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Thank you for the introduction. This project is joint work with Christian Regg and Wojciech 
Jarosz and was conducted during my time at Disney Research Zürich.



Motivation

Volumetric photon mapping

1. Trace photons
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Suppose that we’re interested in rendering a participating medium with global illumination. A 
popular algorithm that does this is volumetric photon mapping. In this two-stage method, a 
preprocess step first generates and stores a large number of virtual scattering events named 
“photons”. 
[CLICK]
And later during rendering, the illumination arriving along eye rays is then estimated using 
density estimation over those photons.
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Motivation
Volumetric photon mapping

1. Trace photons 2. Radiance estimate

Issues

• high-frequency illumination requires many photons

• time spent on photons that contribute very little

• prone to temporal !ickering
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There are a several problems with this approach: first, to capture fine illumination details, an 
excessively large number of photons is necessary in practice, which leads to high memory 
consumption and long rendering times.

The rendering step tends to spend much time processing photons that contribute very little 
to the rendered image. 

And finally, this technique is also prone to temporal flickering when rendering animations, 
since the photons are generated stochastically.



Motivation

Beam radiance estimate : 917K photons  Per-pixel
render time 
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Here is an example showing scene rendered with almost a million photons. It uses the beam 
radiance estimate, which is a variant of volumetric photon mapping. The right side shows the 
per-pixel render time, and you can see that a significant amount of time is spent in areas 
that are actually strongly attenuated in the rendering.



Per-pixel
render time

Motivation
Beam radiance estimate : 917K photons Our method: 4K Gaussians

Per-pixel
render time 

Render time: 281 s Render time: 125 s

Our approach

• represent radiance using a Gaussian mixture model (GMM)

• "t using progressive expectation maximization (EM)

• render with multiple levels of detail
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In comparison, our method renders this scene faster using an alternative radiance 
representation that only uses four thousand terms for this scene.  More specifically, we use a 
hierarchical Gaussian mixture model that is computed using a variant of the expectation 
maximization algorithm. We also use a hierarchical rendering stage, which can switch to 
lower levels of detail where it makes sense -- for instance, when drawing the attenuated 
distant light sources.

During the talk, I sometimes abbreviate expectation maximization as EM, and gaussian 
mixture models as GMMs.



Motivation
Beam radiance estimate : 4M photons Our method: 16K Gaussians

Render time: 727s Render time: 457 s

Our approach

• represent radiance using a Gaussian mixture model (GMM)

• "t using progressive expectation maximization (EM)

• render with multiple levels of detail
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Here, you can see another comparison between the Beam Radiance and our method -- this 
time showing a sphere caustic rendered with 4 Million photons and 16 thousand gaussians. 
Again, our method renders this image faster, and it intelligently blurs noise, while retaining 
important image features.



Related work  (1/3)

• Volumetric photon mapping 
[Jensen and Christensen 98]

• The Beam Radiance Estimate (BRE)
[Jarosz et al. 08]
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There are several related works in the areas of computer graphics, statistics, and 
machine learning.

Volumetric photon mapping proposed in 1998, was the first method that could render 
phenomena such as volume caustics at reasonable cost.  

The beam radiance estimate, henceforth referred to as “BRE”, proposes a significant 
algorithmic improvement of the density estimation step in volumetric photon 
mapping. Instead of performing ray marching, it finds all photons along a camera ray, 
which results in better quality and faster rendering time. We 



Related work  (2/3)

• Diffusion based photon mapping
[Schjøth et al. 08]

• Photon relaxation
[Spencer et al. 09]

• Hierarchical photon mapping
[Spencer et al. 09]
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There are a number of techniques that solve related problems in surface rendering:

 Diffusion based photon mapping achieves higher-quality estimates by introducing an 
anisotropic density query. 



 Photon relaxation adjusts the photons in a photon map by shifting their centers 
according to a set of heuristics.



 And hierarchical photon mapping creates photon maps with multiple levels of detail, and 
dynamically chooses the appropriate resolution when executing a query.



 In comparison, our technique has the benefit of all these three methods, but applied to 
the volumetric setting. It could be interpreted as using a special kind of photon map 
containing a small hierarchy of anisotropic photons, whose positions and other parameters 
are found using statistically sound optimization techniques. 



Related work  (3/3)

Rendering

• EWA splatting [Zwicker et al. 02] 

• Meshless light transport [Lethinen et al. 08]

• Progressive photon mapping [Hachisuka et al. 08]
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Anisotropic Gaussians have seen prior use in graphics, for example in the context of 
EWA splatting.
Other projects, such as meshless light transport, have explored the use of alternative 
hierarchical radiance representations.

 Our method uses a progressive photon gathering step, which is similar in spirit 
to progressive photon mapping.
[CLICK]
We make use of two agglomerative clustering techniques by Goldberger et al. and 
Walter et al..

 And finally, our progressive fitting algorithm builds upon the accelerated 
expectation maximization algorithm by Verbeek et al.
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Density estimation
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Let’s start with a bit of review:



Density estimation

Given photons approximately determine
their density
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 Suppose we are given a set of photons that we would like to use in a rendering. To do 
this, we’ll need a way of determining their approximate density at [CLICK]  arbitrary points.

 The non-parametric approach, which standard photon mapping uses, essentially works 
by [CLICK] counting the number of photons that fall into a small region around the point in 
question, and this needs to be repeated for every evaluation of the density function.

 [CLICK] A different approach known as “parametric density estimation” assumes that the 
photons are drawn from a certain known distribution -- for instance, a 2D Normal 
distribution. In that case, all we need to do is to find the most suitable parameter values, and 
we have completely recovered the density function.  This is the technique we will use in this 
paper. 
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• Photon density modeled as a weighted sum of Gaussians:

Gaussian mixture models
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For this to work in practice, we’ll need to use a distribution that is general enough so that it 
can work for arbitrary scenes. We use Gaussian mixture models, which are a popular choice 
in AI, data mining and statistics.

A gaussian mixture model is simply a weighted sum of Gaussian basis functions, each of 
which has a specifiable mean and covariance matrix, and you can see a simple 2D example at 
the bottom. The number of Gaussian terms $k$, is usually fixed. In our method, this is the 
main knob that affects the quality of the result.

Note that since we’re interested in volumetric radiance, we actually use three-dimensional 
Gaussians in this paper.

Of course, the real radiance distribution isn’t necessarily of this type -- [CLICK]



• Photon density modeled as a weighted sum of Gaussians:

Gaussian mixture models

256 Gaussians 1024 Gaussians 4096 Gaussians 16384 Gaussians Target density

[Papas et al.]
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.. but with an increasingly large number of  mixture terms, we can approximate it arbitrarily 
well. The bottom series of images shows a demonstration of this process applied to a 2D 
image.



1. Weights 2. Means 3. Covariance matrices

Unknown parameters     :

• Photon density modeled as a weighted sum of Gaussians:

Gaussian mixture models
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The missing parameters then that need to be estimated are the weights, [CLICK] means, 
[CLICK] and covariance matrices for each one of the Gaussian terms. There will be many of 
them --usually we use somewhere between four and sixty-four thousand Gaussians.
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The missing parameters then that need to be estimated are the weights, [CLICK] means, 
[CLICK] and covariance matrices for each one of the Gaussian terms. There will be many of 
them --usually we use somewhere between four and sixty-four thousand Gaussians.
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Maximum likelihood estimation

Approach: "nd the “most likely” parameters, i.e.

Mixture model

Photon locationsEstimated parameters
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Having settled on parametric density estimation and Gaussian mixtures, we need some way of 
finding suitable parameter values. 

An intuitive way of phrasing this problem is to find the parameters that are the most likely. 
Mathematically, this can be expressed as a maximization problem, where we evaluate the 
density function at every photon, and look for the parameters that maximize this combined 
probability. 

This is a standard approach known as maximum likelihood estimation, and the good news is 
that there is a powerful solution algorithm [CLICK] known as expectation maximization, which 
works particularly well when this approach is used together with Gaussian mixture models.
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• Two components:

E-Step: 

M-Step: 

Expectation maximization

M

Eestablish soft assignment between
photons and Gaussians

maximize the expected likelihood
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EM can be thought of as a soft version of K-means, also known as lloyd-relaxation. It consists 
of two components:

 The E-step establishes a soft assignment between every point and every Gaussian in the 
mixture model,
and the M-step uses these assignments to maximize a likelihood function.
As we keep running these E and M-steps, our parameters will improve steadily until 
convergence.

There are a two issues though [CLICK]:  first of all, EM will only find a locally optimal solution 
-- we can’t do much about that, except giving it a relatively good starting guess.

 And secondly, plain EM is extremely slow if not impractical when we’re dealing with 
millions of photons and tens of thousands of Gaussians. In a moment, we’ll take a look at 
how this problem can be solved.
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• Finds a locally optimal solution
            good starting guess needed!

• Slow and scales poorly —                
(where     : photon count)
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[PAUSE....] Here is a high-level overview. [CLICK]

Since it our method also works in 2D, we demonstrate it on the famous Lena image. The input 
is a low quality Gaussian mixture, which is progressively refined until convergence.



High-level "tting overview

Improve the quality

Low quality solution High quality solution

1024 Gaussians1024 Gaussians

Thursday, 6 September 12
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..and here is a more detailed pipeline diagram. We first start with a photon map and an initial 
guess [CLICK], which also computed from the photon map. The photon shooting pass is 
standard, hence it won’t be covered in this talk, and we’ll postpone discussion of the starting 
guess until later.

 [CLICK] After these two steps, we run our progressive EM to improve the initial guess. It 
does essentially the same thing as plain EM, but much more efficiently. Our algorithm may 
continually shoot further photons if it is deemed necessary to improve the quality of the end 
result, and it runs until convergence is achieved.

 [CLICK] We then create a level of detail representation, which allows us to render 
complex scenes efficiently.
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Each photon exerts a pull on nearby Gaussian components

Thursday, 6 September 12

Here’s a simple illustration of expectation maximization:

On an intuitive level, one could think of think EM as a kind of evolving system, where each 
photon exerts a force onto nearby Gaussian components, pulling them towards it as to be 
covered by the density function. This happens until an equilibrium is reached. Here, you can 
see a single elliptical Gaussian which is fit to a group of photons. 
[CLICK]

 In Plain EM, we need to account for the interaction of every single photon with every 
Gaussian.
This is excessive, given the little information that an individual photon contains, and clearly 
won’t work even for relative small-scale datasets.
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Plain EM

Accelerated EM by [Verbeek et al. 06]
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To address the performance issue, we base our fitting stage on an algorithm from data 
mining known as accelerated EM, which was presented by Verbeek et al. in 2006.  While this 
is much faster than plain EM, it was designed for the small GMMs used in this field, usually in 
the tens of components. To let it scale to the problems of our size, we made several 
modifications, that we’ll describe shortly.



Accelerated EM
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Accelerated EM works by creating cells [CLICK] surrounding the photons.

 Each cell summarizes the photons that fall inside it using their count, mean, and average 
outer product of the positions with themselves -- these are essentially the 0th, 1st, and 2nd 
order statistics.
[CLICK]

 Now, the entire EM algorithm can be formulated only in terms of cell-Gaussian 
interactions, and the original photons may be discarded. These statistics are quite 
expressive, hence we can use many fewer cells than photons, which leads to shorter running 
times. [PAUSE] 

 You may remember that earlier, we talked about the necessity of having an initial guess 
when running EM: the cells are also useful in this context, since we can trivially create a 
rough initial guess from them -- the details are in the paper. 

 Of course, one important thing to note is that the quality of the solution can be poor if 
the chosen cells are too course.
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The solution that accelerated EM offers is reminiscent to multi-grid methods. We can just 
switch to increasingly finer cells partitions [CLICK] as the algorithm runs. 

One of the modifications we made at this point [CLICK] is to improve this refinement criterion 
so that it works with massive datasets.
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Another modification that we made is based on the observation that after storing photon 
statistics in cells, the photons themselves are not needed anymore and can be discarded. This 
helps the method maintain a low memory footprint, but it also means that we can afford to 
shoot further photons later on in a spirit similar to progressive photon mapping and online 
algorithms that accept streaming data [CLICK]. These additional photons can then be 
incorporated into the already existing statistics, and afterwards they are thrown away.

 [CLICK] We use this approach in the paper, since it is computationally cheap and causes 
the statistics to become increasingly accurate over time, which in turn leads to a higher-
quality solution.
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algorithms that accept streaming data [CLICK]. These additional photons can then be 
incorporated into the already existing statistics, and afterwards they are thrown away.

 [CLICK] We use this approach in the paper, since it is computationally cheap and causes 
the statistics to become increasingly accurate over time, which in turn leads to a higher-
quality solution.
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And finally, thanks to the exponential decay in Gaussians, we can cull away interactions 
[CLICK] between distant Gaussians and cells, which improves the running time of the 
algorithm from O(n^2) to O(n log n). For more details, please refer to the paper.

We call the algorithm resulting after these modifications “Progressive EM”.
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And finally, thanks to the exponential decay in Gaussians, we can cull away interactions 
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Progressive EM outputs a fully converged mixture model to the next stage.  We’ll now focus 
on how to render it.



Progressive EM

Pipeline overview

E

M

Shoot 
photons

Initial 
guess

Build 
Hierarchy

Render

Re"ne 
partition

Shoot more 
photons

co
nv

er
ge

d?

yes

no
Render

Build 
Hierarchy

Thursday, 6 September 12

Progressive EM outputs a fully converged mixture model to the next stage.  We’ll now focus 
on how to render it.



Rendering
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In theory, we can already use this converged GMM in a brute-force rendering algorithm, 
which sums over the contributions of every single Gaussian to an eye ray. For homogeneous 
media, we have derived an analytic solution [CLICK] that gives the exact result in this case. 
For inhomogeneous media, it will be necessary to use numerical integration.

The problem with this brute-force summation is that when $k$ is large, each pixel takes a 
long time to render.
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 To get better performance, we instead turn the GMM into a hierarchical representation. This 
serves two purposes: first of all, the hierarchy will serve as a spatial data structure to 
accelerate the rendering process.

 And secondly, we will store intermediate levels of detail on the inner nodes of the 
hierarchy, which are used as a fast fall-back when the accuracy requirements are low enough. 
[CLICK]

 The hierarchy construction process begins with the input list of Gaussian terms. We then 
find pairs that have a small symmetric Kullback-Leibler divergence and collapse them.  
[CLICK] Kullback-Leibler divergence is a popular information-theoretic distance measure 
between statistical distributions -- in our context, it is used to check how similar two 
Gaussians are. Repeating this process log n times finally creates a full binary tree, where each 
inner node contains a Gaussian that is a good approximation of the entire subtree rooted at 
its position.
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Rendering Example 
hierarchy:

Criterion 1:  bounding box intersected?

Criterion 2:  solid angle large enough?

 Tr ܭ��

Criterion 3:  attenuation low enough?
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In the rendering step, we traverse this hierarchical Gaussian representation to compute the 
incident radiance along an eye ray. The goal is to always use the coarsest possible resolution, 
since we gain speed by using lower levels of the tree.

 Here is a simple example of two Gaussians highlighted in blue and red, as well as a 
coarse approximation of the two in gray. We skip traversal of a subtree if the eye ray does not 
intersect a conservatively chosen bounding box around the subtree. 
And when a subtree is smaller than a single pixel, or if there is a significant amount of 
attenuation, we use the coarse representative Gaussian as an approximation to the subtree.
Let’s now take a look at some results we obtained.
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BRE: 294K Photons 6+126 = 132 s

Thursday, 6 September 12

This is a rendering of the bumpy sphere scene courtesy of Bruce Walter, rendered using the 
beam radiance estimate. It uses 294K photons, which is why the features are still relatively 
blurred out.

The shown times denote the time spent on preprocessing and the actual rendering.
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Our method: 1K Gaussians 17+15 = 22 s
("t to 294K photons) (6.0×)
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When we run our method so that it fits to exactly the same amount of photons, we obtain a 
much crisper rendering, and we can do this in a fraction of the time.
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BRE: 1M Photons 23+192 = 215 s
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Here is  BRE rendering with 1 million photons.



32

Our method: 4K Gaussians 35+24 = 59 s
("t to 1M photons) (3.6×)
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And this is a rendering of our method with 4K gaussians fit to 1M photons. Even though the 
preprocessing takes longer than in volumetric photon mapping, our method is faster overall, 
and we see an improvement in the quality. 

In a way, our method could be seen to act as a smart noise reduction and sharpening filter.
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BRE: 18M Photons 507+609 = 1116 s
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Here is BRE rendering with as much as 18 million photons.
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Our method: 64K Gaussians 868+66 = 934 s
("t to 18M photons) (1.2×)
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and the corresponding rendering using our method. Even at this resolution, the sharpening 
effect still enhances features noticably. 
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BRE: 4M Photons 89 + 638 = 727 s
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Here is BRE rendering of the sphere caustic we saw earlier, using 4 million photons.
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Our method: 16K Gaussians 330 + 127 = 457 s
(1.6×)
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Here is rendering using our method and 16 thousand Gaussians, and you can really see the 
noise reduction. The use of anisotropy is really valuable in scenes like this.
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BRE: 917K Photons 13+268 = 281 s
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And finally, here is a rendering of the cars scene, with about a million photons.
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Our method: 4K Gaussians 54 + 71 = 125 s
(2.2×)
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.. and the corresponding rendering using our methods.

To summarize these results: our method can obtain better quality through intelligent filtering 
of the data, while at the same time using a significantly smaller number of terms in its 
internal radiance representation. Because we’re using so few terms, rendering is much faster, 
which more than makes up for the more involved preprocessing.
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There are two extensions of our method.

One applies when rendering animations involving volumetric lighting. Usually, in these kinds 
of scenes, the radiance distribution will only undergo relatively small changes from frame to 
frame. We can make use of this property by passing [CLICK] the solution of one frame as the 
initial guess of the next frame . Not only does this accelerate the fitting considerably: it also 
leads to a smooth GMM that doesn’t suffer from temporal noise.
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There are two extensions of our method.

One applies when rendering animations involving volumetric lighting. Usually, in these kinds 
of scenes, the radiance distribution will only undergo relatively small changes from frame to 
frame. We can make use of this property by passing [CLICK] the solution of one frame as the 
initial guess of the next frame . Not only does this accelerate the fitting considerably: it also 
leads to a smooth GMM that doesn’t suffer from temporal noise.
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Here is a quick demo of this, showing the bumpy sphere scene with a rotating light source.

In the BRE rendering, you can clearly see temporal noise from the photon tracing step. Using 
our method without temporal coherence, the rendering is also quite noisy, but now it’s the 
parameters of the Gaussians that are affected by noise. But if we re-use the previous frame’s 
solution as an initial guess, then this noise goes away completely.



Realtime Visualization

GPU-based rasterizer:

• Anisotropic Gaussian splat shader: 30 lines of GLSL

• Gaussian representation is very compact 
(4096-term GMM requires only ~240KB of storage)

• View-independent precomputation

• Possible applications in games

Live demo:
• Run on an NVidia GeForce 9600M GT graphics card
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Another application is to use our fitted GMMs in the context of realtime visualization.

It is possible to code up the contribution from an anisotropic Gaussian in a simple GLSL 
shader so
that large amounts of Gaussians can be drawn at realtime using a splatting approach.

Since the GMM representation only has a tiny storage footprint, it could be of use in Games
where a a view-independent preprocess renders fixed or animated volumetric lighting to 
files,
which are then drawn interactively while a character moves through a scene.

Next’ll show a demo such a visualization -- we will take a look at caustics from a moving 
water 
surface, which is the scene shown in the image on the top here. [[This is running on the 
mobile graphics card in my laptop, so keep in mind that it will be a lot faster on PC.]]



Limitations and future work
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 Our method has a few limitations. It currently does not support anisotropic media, since 
the Gaussian representation does not store the directionality of light. One potential 
workaround will be to run the algorithm in 5D, by letting it operate on a product of Gaussian 
and von Mises-Fisher distributions.

 Also, our method is currently statistically biased, since it is necessary to decide upon a 
number of Gaussians up-front and furthermore, the initial photon shooting stage determines 
the finest possible partition that is available to EM. Like progressive photon mapping, our 
method continually shoots photons as the algorithm runs. While this means that the amount 
of noise will decrease over time, there is a point after which fine details in the solution 
improved any further. This is in contrast to progressive photon mapping, which can achieve 
any desired accuracy level when it is given enough time. One possible solution may be to 
dynamically extend the number of Gaussians as the algorithm runs, but we have not 
implemented such a scheme.

 The final limitation is that, the algorithm of course only works for for volumes, which are 
in a sense both easier and harder compared to the surface case, since going to 2D potentially 
involves a complex parameterization of the whole scene. Adding support for surfaces without 
the overhead of a  full parameterization would also be an interesting project.



Conclusion

Contributions

• Rendering technique based on parametric density estimation

• Uses a progressive and optimized variant of accelerated EM

• Compact & hierarchical representation of volumetric radiance

• Extensions for temporal coherence and real-time visualization

• General technique, possible applications outside of graphics
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To conclude, we have presented an algorithm for rendering volumetric lighting using 
parametric density estimation and a progressive variant of accelerated EM. Our approach 
makes volumetric photon mapping practical by fitting a compact gaussian mixture, 
incorporating level-of-detail, and eliminating temporal flickering. We also presented a way to 
use this approach for real-time visualization. Most parts of our technique are quite general 
and could have potential applications outside of graphics as well.

Thanks for listening, and if there are any questions, I’ll take them now.


