figure 2a). This
joint PDF is proportional to all the terms in the path contribution of
Equation (1) except the emitted radiance ρ(a) = Le(a→b). Un-
fortunately, in many practical cases, this approach yields estimators
with extremely high variance due to the negligible probability of
hitting small light sources. Unidirectional sampling can alternatively
be used to build paths starting from light sources: the resulting light
tracing algorithm [Dutré et al. 2006] usually has even higher vari-
ance because of the small size of the eye sensor.

In practice, both path and light tracing use next event estimation with
explicit shadow connections to lights or sensors. We consider these
as special cases of bidirectional path sampling, discussed below.

Bidirectional transmittance-based path sampling. To address
the high variance of unidirectional sampling, both emitted radiance
and sensor importance must be included in the path PDF. This can
be achieved with bidirectional sampling, illustrated in Figure 2b.
Unidirectional sampling is first used to construct one subpath with s
vertices from a light source and another one with t vertices from the
eye. The ends of these independent subpaths are then deterministi-
cally connected with a segment, completing a full path. Next event
estimation for path and light tracing corresponds to such a vertex-
vertex connection technique, with s = 1 or t = 1 respectively.

Vertex-vertex connections can lead to high variance since none of
the terms for the connecting segment are importance sampled, as it is
a 0-random-decision subpath connecting the light and eye subpaths
(see Figure 2b). In fact, the variance is infinite due to the geometry
term G(b, c) diverging as b and c approach each other [Kalos
1963]. To resolve this, bidirectional path tracing exploits the fact
that any full path can be generated using a number of techniques,
each corresponding to a unique combination of different lengths for
the light and eye subpaths. The MIS-weighted combination of these
estimators yields finite and often relatively low variance.

Equiangular sampling. Several researchers [Kalli and Cashwell
1977; Rief et al. 1984; Kulla and Fajardo 2012] have proposed im-
portance sampling the geometry term between a vertex and positions
on a ray. Kulla and Fajardo used this technique for rendering sin-
gle scattering, and we generalize it to a vertex-segment connection
technique in bidirectional sampling (Figure 2c).

Given the end vertices b and d on the light and eye subpaths, along
with a direction ωdc from d, the equiangular technique constructs a
1-random-decision connection subpath by sampling the propagation
distance tdc along ωdc to create vertex c with a PDF proportional
to the inverse squared length of the connecting edge bc,

p(tdc |b,d, ωdc) ∝ G(b, c) = 1/‖b−c‖2. (4)

Equiangular distance sampling often results in lower variance than
transmittance sampling. However, this technique does not impor-
tance sample any other terms in the connection, namely: Tr(b, c),
V (b, c), Tr(d, c), V (d, c), ρ(b), and ρ(c). Therefore, in some
cases, transmittance sampling may be preferred, so Kulla and Fa-
jardo combine both techniques using MIS.

Kulla and Fajardo [2012] originally developed this PDF to “cancel
out” the weak singularity in G(b, c); however, as we will show in
Section 5.1, the singularity remains “hidden” in the orientation of
ωdc, which we eliminate when importance sampling ωdc.

Virtual ray lights. VRLs [Novák et al. 2012] are a many-light
method that uses a one-sample Monte Carlo estimator to calculate
the total energy transfer between a “virtual ray light” and an eye
ray. We reinterpret this method as a general bidirectional segment-
segment connection technique (Figure 2d): given the end vertex a of
a light subpath along with direction ωab (i.e. the virtual ray light),
and an end vertex d on an eye subpath along with direction ωdc,
this 2-random-decision technique samples the propagation distances
tab and tdc from a joint conditional distribution,

p(tab, tdc |a, ωab,d, ωdc) ∝∼ G(b, c)ρ(b)ρ(c) =
ρ(b)ρ(c)

‖b− c‖2 . (5)

The approximate proportionality stems from various simplifications
in the VRL approach, which we improve upon in Section 6.3.

In Figure 2 we observe that the only difference between vertex-
vertex connection, equiangular sampling, and VRLs is the PDF for
sampling the distances tab and tdc. This PDF is either proportional
to transmittance, or to the scattering and/or geometry term(s) in-
volved in the connection. Depending on the geometry configuration
and media properties, either technique may lead to a lower-variance
estimator, so Novák et al. [2012] combine them using MIS.

Figure 2 also shows that each of these techniques can be viewed as
creating connections between light and eye subpaths with a varying
number of random decisions (0, 1, or 2). In the next sections, we go
a step further and develop a practical method for creating connection
subpaths involving 3 random decisions, where the extra decision
is direction sampling. We then show how to extend unidirectional
and bidirectional path tracing with such connections in Section 7,
leading to significant variance reduction.
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4 Joint Path Vertex Sampling

We consider a configuration where a light subpath xla and an eye
subpath dxe are given. Our aim is to construct a full path xlabcdxe
by connecting the endpoints a and d via a 3-random-decision con-
nection subpath with two new vertices b and c, as shown in Fig-
ure 3a. The subpaths xl and xe can have arbitrary lengths; zero
lengths correspond to the case where a is on a light source and d
is on the eye lens. We also assume that a direction ωdc at vertex
d is given (sampled as part of the eye subpath). The input to our
sampling techniques is thus a vertex a with incident direction ωla
and a vertex d with outgoing direction ωdc.

Since the new vertex c must reside on the ray (d, ωdc), our task
reduces to sampling a distance tdc from d along ωdc and another
vertex b. The PDF of the resulting full path is then

p(x) = p(xl,a, ωdc,d,xe)p(b, tdc |ωla,a, ωdc,d)G(c,d), (6)

where the geometry termG(c,d) again arises due to measure conver-
sion. Note that p(xl,a, ωdc,d,xe) is given by the chosen rendering
algorithm, not by our sampling techniques. How the light and cam-
era subpaths are created is orthogonal to our problem; our sampling
techniques only require that the input configuration (ωla,a, ωdc,d)
be provided. Since all our PDFs are conditioned on this input con-
figuration, we will use the following shorthand notation for it:

Ξ ≡ ωla,a, ωdc,d. (7)

Ideally, we would like to define p(b, tdc |Ξ)G(c,d) (i.e., the terms
that our techniques introduce) to be proportional to the path through-
put f(abcd). Unfortunately, defining such a PDF is not feasible
since its normalization constant is the solution of the path integral.
Inspired by previous work [Kulla and Fajardo 2012; Novák et al.
2012], we propose to importance sample only the product of the
geometry terms and the phase functions, such that

p(b, tdc |Ξ)G(c,d) = CΞG(abcd)ρ(abc), (8)

where the normalization factor CΞ (which we derive in Section 5)
depends on the input configuration Ξ, and where G(abcd) =
G(a,b)G(b, c)G(c,d) and ρ(abc) = ρ(a)ρ(b)ρ(c). Our contri-
bution is the definition of the joint PDF p(b, tdc |Ξ) along with its
corresponding sampling techniques. Note that ρ(d) does not ap-
pear in the above equation, since we assume that both the outgoing
direction, ωdc, and the incident direction at d are given.

4.1 Factorizations of the Joint PDF

Given the input configuration Ξ, there are a number of possible
ways to obtain the connection subpath vertices. Each approach
corresponds to factorizing the joint PDF in Equation (8) in a different
way, which influences the definition of the conditional PDFs for the
individual vertices and their corresponding sampling routines. We
consider two such possible factorizations, depicted in Figure 3. We
focus only on factorization here, and we will later explain how to
obtain and sample from each factor of the joint PDF.

Unidirectional factorization. One way to sample b and c is to
first sample a distance tdc, which effectively samples c in combi-
nation with the given ωdc, then sample a direction ωcb, and finally
sample a distance tcb to obtain b. This process is illustrated in
Figure 3b. We call this unidirectional factorization since c and b
are sampled from the same direction along the path starting from d.

Since we sample b as a distance and direction from c, we need to
change the measure of the joint PDF in Equation (8) to

p(b, tdc |Ξ) = p(tcb, ωcb, tdc |Ξ) G(b, c). (9)

sampled distance/vertexgiven vertex
sampled directiongiven direction

a) problem statement b) unidir. factorization c) bidir. factorization

Figure 3: Given the vertices a and d, with an incident and an
outgoing direction respectively, we aim to sample vertices b and c
from a joint distribution proportional to the geometry and scattering
terms of the resulting connection subpath. We derive the sampling
techniques corresponding to two possible factorizations of this PDF.

In order to sample the connection subpath, we factorize the joint
PDF into the product of three conditional PDFs, corresponding to
first sampling tdc, followed by ωcb, and finally tcb:

p(tdc, ωcb, tcb |Ξ) = p(tdc |Ξ) (U3) (10)
p(ωcb | tdc,Ξ) (U2) (11)
p(tcb |ωcb, tdc,Ξ). (U1) (12)

We introduce a shorthand notation U above, where the subscripts
denote the order in which we will derive the conditional PDFs.

Bidirectional factorization. Another way to sample b and c is to
first sample a direction ωab from a, then a distance tab, which yields
b, and finally a distance tdc to obtain c. We call this bidirectional
factorization since b and c are sampled from opposite directions.

In this process, illustrated in Figure 3c, b is sampled as a distance
and direction from a, and the change of measure of the target PDF is

p(b, tdc |Ξ) = p(tab, ωab, tdc |Ξ) G(a,b). (13)

The bidirectional factorization samples the connection subpath by
factorizing this PDF into the product of three conditional PDFs,
corresponding to first sampling ωab, followed by tab and tdc:

p(ωab, tab, tdc |Ξ) = p(ωab|Ξ) (B3) (14)
p(tab |ωab,Ξ) (B2) (15)
p(tdc |ωab, tab,Ξ). (B1) (16)

We likewise introduce a shorthand B for these conditional PDFs.

4.2 Conditional Distributions and Marginalization

Given the factorizations defined in Equations (10–12) and (14–16),
we now need to derive the individual conditional PDFs. We do this
through the process of marginalization, which we briefly review in
general terms here.

Suppose we have a set of random variables distributed according
to a joint distribution p(x, y, z). By definition, any conditional
distribution is given by the ratio of the joint distribution and the
marginalized joint. For example, we can have

p(x | y, z) =
p(x, y, z)

p(y, z)
. (17)

The denominator p(y, z) is given by marginalizing out the variable
x from the original joint distribution as follows:

p(y, z) =

∫
R
p(x, y, z) dx. (18)

In the following two sections, we will derive the conditional PDFs
for both factorizations above using these marginalization relations.
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5 Analytic Importance Sampling

In this section, we show that for the case of isotropic scattering, we
can derive fully analytic formulas for the PDFs and the sampling rou-
tines for the unidirectional factorization above. In Section 6, we will
show how to take advantage of the symmetries in the geometry of
the sampling problem to construct low-dimensional PDF tabulations
for both factorizations for the general case of anisotropic scattering.

5.1 Unidirectional Factorization PDFs

We first derive analytic expressions for the conditional PDFs in
Equations (10–12) for the case of isotropic scattering. Since the
phase function is constant, Equation (8) simplifies to2

p(b, tdc |Ξ)G(c,d) = CΞG(a,b)G(b, c)G(c,d). (19)

Using Equation (9), and canceling out geometry terms, the above
further simplifies to

p(tcb, ωcb, tdc |Ξ) = CΞG(a,b). (20)

We start with U1 and derive U2 and U3 in this order via repeated
marginalization.

U1: Derivation of p(tcb |ωcb, tdc,Ξ). Following the standard
definition of conditional PDFs in Equation (17), we have

p(tcb |ωcb, tdc,Ξ) =
p(tcb, ωcb, tdc |Ξ)

p(ωcb, tdc |Ξ)
. (21)

From Equations (18) and (20) it follows that the denominator above
is obtained by integrating out tcb:

p(ωcb, tdc |Ξ) =

∫ ∞
0

p(tcb, ωcb, tdc |Ξ) dtcb

= CΞ

∫ ∞
0

1

h2
ca⊥ + (tca⊥− tcb)2︸ ︷︷ ︸

G(a,b)

dtcb = CΞ
π − θcb

tca sin θcb
, (22)

where hca⊥ is the distance between a and the ray (c, ωcb), tca⊥

is the distance between c and this projection, and θcb is the angle
between ωcb and the line between c and a of length tca (see Fig-
ure 4c). By inserting Equations (20) and (22) into (21), we obtain a
simple expression for the PDF of tcb:

p(tcb |ωcb, tdc,Ξ) =
tca sin θcb

π − θcb

1

h2
ca⊥ + (tca⊥− tcb)2

. (23)

The denominator of the second term above is simply the squared
distance t2ba. Note that this PDF is exactly equal to that of equiangu-
lar sampling [Kalli and Cashwell 1977; Rief et al. 1984; Kulla and
Fajardo 2012] provided a, ωcb, and c are given.

U2: Derivation of p(ωcb | tdc,Ξ). The geometric configuration
for sampling the direction ωcb is illustrated in Figure 4b. Again,
following the definition of conditional PDFs (17), we have

p(ωcb | tdc,Ξ) =
p(ωcb, tdc |Ξ)

p(tdc |Ξ)
. (24)

2Note that the constant CΞ now additionally incorporates the product of
the three isotropic phase functions (4π)−3.

a) distance sampling b) direction sampling c) distance sampling

sampled distance/vertexgiven vertex
sampled directiongiven direction

(double scattering) (single scattering)

Figure 4: Unidirectional factorization of the joint PDF in Equa-
tion (8). (a) First, a distance tdc is sampled along the ray (d, ωdc)
which yields vertex c. (b) Then, a direction ωcb is sampled from c,
and finally (c) a distance tcb is sampled along it, yielding vertex b.

Following the marginalization chain, from Equation (22) we get

p(tdc |Ξ) =

∫
S2

p(ωcb, tdc |Ξ) dωcb (25)

=

∫ 2π

0

∫ π

0

CΞ
π − θcb

tca sin θcb
sin θcb dθ dφ =

CΞπ
3

tca
. (26)

The resulting conditional PDF for sampling ωcb, obtained by divid-
ing Equation (22) by Equation (26), thus depends only on a and c
since the normalization factors again cancel out:

p(ωcb | tdc,Ξ) =
π − θcb

π3 sin θcb
. (27)

Note that the above PDF diverges when θcb approaches zero. This
same singularity also appears in the path contribution function f
(when f is expressed as a function of the angle θcb) [Rief et al. 1984].
By sampling ωcb from this PDF (Section 5.2) we can effectively
cancel out this singularity, reducing variance. Note also that the
equiangular PDF (23) has no singularity since ωcb is fixed.

U3: Derivation of p(tdc |Ξ). The final marginalization step gives
us the PDF for sampling the distance tdc along the ray (d, ωdc).
To complete the definition for this PDF, which is already given by
Equation (26), we only need to derive the normalization factor CΞ,
which we do by enforcing the PDF (26) to integrate to 1:∫ ∞

0

p(tdc |Ξ) dtdc =

∫ ∞

0

CΞπ
3√

h2
da⊥ + (tda⊥− tdc)2

dtdc = 1, (28)

where hda⊥ is the distance between a and its projection onto the
ray (d, ωdc), and tda⊥ is the distance between d and this projection
(see Figure 4a). Unfortunately, the above integral diverges at infin-
ity; however, by setting a maximum sampling distance tmax

dc along
(d, ωdc), we can obtain an analytical expression for it:

CΞπ
3 =

1

Ctmax
dc

=
1

asinh
(
tmax
dc−tda⊥
h
da⊥

)
− asinh

(
−t

da⊥
h
da⊥

) . (29)

Substituting Equation (29) into (26) yields the PDF for tdc as simply

p(tdc |Ξ) =
1

Ctmax
dc

1√
h2

da⊥ + (tda⊥− tdc)2
. (30)
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The denominator of the second term above is just tca (see Figure 4a).
Interestingly, this means that for double-scattering the propagation
distance should be chosen proportionally to the inverse distance to
a, whereas for single-scattering the equiangular technique samples
proportionally to the inverse squared distance to a.

Joint unidirectional PDF. Now that we have completed the
marginalization process, we can obtain a closed-form expression for
the joint PDF in Equation (9) by multiplying the conditional PDFs
U1, U2 and, U3 from Equations (23), (27), and (30) respectively:

p(b, tdc |Ξ) = p(tcb, ωcb, tdc |Ξ)G(b, c)

=
G(a,b)G(b, c)

π3Ctmax
dc

. (31)

Substituting back into Equation (6), we can confirm that the final
path PDF indeed includes the geometry term G(abcd).

Note that we subsume Kalos’ [1963] OCF approach by sampling
two distances and a direction to construct two intermediate vertices
between a and d. Kalos’ OCF corresponds to sampling the vertex
b proportionally to the product of geometry terms to a and a fixed
c. This has a PDF: p(b | tdc,Ξ) = p(b, tdc |Ξ)/p(tdc |Ξ), which
arises by dividing Equation (31) by Equation (30).

5.2 Unidirectional Sampling Techniques

In order to use our importance sampling techniques, we not only
need the above PDFs, but also the corresponding sampling routines
derived from their inverse cumulative distribution functions (CDFs).

U3: Sampling a distance tdc. A random distance tdc along the
ray (d, ωdc) can be sampled using the inverse CDF of Equation (30),
derived by integrating the PDF over the ray and solving for tdc:

tdc = tda sinh(ξ Ctmax
dc

)− tda⊥(1 + cosh(ξ Ctmax
dc

)), (32)

where tda =
√
h2

da⊥ + t2
da⊥ is the distance between d and a (see

Figure 4a), and ξ ∈ [0, 1) is a uniform random number.

U2: Sampling a direction ωcb. The PDF (27) is circularly sym-
metric (i.e. it depends only on θcb). Its corresponding CDF is:

P (ωcb) =

∫ 2π

0

∫ θcb

0

π − θ
π3 sin θ

sin θ dθ dφ =
(2π − θcb)θcb

π2
, (33)

which we invert to solve for θcb, yielding the simple transformation

θcb = π(1−
√
ξ1), and φcb = 2πξ2, (34)

where ξ1 and ξ2 are uniform random numbers, and θcb and φcb

represent standard spherical coordinates with respect to a local frame
where the direction from c to a is the z-axis (Figure 4b).

U1: Sampling a distance tcb. Given a uniform random number
ξ, a distance tcb along ωcb is sampled using the inverse CDF of the
equiangular PDF (23), yielding vertex b:

tcb = tca⊥ + hca⊥ tan
(
ξ(π − θcb) + θcb −

π

2

)
. (35)

The end result is a fully analytic method to importance sample
the geometry terms along 3-segment paths (double-scattering) in
isotropic participating media which generalizes and complements
Kulla and Fajardo’s [2012] equiangular sampling for 2-segment
paths (single-scattering), as well as Kalos’ [1963] OCF estimator.

5.3 Bidirectional Factorization PDFs

Similarly to the unidirectional case, the three conditional PDFs in
Equations (14–16) are defined by the chain of marginalization of the
joint PDF in Equation (13). The derivation of the first conditional
PDF, B1, is the same as for U1. The resulting PDF is again equal
to that of equiangular sampling given b, ωdc, and d. However, in
contrast to the unidirectional case, we were unable to obtain analytic
expressions for the remaining two conditional PDFs, B2 and B3. In
the next section, we introduce a novel tabulation method that can
handle both factorizations, while additionally supporting anisotropic
phase functions, without requiring analytic formulations.

6 Tabulated Importance Sampling

To handle anisotropic scattering, we introduce a method to efficiently
tabulate our target PDF in Equation (8) using both the unidirectional
and the bidirectional factorizations. In constructing our tables, we
assume a circularly-symmetric 1D phase function (i.e. depending
only on the deflection angle between the incident and outgoing
directions). Isotropic scattering is a special case where the phase
function is simply ρ = 1/4π. As we will demonstrate in our results,
our tabulations achieve nearly ideal importance sampling of the
product of the geometry and scattering terms.

6.1 General Approach

As illustrated in Figure 3, both factorizations of our target PDF (8)
consider two types of sampling events: (1) a distance along a given
ray and (2) a direction from a given vertex. For a medium with a
given phase function, an entire family of PDFs exists for the geomet-
ric configuration of each sampling event. For instance, given a ray
(c, ωcb), there is in general a different 1D PDF along that line for
every possible relative location of vertex a and its incident direction
ωla. Our task is then to construct a table that holds tabulated line
PDFs for a discrete set of positions a and directions ωla.

Table parameterization. Even though each conditional PDF is
one- or two-dimensional (corresponding to distance or direction sam-
pling), the additional dimensionality of conditional variables makes
the naive tabulation intractable. Our key idea to address this problem
is to exploit the various symmetries in each geometric configuration
of conditional variables by designing a suitable canonical coordinate
system. This coordinate system allows us to dramatically reduce the
dimensionality of our tables and their construction time.

PDF parameterization. Depending on the geometric configura-
tion, the PDFs we tabulate may have large variations. This is because
we consider the product of the geometric and scattering terms, both
of which can have sharp peaks. Such peaks can significantly reduce
the accuracy of the tabulation; more importantly, when the geomet-
ric term has a singularity, accurate tabulation is not even possible.
We address this problem by warping the PDF domains via suitable
reparameterizations that analytically eliminate geometric variations.

6.2 Unidirectional Factorization

For this factorization, illustrated in Figure 4, we seek to tabulate the
factors given in Equations (10–12) for the joint PDF:

p(tcb, ωcb, tdc |Ξ) = CΞG(a,b)ρ(a)ρ(b)ρ(c). (36)

The difference from Equation (20) is that now we also take the phase
functions into account. For notation simplicity, in this section we
will denote the PDFs and the normalization constant CΞ with the
same symbols as in Section 5, in spite of them being different.
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6.2.1 U1: Tabulation for p(tcb |ωcb, tdc,Ξ)

This PDF is the anisotropic generalization of the PDF defined in
Equation (21), and illustrated in Figure 4c. For the tabulation we
can safely ignore the denominator, since—as a function of tcb—it
is merely a normalization constant, and we have to normalize our
PDFs numerically anyway. We also ignore the terms CΞ and ρ(c)
in the numerator (36), as both are constant w.r.t. tcb. We seek a PDF

p(tcb |ωcb, tdc,Ξ) ∝ G(a,b)ρ(a)ρ(b). (37)

Novák et al. [2012] proposed an on-the-fly tabulation of the same
PDF. However, their approach suffers from limited accuracy and
the overhead of on-the-fly construction. We avoid these issues by
precomputing accurate approximations of a number of such PDFs
once and storing them in a compact table which we can then use
to sample a distance along any given ray. Our key observation is
that this configuration, in general parameterized by (a, c, ωla, ωcb),
can in fact be expressed using just two angles representing ωla in a
suitable canonical coordinate system. This allows us to precompute
the entire family of PDFs into a compact 2D table of 1D PDFs.

Table construction. Figure 5c shows the canonical coordinate
system used for the tabulation. Given a ray (c, ωcb) and vertex a,
we first rescale the problem such that the distance between the line
and the vertex is one. We place the origin at a, the z-axis is aligned
with the ray, and the x-axis lies in the same plane. The table is
indexed by the direction vector ωla. Each entry in the table is a PDF
p(u) over the (signed) distance u along the line, measured from
the projection of a onto the line. Similarly to Novák et al. [2012],
we map the infinite line to a finite angular domain from the x-axis
with θ = arccotu. Each entry in our 2D table is a piecewise-linear
approximation of the following PDF:

p(θ(u)) = p(u)

∣∣∣∣ du

dθ

∣∣∣∣ = p(u)
1

G(a,b(u))
∝ ρ(a) ρ(b(u)). (38)

We tabulate the entire domain of θ ∈ [0;π], employing adaptive
refinement to improve accuracy. Note that with the above change of
variable, our tabulation is constant if the scattering is isotropic. In
the special case where scattering at a is isotropic (e.g. it is a point
light source), each entry in the 2D table would correspond to the
same 1D distribution.

Sampling. For any given ray (c, ωcb), vertex a, and direction ωla,
we first construct the coordinate system as described above. We then
index the table with the canonical spherical coordinates of ωla. We
draw an angle θb from the retrieved tabulated PDF, constrained to
the interval θb ∈ [0; arccotuc] (see Figure 5c), and transform it to
a canonical distance ub = cot θb to obtain the desired scattering
distance along the ray tcb = −uc+ub. We finally need to transform
the PDF from the angular measure to the Euclidean length measure:

p(ub) = p(θb)

∣∣∣∣ dθb
dub

∣∣∣∣ = p(θb)
[
G(a,b)hca⊥

]
, (39)

where hca⊥ is the distance between a and the ray (see Figure 4c).

6.2.2 U2: Tabulation of p(ωcb | tdc,Ξ)

This spherical distribution, used to sample the scattering direction
ωcb at vertex c, is the anisotropic variant of the PDF defined in
Equation (24), illustrated in Figure 4b. Once again, since we will
normalize the PDF after tabulation, we can ignore the division by

sampled distance/vertex
sampled direction

configuration vertex
configuration direction

table parameter

a) line tabulation b) spherical tabulation c) line tabulation
(double scattering) (single scattering)

Figure 5: Canonical coordinate systems for tabulating the condi-
tional PDFs in the unidirectional factorization (10–12) of the joint
PDF in Equation (8), for the case of anisotropic scattering. For each
configuration we construct a table indexed by the entities colored in
blue. The table entries are tabulated PDFs that are used for making
the corresponding sampling decisions illustrated in Figure 4.

the normalization factor p(tdc |Ξ). We therefore seek to tabulate:

p(ωcb | tdc,Ξ) ∝
∫ ∞

0

p(tdc, ωcb, tcb |Ξ) dtcb (40)

∝ ρ(c)

∫ ∞
0

G(a,b)ρ(a)ρ(b) dtcb︸ ︷︷ ︸
P (ωcb)

(41)

where ρ(c) is in front of the integral, as it does not depend on tcb.
Note that the integral on the second line, P (ωcb), is the normal-
ization of a PDF in our previous tabulation, U1, and can be readily
looked up without recomputation. The directional distribution is
therefore proportional to the product ρ(c)P (ωcb).

Table construction. Figure 5b shows the canonical coordinate
system for the tabulation. The origin is at c, the z-axis is the direc-
tion from c to a, the x-axis is coplanar with the z-axis and ωla. The
PDF family (41) then has three degrees of freedom—the direction
ωdc and the angle θla of ωla from the z-axis. We would thus need a
3D table of tabulated 2D PDFs, which is unfortunately impractical
in terms of both storage and computation. We address this problem
by tabulating ρ(c) and P (ωcb) separately, and sample from their
product. We build a 1D table of spherical PDFs for P (ωcb), indexed
by θla, where for every tabulated direction ωcb we evaluate P (ωcb)
by looking up the corresponding PDF normalization from the U1

table. An intuitive interpretation of this process is that we compute
the single-scattered incident radiance field from a (omitting trans-
mittance) at c, for a number of lobe orientations at a. We store the
PDFs in the table as fitted mixtures of von Mises Fischer (vMF)
distributions. This allows for both compact storage and efficient sam-
pling from the product with the vMF-fitted phase function, which
can be easily rotated on-the-fly [Tsai et al. 2008].

As we discussed in Section 5.1, this spherical PDF has a singularity
around the pole. A naive discretization would therefore result in a
highly inaccurate approximation, as it cannot capture the infinite
variation of the function. To make tabulation possible, we warp the
domain using Equation (34): ωu,v = ω(π(1 −

√
u), 2πv). With

this change of variables, the PDFs we store are

p(ωu,v) = p(ω)

∣∣∣∣ dω

dωu,v

∣∣∣∣ = p(ω) sin θcb. (42)

We found that for scattering anisotropy of g = 0.9, every PDF
in the 1D table for P (ωcb) can be accurately represented with 20
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vMF lobes, and the phase function with 3 lobes. We fit a (randomly
initialized) vMF mixture to every tabulated spherical PDF using a
standard iterative expectation-maximization algorithm.

Sampling. Before sampling, we first transform the given config-
uration into the canonical coordinate system, and index the two
tables to retrieve a product vMF distribution (41). We then sample
(u, v) with PDF p(u, v), which yields ωcb = ωu,v using the above
transformation. The solid angle PDF of the sampled direction is

p(ωcb) = p(u, v)

∣∣∣∣ du dv

dωcb

∣∣∣∣ = p(u, v)

[
π − θcb

π3 sin θcb

]
. (43)

Special case for ρ(a) = 1/4π. When the scattering at a is
isotropic (e.g. it is a point light), the PDF family (41) has only
one degree of freedom, the angle θdc between ωdc and the z-axis.
The whole family can thus be stored in a compact 1D table of 2D
PDFs, for a set of angles θdc, without the need for product sampling.

6.2.3 U3: Tabulation of p(tdc |Ξ)

This last PDF in the marginalization chain is used to sample a
distance along the ray (d, ωdc). It is the anisotropic variant of the
PDF defined in Equations (25) and (30) and illustrated in Figure 4a:

p(tdc |Ξ) ∝
∫
S2

∫ ∞
0

p(tdc, ωcb, tcb |Ξ) dtcb dωcb (44)

∝
∫
S2

p(ωcb | tdc,Ξ) dωcb. (45)

The values of this PDF can be readily obtained by looking up in the
corresponding normalizations from the U2 table described above.

Table construction. The geometric configuration for this family
of PDFs, illustrated in Figure 5a, is identical to the one for tcb, and
we use the same coordinate system as in Figure 5c. The only differ-
ence is that this time we eliminate variations due to the geometric
term by reparameterizing the tabulation domain using a different
transformation: v = asinhu. The stored PDFs are then

p(v(u)) = p(u)

∣∣∣∣ du

dv

∣∣∣∣ = p(u)
√

1 + u2 = p(u)ta, (46)

where ta is the distance between the corresponding point and a.

Sampling. Sampling a distance tdc = −ud + uc along a ray
(d, ωdc) proceeds analogously to the case for tcb. We first con-
struct the canonical coordinate system and retrieve the distribution
corresponding to ωla. We then sample vc from the corresponding
tabulated PDF, constrained to the interval vc ∈ [0; asinhud], and
compute uc = sinh vc. The line PDF of the sampled distance is:

p(tdc) = p(uc) = p(vc)

∣∣∣∣ dvc

duc

∣∣∣∣ = p(vc)

[
1

tca

]
. (47)

6.3 Bidirectional Factorization

In the bidirectional factorization, we tabulate the factorized condi-
tional PDFs in Equations (14–16) for the joint PDF:

p(ωab, tab, tdc |Ξ) = CΞG(b, c)ρ(a)ρ(b)ρ(c). (48)

As in the isotropic case, the conditional PDF B1 is the same as U1 but
with different variable names. We illustrate the coordinate system in
Figure 6c for reference. We can thus readily reuse the PDF and CDF
tables, and continue with the next PDF in the marginalization chain.

sampled direction
configuration vertex
configuration direction

table parameter

a) spherical tabulation

sampled distance/vertex

b) line tabulation c) line tabulation
(double scattering) (single scattering)

Figure 6: Canonical coordinate systems for tabulating the condi-
tional PDFs in the bidirectional factorization (14–16) of the joint
PDF in Equation (8). For each configuration we construct a table in-
dexed by the entities colored in blue. Each table entry is a tabulated
PDFs that is used for sampling distances or directions.

6.3.1 B2: Tabulation of p(tab |ωab,Ξ)

This PDF is used to sample a distance along a ray (a, ωab), given
another ray (d, ωdc) (see Figure 3c). Following the definition of
conditional PDFs in Equation (17), we have:

p(tab |ωab,Ξ) =
p(ωab, tab,Ξ)

p(ωab,Ξ)
∝ p(ωab, tab,Ξ)

=

∫
G(b, c)ρ(a)ρ(b)ρ(c) dtdc ∝

∫
G(b, c)ρ(b)ρ(c) dtdc.

(49)

The marginal VRL PDF of Novák et al. [2012] roughly corresponds
to this PDF, with (d, ωdc) being the eye ray and (a, ωab) the VRL.
Unlike Novák et al., however, we take into account anisotropic
scattering at vertex b and consider the semi-infinite extent of line
(d, ωdc) (which Novák et al. approximate as an infinite line). Our
approach dramatically reduces variance, as we show in our results.

Table construction. Figure 6b illustrates the geometric config-
uration. In the canonical coordinate system the x-axis is aligned
with the shortest connecting line between (a, ωab) and (d, ωdc).
The origin o is the end of the connecting line on (a, ωab) and the
z-axis is aligned with ωdc. Similarly to the previous cases, an entire
family of these PDFs exists, parameterized by the rays (a, ωab) and
(d, ωdc). Once again, the symmetries in the geometry configuration
and scale invariance allow us to parameterize this family of PDFs
by only a few parameters. In fact, with Novák et al.’s assumption
that the ray (d, ωdc) is infinite, we would only need a single table
parameter, the θab angle between ωab and ωdc. However, the shape
of the PDFs critically depends on the actual location of vertex d
along the (d, ωdc) line. For that reason, we use the distance ud from
the projection of the origin onto (d, ωdc) as an additional parameter,
and build a 2D table of 1D PDFs. For every combination of angle
θab and distance ud, the associated PDF assigns probability density
to distance u from the origin on the (infinite) line (a, ωab). We
build a piecewise-linear approximation of this PDF, by looking-up
the integral (49), to which the constructed PDF is proportional, from
the previously constructed B1 table.

The PDF p(u) in the canonical coordinate system is defined over an
entire infinite (a, ωab) line. To allow tabulation, we map this to a
finite domain by parameterizing the position u using v = asinhu.
Using this change of variables, the PDFs stored in the table are

p(v(u)) = p(u)

∣∣∣∣ du

dv

∣∣∣∣ = p(u)
√

1 + u2 = p(u)to⊥ , (50)
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Figure 7: Comparison of our analytic and tabulated sampling techniques against state of the art techniques in path tracing and virtual ray
light (VRL) [Novák et al. 2012] renderers on a simple scene with an infinite medium and an isotropic point light source. The number in each
image indicates its relative render time. Note the poor performance of the analytic techniques with anisotropic phase functions; our tabulations
perform particularly well, since transmittance (not importance sampled) has a smaller relative impact on the variability of the light transport.

This is the same transformation as in Equation (46), with to⊥ denot-
ing the distance between the corresponding point and o⊥ (Figure 6b).
Any possible variation in the tabulation is solely due to the anisotropy
of the phase function and the position of d along the line ωdc.

Sampling. Given two rays (d, ωdc) and (a, ωab), we construct
the canonical coordinate system and retrieve the distribution cor-
responding to θab and ud. We then sample vb from the tabu-
lated PDF, constraining it to the interval vb ∈ [0; asinhua], and
compute ub = sinh vb. The line PDF of the sampled distance
tab = −ua + ub is

p(tab) = p(ub) = p(vb)

∣∣∣∣ dvb

dub

∣∣∣∣ = p(vb)

[
1

tbo⊥

]
. (51)

6.3.2 B3: Tabulation of p(ωab |Ξ)

The final PDF in the marginalization chain is used to sample a
direction ωab at vertex a (see Figure 3c). We seek to tabulate

p(ωab |Ξ) =
p(ωab,Ξ)

p(Ξ)
∝
∫
p(ωab, tab |Ξ) dtab

∝ ρ(a)

∫
G(b, c)ρ(b)ρ(c) dtab︸ ︷︷ ︸

P (ωab)

(52)

where ρ(a) is in front of the integral, as it does not depend on tab.
Similarly to Section 6.2.2, the integral on the second line, denoted
P (ωab), is the normalization of a corresponding PDF in the B2

table above, and can be readily looked up. The desired distribution
is proportional to the product ρ(a)P (ωab).

Table construction. Figure 6a shows the canonical coordinate
system used for the tabulation. The origin is at a, the z-axis is
aligned with ωdc, and the x-axis lies in the same plane. The PDF
family (52) is then spanned by the direction ωla and the position
of d along ωdc, given by the distance ud in the figure. Once again,
this means that we generally need a 3D table of tabulated spherical
PDFs. However, in this case the tabulated data cannot be efficiently
represented by vMF mixtures, necessitating a different (e.g. wavelet-
based) product sampling approach. We leave this for future work,
and build our PDF tables assuming isotropic scattering at a.

Similarly to the special case in 6.2.2, the problem reduces to con-
structing a 1D table of tabulated 2D PDFs, this time indexed by
the distance ud. The spherical distributions in this family have a
singularity around the z-axis, which is due to the sin−1 θ factor in
Novak et al.’s [2012] analytic inverse CDF. We eliminate this sin-
gularity by warping the spherical domain using the transformation
ωu,v = ω(π

√
1− u, 2πv). With this change of variable, we store

p(ωu,v) = p(ω)

∣∣∣∣ dω

dωu,v

∣∣∣∣ = p(ω) sin θab. (53)

Sampling. For this sampling decision, we are given a ray (d, ωdc)
and a point a. After transforming this input configuration into the
canonical coordinate system, we retrieve a PDF by indexing our
table with ud. We then sample (u, v) with PDF p(u, v), yielding
ωab = ωu,v using the above transformation. The solid angle PDF
of the sampled direction is

p(ωab) = p(u, v)

∣∣∣∣ du dv

dωab

∣∣∣∣ = p(u, v)

[
1

2π2 sin θab

]
. (54)
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Figure 8: Unidirectional path tracing with isotropic (left, 15 min.)
and anisotropic (right, 30 min.) media using traditional 0-random-
decision (shadow) connections and our extensions incorporating 1-
and 3-random-decision connection subpaths, resulting in 4× to 6×
and 15× to 38× reduction in RMSE error (bottom) respectively.

7 Applications and Results

Our unidirectional and bidirectional sampling techniques described
in the previous two sections provide an effective way to construct
3-random-decision connection subpaths. The most direct applica-
tion of this method is to compute single- and double-scattering in
participating media by connecting eye rays to random locations on
light sources. This corresponds to the special case where the prefix
and postfix subpaths xl and xe introduced in Section 4 are both of
zero length, i.e. a is on a light source and d is on the eye lens.

Though our routines do not currently consider chains of random
decisions longer than 3, we can still leverage them to improve higher-
order multiple scattering. We do this by generalizing deterministic
(0-random-decision) shadow connections used in unidirectional and
bidirectional path tracing, into 1-, 2-, and 3-random-decision sub-
paths connecting light and eye subpaths of arbitrary lengths.

In this section we describe how to incorporate our sampling rou-
tines for practical improvements in rendering. We compare our
enhanced algorithms to classical unidirectional and bidirectional
path tracing as well as VRL rendering. Figure 7 summarizes the
connection techniques at our disposal, demonstrating their ideal-case
performance. Due to space limitations, we omit the images from the
bidirectional 3-random-decision subpath technique, which produces
similar results to the unidirectional 3-random-decision subpath tech-
nique. Table 1 summarizes the resolution, memory footprint, and
computation time for the PDF tabulations described in Section 6.
All measurements have been obtained on a mobile quad-core Intel
Core i7-2820QM 2.3GHz processor using a CPU ray tracer.

7.1 Unidirectional Path Tracing

0 random decisions. The most common forward path tracer uses
unidirectional path sampling of transmittance and phase function
starting at the eye, combined with deterministic (0-random-decision)
shadow connections (a special case of Figure 2b). We use this
algorithm as a baseline for our comparisons.

Figures 1 and 8 show a scene with isotropic (left) and highly
anisotropic (right) phase functions and scattering albedo 0.57. Even

1-conn. (on-the-fly) 3-conn. (tabulated) 1-conn. 3-conn.

1.068e+01.068e+0 2.036e-12.036e-1

1
m

in.

5.168e-15.168e-1 8.172e-28.172e-2

5
m

in.

4.382e-14.382e-1 5.865e-25.865e-2

15
m

in.

Figure 9: A scene containing an anisotropic medium (g = 0.9) and
an anisotropic point light, rendered with unidirectional path tracing
using Novák et al.’s [2012] on-the-fly tabulated 1-connections (left)
and our improved tabulated 3-connections (right).

with explicit shadow connections, traditional path tracing (far left)
suffers from significant spike noise as it cannot importance sample
the geometry term or phase function when making the connection.

1 random decision. Our first extension to unidirectional path
tracing incorporates 1-random-decision connection subpaths. We
generate a random-walk path starting at the eye, just as with standard
unidirectional path tracing. However, instead of connecting each
eye path vertex to the light with a deterministic connection, we
independently connect each eye path segment to the light using a
1-random-decision subpath, sampled with the U1 technique. This
corresponds to using (isotropic) equiangular sampling or Novák
et al.’s [2012] anisotropic generalization as a connection strategy
between an eye path and a light. As in previous work, we combine
with transmittance importance sampling using MIS.

This extension corresponds to interpreting previous work as a general
connection strategy. On top of this, our precomputed tabulation
improves render time and affords a more accurate approximation of
the anisotropic PDF since we avoid coarse on-the-fly tabulation. The
center columns in Figure 8 shows unidirectional path tracing with
1-random-decision connections. This reduces RMS error by a factor
of 4 to 6 (a 16× to 36× improvement in rendering convergence
time) compared to using only deterministic shadow connections.

2 and 3 random decisions. Our main contribution for unidirec-
tional path tracing additionally incorporates our U2 and U3 sampling
techniques for up to 3-random-decision connections (Figure 3b)
between each eye path segment and a light source. We also sample
a 1-random-decision connection for the first eye path segment to
account for single scattering. We use Equations (32–35) for isotropic
media and our tabulated equivalents for anisotropic media. For each
decision, we randomly choose between our phase function and geom-
etry term sampling routines and traditional transmittance and phase
function sampling, and use the one-sample MIS balance heuristic
to combine the estimates. The resulting algorithm fully subsumes
traditional path tracing (i.e. with 0-random-decision connections),
which corresponds to always selecting the traditional techniques.

Figures 1 and 8 show the result of rendering the Dragon scene using
3-random-decision connection subpaths. This provides a substan-
tial variance reduction compared to using just 1-random-decision
connections, resulting in a 15× (isotropic) to 38× (anisotropic)
reduction in total RMS error compared to deterministic shadow
connections. This corresponds to a 225–1444× speedup in render-
ing convergence time. The Lighthouse scene in Figure 9 has an
anisotropic light source and albedo 0.8, and Figure 10 shows the
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Figure 10: Two scenes with anisotropic (g = 0.9) heterogeneous
media, rendered with unidirectional path tracing. In contrast to our
improved (3-connection) techniques, the traditional (0-connection)
techniques miss most of the double-scattered illumination.

two scenes with heterogeneous media; both figures show significant
variance reduction using our 3-connection techniques. For heteroge-
neous media, we do not use Kulla and Fajardo’s [2012] transmittance
tabulation, though a combination with our techniques would be in-
teresting to investigate. In Figure 11 we demonstrate longer bounces
(path lengths 1–8) with and without our improvements.

7.2 Virtual Ray Lights

We incorporated our tabulated bidirectional sampling strategy into
a many-light renderer. This renderer generates random-walk paths
from the lights with transmittance and phase function importance
sampling, and stores them as a collection of VRLs. During rendering,
eye rays are connected to the VRLs using a one-sample Monte Carlo
estimator. See Novák et al. [2012] for complete details.

Our B1, B2, and B3 tabulations provide three concrete improve-
ments over Novák et al.’s [2012] approach in Equation (5): 1) our
tabulations are precomputed, affording higher precision and avoid-
ing expensive on-the-fly tabulation; 2) we eliminate approximations
in the marginal distribution (see Section 6.3.1) which significantly
reduces noise; and 3) we can importance sample one additional
random decision (the emitted direction of the VRL) which allows
us to sample a set of VRLs relevant to the viewpoint. We evaluate
these improvements compared to a baseline VRL renderer.

In Figure 12, we compare Novák et al.’s approach to our improved
2-random-decision (left) and 3-random-decision (right) connections
(albedo 0.89). The right image in particular considers an uncorrected
variation of VRLs, where a VRL is generated independently for each
eye ray, instead of using a single set of VRLs for the entire image.
Our 3-random-decision technique not only importance samples the
connection to the VRLs, but also importance samples the emitted
direction of the VRLs themselves. In both cases, we see substantial
quality improvement in the same rendering time.

Table 1: Resolution, memory footprint, and construction time statis-
tics for the PDF tabulations illustrated in Figures 5 and 6.

Table resolution PDF resolution Memory Time

U1, B1 θla: 200, φla: 400 ub: 35 (avg) 22 MB 320 ms
U2 θla: 90 ωcb: 20 lobes 36 KB 6 s
U3 θla: 90, φla: 180 uc: 100 13 MB 580 ms
B2 ud: 300, θab: 100 ub: 200 24 MB 530 ms
B3 ud: 100 θ: 200, φ: 400 32 MB 680 ms
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Figure 11: The Dragon scene with an isotropic and anisotropic
medium, rendered with unidirectional path tracing. We visualize
path lengths 1–8 and compare the traditional (0-connection) sam-
pling techniques to our extended (3-connection) method.

7.3 Bidirectional Path Tracing

Bidirectional path tracing (BPT) also traditionally relies on determin-
istic connections (see Figure 2b), but typically converges much faster
than unidirectional path tracing, as it can combine many techniques
for constructing the same path. We will show that by incorporating
2-random-decision connections into BPT we can obtain significant
variance reduction even for this generally more robust algorithm.

0 random decisions. Our baseline for comparison is a standard
bidirectional path tracer. Both the light xl and eye xe subpaths are
created using transmittance and phase function importance sampling,
and then each pair of vertices are coupled with a deterministic 0-
random-decision connection to construct a full path from a light to
the eye. We combine the various ways of constructing paths using
MIS with the balance heuristic.

1 and 2 random decisions. Instead of connecting each pair of
vertices, we incorporate our B1 and B2 techniques for 2-random-
decision connections between each pair of path segments on the
light and eye subpaths, as illustrated in Figure 2d. A light subpath
segment defines a and its outgoing direction ωab, and an eye sub-
path segment provides d and its incoming direction ωdc. Given
this configuration, we use our tabulated bidirectional factorization
(Section 6) to randomly sample tab and tdc proportionally to the
product of inverse squared distance, G(b, c), and phase functions,
ρ(b)ρ(c). We perform this connection for every eye-light segment
pair. This effectively converts VRLs from a many-light algorithm
into a bidirectional connection strategy, leveraging our more efficient
and accurate tabulated joint PDFs. As with all our other implemen-
tations, we combine transmittance and phase function importance
sampling via MIS, thereby subsuming 0- and 1-random-decision
connections.

Figure 1 shows a scene with medium albedo 0.57 rendered with
bidirectional path tracing. Even though BPT is generally much more
robust than unidirectional path tracing, incorporating our 2-random-
decision connections results in visible noise reduction; RMS error is
reduced by roughly a factor of 3.5—a 12× improvement in conver-
gence speed for path lengths 1–3. Since our techniques importance
sample single and double scattering, we expect the benefits to be
most significant for low-order scattering. Applying our approach to
longer paths also results in some (albeit less) variance reduction.
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Figure 12: Left: Our tabulated PDFs are more accurate than the
ones of Novák et al.’s [2012] and dramatically reduce variance when
making connections between correlated VRLs and eye rays. Right:
Our ability to importance sample the emitted directions of VRLs
further reduces variance for uncorrelated VRL rendering.

8 Discussion and Limitations

Variance due to other terms. Although the geometry and scat-
tering terms are often responsible for high variance, other terms can
introduce high variance in certain scene configurations. For example,
transmittance sampling may outperform our methods in scenes with
highly heterogeneous and dense media. In scenes with uniform light
emission (e.g. a constant environment map), traditional unidirec-
tional sampling (Figure 2a) will likely be the best strategy. We try to
handle such cases robustly using MIS; however, by splitting samples
across multiple strategies we allocate fewer samples to a potentially
better strategy. Though our method outperforms existing techniques
in all our tests, we obtained less benefit in scenes with a combina-
tion of caustic paths and surface-to-media transport, e.g., the noise
visible near the floor and stools in the Stage scene in Figure 1.

Longer connections. While our method is tailored to single and
double scattering, in Section 7 we demonstrate practical improve-
ment for path lengths up to 8 by using our techniques as generalized
“shadow connections”. This improvement will likely diminish for
even longer paths; however, since longer paths also have smaller
contribution, the final image will still benefit from our improvement
in lower-order scattering. We believe it is theoretically possible
to extend our techniques to jointly importance sample more than
three random decisions by continuing the marginalization chain.
The theoretical challenge is to derive either analytic expressions or
proper tabulation for the resulting conditional PDFs. Our theoretical
framework could be used as a stepping stone for such developments.

Anisotropic light sources. Our current implementation of the
bidirectional factorization does not support 3-random-decision con-
nections when the scattering at vertex a is anisotropic. For this
particular case we would need a product importance sampling tech-
nique that is better suited to the shape of the distributions. This is
mainly a limitation of our implementation, not our theory.

Convergence rates. As discussed earlier, Kalos [1963] showed
that the UCF estimator (which corresponds to standard unidirec-
tional path tracing with explicit shadow connections) results in in-
finite variance in the presence of light sources inside participating
media. Moreover, the central limit theorem does not hold, leading
to a substantially lower asymptotic convergence rate for volumetric
path tracing than its surface equivalent (1/ 3

√
N instead of 1/

√
N ).

By reducing the order of the singularity in the geometry term, Kalos’
OCF estimator provides bounded variance and recovers a 1/

√
N

convergence rate. Our techniques inherit this property by subsum-
ing the OCF estimator. Nonetheless, a formal analysis of the exact

convergence rates of our methods would be interesting, especially
in combination with multiple importance sampling where singular-
ities are further reduced by low weights. Dubi et al. [1982] and
Reif [1984] also showed that the combination of path tracing and
equiangular sampling retains the 1/

√
N convergence rate, despite

the fact that this combination still leaves an angular singularity and
has infinite variance. Our techniques also employ equiangular sam-
pling but additionally remove this angular singularity, leading to
reduced variance.

9 Conclusion

We presented joint path importance sampling techniques of the prod-
uct of geometry and scattering terms for rendering participating
media. We revealed that traditional incremental path construction
can lead to significant variance, and provided a unifying view of
existing methods as subpath connection techniques. We developed a
subpath construction strategy to importance sample three sequential
random decisions. We derived simple analytic expressions for uni-
directional sampling in isotropic media, and introduced a compact
tabulation scheme to handle anisotropic scattering and bidirectional
sampling by exploiting various geometric symmetries in participat-
ing media. We demonstrated that these techniques can be easily
incorporated into various rendering algorithms and reduce variance
by up to three orders of magnitude compared to currently used meth-
ods. We believe that our theoretical and practical contributions create
a promising new direction of future work in joint path sampling.
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provided the vMF code. We have assembled our scenes using free
models from Archive3D.net. This work has been partially supported
by the Czech Science Foundation grant P202-13-26189S.

References

BURKE, D., GHOSH, A., AND HEIDRICH, W. 2005. Bidirectional
importance sampling for direct illumination. In Proc. of Euro-
graphics Symposium on Rendering, Eurographics Association,
Aire-la-Ville, Switzerland, Switzerland, EGSR’05, 147–156.

CHANDRASEKAR, S. 1960. Radiative Transfer. Dover Publications.

CLARBERG, P., AND AKENINE-MÖLLER, T. 2008. Practical
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