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Figure 1: Our transient rendering framework allows time-resolved visualizations of light propagation. The caustic wavefront produced by
the spherical lens above is distorted by the lens and also delayed due to the longer optical path traversed within the sphere. Note that in this
scene we omit the propagation time of the last segment (from the scene to the camera).

Abstract

Recent advances in ultra-fast imaging have triggered many promis-
ing applications in graphics and vision, such as capturing transpar-
ent objects, estimating hidden geometry and materials, or visual-
izing light in motion. There is, however, very little work regard-
ing the effective simulation and analysis of transient light transport,
where the speed of light can no longer be considered infinite. We
first introduce the transient path integral framework, formally de-
scribing light transport in transient state. We then analyze the dif-
ficulties arising when considering the light’s time-of-flight in the
simulation (rendering) of images and videos. We propose a novel
density estimation technique that allows reusing sampled paths to
reconstruct time-resolved radiance, and devise new sampling strate-
gies that take into account the distribution of radiance along time
in participating media. We then efficiently simulate time-resolved
phenomena (such as caustic propagation, fluorescence or temporal
chromatic dispersion), which can help design future ultra-fast imag-
ing devices using an analysis-by-synthesis approach, as well as to
achieve a better understanding of the nature of light transport.
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1 Introduction

One of the most general assumptions in computer graphics is to
consider the speed of light to be infinite, leading to the simulation
of light transport in steady state. This is a reasonable assumption,
since most of the existing imaging hardware is very slow compared
to the speed of light. Light transport in steady state has been exten-
sively investigated in computer graphics (e.g. Dutré et al. [2006],
Gutierrez et al. [2008a], Křivánek et al. [2013]), including for in-
stance the gradient [Ramamoorthi et al. 2007; Jarosz et al. 2012]
or frequency [Durand et al. 2005] domains. In contrast, work in
the temporal domain has been mainly limited to simulating mo-
tion blur [Navarro et al. 2011] or time-of-flight imaging [Kolb et al.
2010].

We introduce in this paper a formal framework for transient ren-
dering, where we lift the assumption of an infinite speed of light.
While different works have looked into transient rendering [Smith
et al. 2008; Jarabo 2012; Ament et al. 2014], they have approached
the problem by proposing straight forward extensions of traditional
steady-state algorithms, which are not adequate for efficient tran-
sient rendering for a variety of reasons. Firstly, the addition of the
extra sampling domain given by the temporal dimension dramati-
cally increases the convergence time of steady state rendering algo-
rithms. Moreover, by extending the well-accepted path integral for-
mulation [Veach 1997], we observe that paths contributing to each
frame form a near-delta manifold in time, which makes sampling
almost impossible. We solve this issue by devising new sampling
strategies that improve the distribution of samples along the tem-
poral domain, and a new density estimation technique that allows
reconstructing the signal along time from such samples.

Our paper presents valuable insight apart from rendering applica-
tions. Recent advances in time-resolved imaging are starting to pro-
vide novel solutions to open problems, such as reconstructing hid-
den geometry [Velten et al. 2012a] or BRDFs [Naik et al. 2011], re-
covering depth of transparent objects [Kadambi et al. 2013], or even
visualizing the propagation of light [Velten et al. 2013]. Despite
these breakthroughs in technology, there is currently a lack of tools
to efficiently simulate and analyze transient light transport. This
would not only be beneficial for the graphics and vision commu-
nities, but it could open up a novel analysis-by-synthesis approach
for applications in fields like optical imaging, material engineering
or biomedicine as well. In addition, our framework can become
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instrumental in teaching the complexities of light transport [Jarosz
et al. 2012], as well as visualizing in detail some of its most cum-
bersome aspects, such as the formation of caustics, birefringence,
or the temporal evolution of chromatic dispersion.

In particular, in this work we make the following contributions:

• Establishing a theoretical framework for rendering in transient
state, based on the path integral formulation and including
propagation in free space as well as scattering on both surfaces
and in media. This allows us to analyze the main challenges
in transient rendering.

• Developing a progressive kernel-based density estimation
technique for path reuse that significantly improves the recon-
struction of time-resolved radiance.

• Devising new sampling techniques for participating media to
uniformly sample in the temporal domain, that complement
traditional radiance-based sampling.

• Providing time-resolved simulations of several light transport
phenomena which are impossible to see in steady state.

2 Related work

Transient radiative transfer. With advances in laser technology,
capable of producing pulses of light in the order of a few femtosec-
onds, transient radiative transfer gained relevance in fields like opti-
cal imaging, material engineering or biomedicine. Many numerical
strategies have been proposed, including Monte Carlo simulations,
discrete ordinate methods, integral equation models or finite vol-
ume methods [Mitra and Kumar 1999; Zhang et al. 2013; Zhu and
Liu 2013]. Often, these methods are applied on simplified scenarios
with a particular application in mind, but a generalized framework
has not yet been adopted.

Ultra-fast imaging. Several recent advances in ultra-fast imag-
ing have found direct applications in computer graphics and vision.
Raskar and Davis [2008] introduce the basic theoretical frame-
work in light transport analysis that would later lead to a number
of practical applications, such as reconstruction of hidden geom-
etry [Kirmani et al. 2011; Velten et al. 2012a] or reflectance ac-
quisition [Naik et al. 2011]. Velten et al. [2012b; 2013] have re-
cently presented femto-photography, a technique that allows captur-
ing time-resolved videos with an effective exposure time of one pi-
cosecond per frame, using a streak camera. Heide et al. [2013] later
propose a cheaper setup using Photonic Mixing Devices (PMDs),
while sacrificing temporal and spatial resolution. Kadambi and col-
leagues [2013] address multi path interference in time-of-flight sen-
sors by recovering time profiles as a sequence of impulses, allowing
them to recover depth from transparent objects.

Analysis of time-resolved light transport. Wu et al. [2012] an-
alyze the propagation of light in the frequency domain, and show
how the cross-dimensional transfer of information between the tem-
poral and frequency domains can be applied to bare-sensor imag-
ing. Later, Wu et al. [2013] used time-of-flight imaging to approx-
imately decompose light transport into its different components of
direct, indirect and subsurface illumination, by observing the tem-
poral profiles at each pixel. Lin and colleagues [2014] perform a
frequency-domain analysis of multifrequency time-of-flight cam-
eras. Recently, O’Toole and colleagues [2014] derived transient
light transport as a linear operator, as opposed to our formulation
as a path integral, and showed how to combine the generation and
acquisition of transient light transport for scene analysis. In this re-
gard, our work can be seen as complementary: we provide a simu-
lation (rendering) framework, suitable for an analysis-by-synthesis

approach to exploring novel ideas and applications, and to help bet-
ter understand the mechanisms of light transport.

Transient rendering. The term transient rendering was first
coined by Smith et al. [2008]. In their work, the authors gener-
alize the rendering equation as a recursive operator including prop-
agation of light at finite speed. The model provides a solid theo-
retical background for time-of-flight, computer vision applications,
but does not provide a practical framework for transient rendering
of global illumination. Keller et al. [2009] develop a time-of-flight
sensor simulation, modeling the behavior of PMDs. These works
are again geared towards time-of-flight applications; moreover, they
are limited to surfaces, not taking into account the presence of par-
ticipating media. Simulation of relativistic effects [Weiskopf et al.
1999; Jarabo et al. 2013] could also potentially benefit from our
transient rendering framework.

Some recent works in computer graphics make use of transient state
information: d’Eon and Irving [2011] quantize light propagation
into a set of states, and model the transient state at each instant us-
ing Gaussians with variance proportional to time. These Gaussians
are then integrated into the final image. The wave-based approach
by Musbach et al. [2013] uses the Finite Difference Time Domain
(FDTD) method to obtain a solution for Maxwell’s equations, ren-
dering complex effects like diffraction. In all these cases, however,
the main goal is to render steady state images, not to analyze the
propagation of light itself. Jarabo [2012] showed transient render-
ing results based on photon mapping and time-dependent density
estimation, but limited to surfaces in the absence of participating
media. Last, Ament et al. [2014] include time into the Radiative
Transfer Equation in order to account for a continuously-varying
indices of refraction in participating media, though they do not in-
troduce efficient techniques for transient rendering.

Acoustic rendering. Our work is somewhat related to the field
of acoustic rendering [Funkhouser et al. 2003]. Traditional light
rendering techniques have been adapted to sound rendering, such
as photon (phonon) mapping [Bertram et al. 2005] or precomputed
acoustic radiance transfer [Antani et al. 2012]. Closest to our ap-
proach, the work by Siltanen et al. [2007] extends the radiosity
method to include propagation delays due to the finite, though much
slower, speed of sound. As opposed to us, they use finite element
methods to compute sound transport, do not consider participating
media, and do not propose sampling techniques for uniform tempo-
ral sample distribution.

3 Transient Path Integral Framework

We first extend the standard path integral formulation to transient
state. This will allow us to formalize the notion of transient render-
ing, understand how to elevate steady state rendering to transient
state, and, most importantly, identify the unique challenges of solv-
ing this more difficult light transport problem.

In the path integral formulation [Veach 1997], the image pixel in-
tensity I is computed as an integral over the space of light transport
paths Ω. For transient rendering, in addition to integrating over spa-
tial coordinates, we must also integrate over the space of temporal
delays ∆T of all paths:

I =

∫
Ω

∫
∆T

f(x,∆t) dµ(∆t) dµ(x), (1)

where x = x0 . . .xk represents the spatial coordinates of the k+ 1
vertices of a length-k path with k ≥ 1 segments. Vertex x0 lies on
a light source, xk lies on the camera sensor, and x1 . . .xk−1 are

2



Δt2

Δt0

Δt1

t(x1↔x2)

t(x0↔x1)

t2

t2

t1

t1

t0

t0

x1 x2x0

Figure 2: Spatio-temporal diagram of light propagation for a path
with k = 2. Light is emitted at time t0, and reaches x1 at t0 +
t(x0↔x1). After a microscopic temporal delay ∆t1, light emerges
from x1 at t1 and takes t(x1↔ x2) time to reach x2. The sensor
may include a further temporal delay ∆t2.

intermediate scattering vertices. The differential measure dµ(x)
denotes area integration for surfaces vertices and volume integra-
tion for media vertices. ∆t = ∆t0 . . .∆tk defines a sequence of
time delays and dµ(∆t) denotes temporal integration at each path
vertex.

We define the path contribution function f(x,∆t) as the original,
but with the emissionLe, path throughput T, and sensor importance
We additionally depending on time:

f(x,∆t) = Le(x0→x1,∆t0)T(x,∆t)We(xk−1→xk,∆tk).
(2)

The temporal sensor importance We now defines not only the spa-
tial and angular sensitivity, but also the region of time we are inter-
ested in evaluating. This could specify a delta function at a desired
time, or more commonly, a finite interval of interest in the temporal
domain (analogous to the shutter interval in steady state rendering,
though at much smaller time scales). Likewise, the time parameter
of the emission function Le can define temporal variation in emis-
sion (e.g. pulses). The transient path throughput is now defined as:

T(x,∆t)=

[
k−1∏
i=1

ρ(xi,∆ti)

][
k−1∏
i=0

G(xi,xi+1)V (xi,xi+1)

]
. (3)

Since we assume that the geometry is stationary (relative to the
speed of light), the geometry and visibility terms depend only on
the spatial coordinates of the path, as in steady state rendering.
However, we extend the scattering kernel ρ with a temporal delay
parameter ∆ti to account for potential time delays at each scatter-
ing vertex xi. Such delays can occur due to e.g. multiple inter-
nal reflections within micro-geometry [Westin et al. 1992], electro-
magnetic phase shifts in the Fresnel equations [Gondek et al. 1994;
Sadeghi et al. 2012], or inelastic scattering effects such as fluores-
cence [Wilkie et al. 2001; Gutierrez et al. 2008b].

Time Delays. A transient light path is defined in terms of spatial
and temporal coordinates. The temporal coordinates at each path
vertex xi are t−i , the time immediately before the scattering event,
and ti, the time immediately after (see Figure 2). Both time coor-
dinates can be obtained by accounting for all propagation delays
between vertices t(xi ↔ xi+1) and scattering delays ∆ti at ver-
tices along the path:

t−i =

i−1∑
j=0

(t(xj↔xj+1) + ∆tj), ti = t−i + ∆ti, (4)

where t0 and tk denote the emission and detection times of a light
path. The transient simulation is assumed to start at t−0 = 0. In the
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Figure 3: Left: The probability of finding a sample at a specific
time instant (tp or tq) is nearly zero (Section 3). Middle: Density
estimation on the temporal domain (Section 4) allows us to recon-
struct radiance at any instant, although with varying bias and vari-
ance in time. Right: A more uniform distribution of samples in the
temporal domain leads to more uniform bias and better reconstruc-
tions (Section 5).

general case of non-linear media [Gutierrez et al. 2005; Ihrke et al.
2007; Ament et al. 2014], propagation time along a path segment
is:

t(xj↔xj+1) =

∫ sj+1

sj

η(xr)

c
dr, (5)

where r parametrizes the path of light between the two points, sj
and sj+1 are the parameters of the path at xj and xj+1, respec-
tively, c is the speed of light in vacuum and η(xr) represents the
index of refraction of the medium at xr . In the typical scenario
where η is constant along a path segment, Equation (5) reduces to a
simple multiplication: t(xj↔xj+1) = ‖xj −xj+1‖η/c. Figure 2
illustrates both the spatial and temporal dimensions of a path for the
case of k = 2.

Numerical Integration. Similar to its steady state counterpart,
the the transient path integral (1) can be numerically approximated
using a Monte Carlo estimator:

〈I〉 =
1

n

n∑
j=1

f(xj ,∆tj)

p(xj ,∆tj)
, (6)

which averages n random paths xj ,∆tj drawn from a spatio-
temporal probability distribution (pdf) p(xi,∆ti) defined by the
chosen path and time delay sampling strategy. In steady state, the
pdf only needs to deal with the location of path vertices xi.

3.1 Challenges of sampling in transient state

Equation (1) shows a new domain of scattering delays ∆T that must
be sampled. Most existing path sampling techniques generate ran-
dom paths incrementally, vertex-by-vertex, by locally importance
sampling the scattering function ρ at each bounce, and optionally
making deterministic shadow connections between light and cam-
era subpaths. We could in principle elevate any such algorithm to
transient state by simply sampling the transient scattering function
ρ(xi,∆ti), instead of the steady state scattering function ρ(xi).

Unfortunately, transient rendering poses hidden challenges, since
propagation delays between vertices t(xi↔ xi+1) are fundamen-
tally different than scattering delays ∆ti defined at the light, sensor,
and interior vertices. While scattering delays reside on a separate
sampling domain ∆T , propagation delays are a direct consequence
of the spatial positions of path vertices sampled from Ω. Hence, if
spatial positions are determined by a steady state sampling routine
ignorant of propagation delays, control of the propagation time in
a path’s total duration tk is lost, leaving only the scattering delays
∆ti to control tk.

Other factors resulting from the temporal structure of light trans-
port make any naı̈ve extension to transient rendering extremely in-
efficient: to visualize transient effects, the time window of both the
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sensor and the light source needs to be small (≈ 10 picoseconds);
moreover, scattering events result in femtosecond temporal delays.
The temporal domain of the path contribution thus becomes a near
delta manifold (i.e. a caustic in time), which is virtually impossi-
ble to sample by random chance. Since the total path duration tk
cannot be directly controlled, deterministic shadow connections are
rendered useless, having little chance of finding a non-zero con-
tribution in both the light Le and the sensor We. In general, the
probability of randomly finding non-zero contribution for a specific
time decreases as either ∆ti, Le or We get closer to delta functions
in the temporal domain, which are precisely the cases of interest in
transient light transport.

When several distinct measurements of the path integral have to be
computed, a common optimization strategy is to share randomly
sampled paths to estimate all measurements simultaneously. This
technique (path reuse) is utilized in the spatial domain in light trac-
ing and bidirectional path tracing to estimate all pixels in the image
plane at once. A similar situation occurs in the transient domain,
where each frame f defines a specific sensor importance function
W f

e (xk−1 → xk, tk) and the time window covered by all frames
is significantly larger than the per-frame time window. We could
therefore leverage temporal path reuse to improve the efficiency of
steady state path sampling methods when applied to rendering tran-
sient light transport. In practice, for every generated random path in
Equation (6), we could evaluate the contribution functions for ev-
ery frame f , which differ only in the temporal window of the sensor
importance function W f

e .

This path reuse technique is equivalent to histogram density estima-
tion [Silverman 1986] in the temporal domain of the sensor, where
each bin of the histogram represents one frame, and the bin’s width
h is the frame duration. Unfortunately, this type of density estima-
tion produces very noisy results, especially for bins with very small
width (i.e. exposure time). This results in a low convergence rate of
O(n−1/3) [Scott 1992], where n is the number of samples. This is
illustrated in Figure 4: although obviously better than not reusing
paths, results are still extremely noise even with a large amount
of samples. Still, this suggests that more elaborated density esti-
mation techniques may lead to better convergence rates and/or less
noisy reconstructions.

In the following, we first show how kernel-based density estima-
tion techniques in the temporal domain allow us to reconstruct ra-
diance along time from a sparse set of samples (see Section 4 and
Figure 3, middle). Then, we show how a skewed temporal sam-
ple distribution affects radiance reconstruction, and develop a set of
sampling strategies for participating media that enable some con-
trol over propagation delays, leading to a more uniform distribution
of samples in time and therefore more accuracy (see Section 5 and
Figure 3, right).

4 Kernel-based temporal density estimation

Kernel-based density estimation is a widely known statistical tool
to reconstruct a signal from randomly sampled values. These tech-
niques significantly outperform histogram-based techniques (like
the path reuse described above), especially for noisy data [Silver-
man 1986]. A kernel with finite bandwidth is used to obtain an
estimate of the value of a signal at a given point by computing a
weighted average of the set of random samples around such point.
We thus introduce a temporal kernel KT with bandwidth T to esti-
mate incoming radiance I at the sensor at time t as a function of n
samples of I:

〈In〉 =
1

n

n∑
j=1

KT (‖t− tk,j‖)Îj , (7)

t
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Figure 4: Time-resolved irradiance computed at pixel (a) in the
scene on the left using, no path reuse (green), histogram-based path
reuse (red), and kernel-based path reuse (blue), for the same num-
ber of samples. Without path reuse it is extremely difficult to recon-
struct the radiance, since the probability of finding a path arriving
at the specific frame is close to zero. This is solved using path reuse,
although with different levels of improvement: while histogram-
based density estimation shows a very noisy result, our proposed
progressive kernel-based estimation shows a solution with signif-
icantly lower variance, while preserving high-frequency features
due to the progressive approach.

where Îj = f(xj ,∆tj)/p(xj ,∆tj) is the contribution of path xj
in the measured pixel, and tk,j is the total time of the path (4). Us-
ing this temporal density estimation kernel reduces variance, but at
the cost of introducing bias (see Figure 3, middle). This can be
solved by using consistent progressive approximations [Hachisuka
et al. 2008; Knaus and Zwicker 2011], which converge to the cor-
rect solution in the limit.

Inspired by these works, we model our progressive density estima-
tion along the temporal domain, for which we rely on the proba-
bilistic approach for progressive photon mapping used by Knaus
and Zwicker [2011]. We compute the estimate 〈In〉 in n steps, pro-
gressively reducing bias while allowing variance to increase; this
is done by reducing the kernel bandwidth T in each iteration as
Tj+1/Tj = (j+α)/(j+1). The variance of our temporal progres-
sive estimator vanishes with O(n−α) as expected, since the shrink-
ing ratio is inversely proportional to the variance increase factor.
Bias, on the other hand, vanishes with O(n−2(1−α)). Note that the
parameter α defines the convergence of both sources of error (bias
and variance). To find the optimal value that minimizes both, we
use the asymptotic mean square error (AMSE), defined as:

AMSE(〈In〉) = Var[In] + E[εn]2. (8)

Using the convergence rate for both bias and variance, we find that
the optimal α that minimizes the AMSE is α = 4/5, which leads
to a convergence of O(n−4/5). This is significantly faster than us-
ing the histogram method, O(n−1/3), which we illustrate in Fig-
ure 4. The detailed derivation of the behavior of the algorithm can
be found in the supplementary material (Section B).

4.1 Transient progressive photon mapping

Our approach above is agnostic to the algorithm used to obtain
the samples (e.g. samples in Figure 4 have been computed using
path tracing). This means that it can be combined with biased den-
sity estimation-based algorithms such as (progressive) photon map-
ping [Jensen 2001; Hachisuka et al. 2008; Hachisuka and Jensen
2009], which is well suited for complex light paths such as spatial
caustics. However, although using progressive photon mapping as
the source of samples for our temporal density estimation is con-
sistent in the limit, it results in suboptimal convergence due to the
coupling of the bias and variance between the spatial and temporal
kernels. Instead, we introduce the temporal domain into the photon
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mapping framework, by adding the temporal smoothing kernel KT
in the radiance estimation [Cammarano and Jensen 2002]. Radi-
ance L̂o(x, t) is estimated usingM photons with contribution γi as

L̂o(x, t) =
1

M

M∑
i=1

K(‖x− xi‖, ‖t− t−i ‖)γi. (9)

Combining both kernels into a single multivariate kernel allows
controlling the variance increment in each step as a function of a
single α, so that it increments at a rate of (j + 1)/(j + α), while
reducing bias by progressively shrinking both the spatial and tem-
poral kernel bandwidths (R and T respectively). As shown in the
supplementary material (Section C), these are reduced at each iter-
ation j following:

Tj+1

Tj
=

(
j + α

j + 1

)βT
,

R2
j+1

R2
j

=

(
j + α

j + 1

)βR
, (10)

where βT and βR are scalars in the range [0, 1] controling how
much each term is to be scaled separately, with βT + βR = 1. The
convergence rate of the combined spatio-temporal density estima-
tion isO(n−4/7)1. Using this formulation allows us to handle com-
plex light paths in transient state, while still progressively reducing
bias and variance introduced by both progressive photon mapping
and our temporal density estimation, in the spatial and temporal
domains respectively. We refer to the supplementary material (Sec-
tion C) for the detailed description of the algorithm, including the
full derivation of the error and convergence rate.

5 Time Sampling in Participating Media

As we mentioned earlier (Section 3.1), the performance of our tran-
sient density estimation techniques can be further improved by a
more uniform distribution of samples in time. This makes the rela-
tive error uniform in time and optimizes convergence (see Figure 3,
right). Steady state sampling strategies aim to approximate radiance
(path contribution). Since more radiant samples happen at earlier
times (due to light attenuation), these sampling techniques skew
the number of samples towards earlier times. As a consequence,
there is a increase of error along time (see Figures 7 and 8). New
sampling strategies are therefore needed for transient rendering.

Sampling strategies over scattering delays ∆ti have a negligible
influence over the total path duration tk (Figure 2). For surface ren-
dering, scattering delays are the only control that sampling strate-
gies can have on the temporal distribution of samples, and there is
therefore little control over the total path duration. In participating
media, however, sample points can be potentially located anywhere
along the path of light, providing direct control also over the prop-
agation times t(xi↔ xi+1). In this section we develop new sam-
pling strategies for participating media that target a uniform sample
distribution in the time domain, by customizing:

• The pdf for each segment of the camera or light subpath (Sec-
tion 5.1).

• The pdf for a shadow connection (connecting a vertex of the
camera path to a vertex of the light path) via an additional
vertex (Section 5.2).

• The pdf in the angular domain to obtain the direction towards
the next interaction (Section 5.3).

1Note that a naı̈ve combination of the temporal (1D) and the spatial (2D)
kernels would yield a slower convergence than the combined 3D kernel
convergence O(n−4/7) when using the optimal parameters α = 4/7 and
βT = 1/3 reported in previous work [Kaplanyan and Dachsbacher 2013]
(for volumetric density estimation) or in the statistics literature [Scott 1992].

Each of these sampling strategies ensures a uniform distribution of
samples in time for each particular domain of the full path. Al-
though this does not statistically ensure uniformity for the whole
path, in practice the resulting distribution of total path duration tk
samples in time is close to uniform and therefore noise is reduced
(the improvement over steady state strategies is discussed in Sec-
tion 6). Note that these strategies are also agnostic of the properties
of the media (except for the index of refraction), and can therefore
be used in arbitrary participating media. Additionally, they can be
combined with steady-state radiance sampling via multiple impor-
tance sampling (MIS) [Veach and Guibas 1995].

5.1 Sampling scattering distance in eye/light subpaths

Each of the segments of a subpath in participating media often
shares the same steady-state sampling strategy, such as mean-free-
path sampling, which does not necessarily ensure a uniform distri-
bution of temporal location of vertices. We aim to find a pdf p(r)
(where r is the scattering distance along one of the subpath seg-
ments) so that the probability distribution p (∪∞i=1ti) of temporal
subpath vertex locations is uniform (see Figure 5, left). We first
define p (∪∞i=1ti) based on the combined probability distribution
p(ti) (temporal location of vertex xi in the light subpath) for all
subpath vertices:

p (∪∞i=1ti) =

∞∑
i=1

p(ti), (11)

where p(ti) is recursively defined based on p(ti−1). Given that
ti = t(xi↔xi−1) + ti−1, as shown in Equation (4), we have

p(ti) =

∫ ti

0

p
(
t(xi−1↔xi)

)
p(ti−1)dti−1, (12)

p(t1) = p
(
t(x0↔x1)

)
, (13)

since the probability of the addition of two random variables is the
convolution of their probability distributions. p (t(xi↔xi−1)) is
the probability distribution of the propagation time, which is related
to the scattering distance pdf p(r) by a simple change of variable
r = c

η
t(xi−1↔ xi). Note that, in this notation, we are assuming

(as previously discussed) that scattering delays ∆ti are negligible
compared to propagation time. This definition is analogous for the
eye subpath.

We show (see supplementary material, Section D.1) that the expo-
nential distribution p(r) = λe−λr ensures that p (∪∞i=1ti) follows a
uniform distribution for any λ parameter. Figure 6 (left) experimen-
tally shows that this exponential distribution leads to this uniform
probability for the whole subpath, while a uniform pdf leads to a
non-uniform temporal sample distribution. In practice, λmodulates
the average number of segments of the subpath: for a path ending at
time te, the average number of segments with path duration tk ≤ te
is λ c

η
te. Our results show that an average of three or four vertices

per subpath gives a good compromise between path length, effi-
ciency and lack of correlation. Note that mean-free-path sampling
is also an exponential distribution whose rate equals the extinction
coefficient of the medium (λ = σt). Directly using mean-free-path
sampling is thus optimal for time sampling when σt is close to the
optimal λ.

Subpath termination. Russian roulette is a common strategy in
steady state rendering algorithms. It probabilistically terminates
subpaths at each scattering interaction, reducing longer paths with
a small radiance contribution. In transient state, this unfortunately
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Figure 5: Sampling strategies for participating media with a uniform distribution in the time domain. Left: Sampling scattering distance
for a light subpath. This strategy can also be applied to eye subpaths. Middle Sampling shadow connections through a new indirect vertex:
line-to-point sampling of shadow connections. Right: Sampling the angular scattering function (phase function).

translates into fewer samples as time advances, reducing the signal-
to-noise ratio (SNR) at higher frames. Instead, we simply terminate
paths with a total duration greater than the established time frame.

While the temporal locations of subpath vertices are uniform, there
is still little control over the spatial locations xi. These depend
not only on scattering distances but also on scattering angles. As
shadow rays are deterministic and depend on such spatial locations,
uniformity cannot be ensured. To address this, we develop a new
strategy that deals with such shadow connections (Section 5.2) and
an angular sampling strategy (Section 5.3) that leads to an improved
distribution in the temporal domain of the location-dependent prop-
agation delays.

5.2 Sampling line-to-point shadow connections

Shadow rays are deterministic segments connecting a vertex in the
eye subpath to another vertex in the light subpath, so their duration
cannot be controlled. We introduce a new indirect shadow vertex
whose position can be stochastically set to ensure a uniform sample
distribution along the duration of the (extended) shadow connec-
tion. The geometry of this indirect connection is similar to equian-
gular sampling [Kalli and Cashwell 1977; Rief et al. 1984; Kulla
and Fajardo 2012] (see Figure 5, middle).

Given a vertex xi of a light subpath, a vertex xi+2 and a direction
ω (importance sampled from the scattering function) on an eye sub-
path, our technique connects the two vertices via an indirect bounce
at an importance-sampled location xi+1. If ri+1 and ri+2 are the
distances from xi+1 to xi and xi+2 respectively, we importance
sample ri+2 to enforce a uniform propagation time between the
connected vertices {xi,xi+1,xi+2}. This connection could also
be done in reverse order (from xi+2 to xi).

Given l = xi−xi+2 and a connection time range (ta, tb) (in which
we aim to get uniformly distributed samples), the pdf is:

p(ri+2) =
η

c(tb−ta)

1+
ri+2 − (l · ω)√

r2
i+2 − 2ri+2(l · ω) + (l · l)

, (14)

which leads to the following inverse cumulative distribution func-
tion (cdf):

ri+2(ξ) =
(ξ(tb − ta) + ta − ti −∆ti+1)2 −

(
η
c

)2
(l · l)

2 η
c
(ξ(tb − ta) + ta − ti −∆ti+1)− 2

(
η
c

)2
(l · ω)

.

(15)

where ξ ∈ [0, 1) is a random number. Assuming a rendered
temporal range of (0, te), we set the shadow connection lim-
its to ta = ti + t(xi ↔ xi+2) and tb = te − ∆tk −(∑k−1

j=i+2 t(xj↔xj+1) + ∆tj
)

. The derivation of this pdf can be

found in the supplementary material (Section D.2). Figure 6 (mid-
dle) compares our line-to-point sampling strategy with other com-
mon strategies in terms of sample distribution along the temporal
domain, leading to a uniform distribution of samples. Note that we
discard all paths with a total duration longer than te (when tb < ta).

5.3 Angular sampling

Importance sampling the phase function generally leads again to
a suboptimal distribution of samples in time. We propose a new
angular pdf p(θ) to be applied at each interaction of the light sub-
path, which targets the temporal distribution of samples assuming
that the next vertex xi+1 casts a deterministic shadow ray towards
the sensor. Given the sensor vertex xk and a sampled distance
ri+1 between two consecutive vertices xi and xi+1 (see Figure 5,
right), this strategy ensures a uniform distribution of the total prop-
agation time in {xi,xi+1,xk}. The direction from xi to xi+1 is
ω = (θ, φ) (in spherical coordinates) where θ is the sampled angle
and φ is uniformly sampled in [0..2π). Note that the sampled angle
θ is related to the direction towards the sensor (l = xk−xi) and not
to the incoming direction (which is often the system of reference for
phase function importance sampling). This pdf is:

p(θ) =
ri+1 sin θ

2
√
r2
i+1 + |l|2 − 2ri+1|l| cos θ

, (16)

with the following inverse cdf:

θ(ξ) = arccos

(
|l| − 2r2

i+1ξ
2 − 2ξri+1 (|l| − 1)

ri+1|l|

)
. (17)

The supplementary material (Section D.3) contains the full deriva-
tion. This pdf prioritizes segments towards the target vertex xt,
which helps in practice since backward directions often lead to
paths that become too long for the rendered time frame. Figure 6
(right) shows how our angular sampling strategy leads to a uniform
distribution of samples in time, as opposed to other alternatives.
The shadow ray from vertex xi+1 to the sensor in xk (and to ev-
ery vertex in the eye subpath in bidirectional path tracing) is then
cast by applying the sampling technique described in Section 5.2.
Alternatively, the shadow ray could be cast from xi by applying
MIS between this angular sampling and line-to-point time sampling
(Section 5.2). We also apply the same angular sampling strategy for
each interaction of the eye subpath, targeting the light source.

6 Results

Here we show and discuss our rendered scenes. For visualization
we use selected frames of the animations; we refer the reader to
the supplementary material for more rendered examples, and to the
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Figure 6: Histogram of the number of samples along the tempo-
ral dimension for different sampling strategies. Left: Sample dis-
tribution for the whole light subpath, according to the importance
sampling of subpath segments. Middle: Importance sampling of a
line-to-point shadow connection Right: Angular importance sam-
pling. Notice how our developed sampling strategies (exponential
for segment sampling and the corresponding time sampling strate-
gies in the other two cases) lead to a uniform distribution of samples
along the temporal domain on each case. Both the line-to-point and
the angular sampling are defined over a certain range.

video for the complete animations. In all the scenes light emis-
sion occurs at t = 0 with a delta pulse2. Unless otherwise stated,
we use transient path tracing and kernel-based density estimation
(Section 4) for sampling and reconstruction, respectively. For the
latter, we use a Perlin [2002] smoothing kernel, following previous
work [Hachisuka et al. 2010; Kaplanyan and Dachsbacher 2013],
with forty nearest neighbors to determine the initial kernel band-
width. Unless noted otherwise, all results are shown in camera
time [Velten et al. 2013] (i.e. including the propagation time of
the last segment).

Figure 7 compares transient rendering using our three time-
based sampling strategies (Section 5) against common radiance-
based steady-state sampling techniques (mean-free-path and phase-
function sampling, and deterministic shadow connection). Our ap-
proach distributes samples more uniformly in time, which reduces
variance along the whole animation, while significantly lowering
noise in later frames. We obtain similar quality to standard sam-
pling using two orders of magnitude less samples. These advan-
tages are even more explicit when using our line-to-point sampling
strategy to render single scattering, as shown in Figure 8, where we
compare against equiangular sampling [Kulla and Fajardo 2012].
Figure 9 shows how the combination of our kernel-based density
estimation and our time sampling strategies produces better results
than using either technique in isolation.

Figures 1, S.3 and S.2 (the last two in the supplementary material)
demonstrate the macroscopic delays due to traversing media with
different orders of refraction, which leads to a temporal delay of
the wavefront, especially visible in the caustics. In these examples,
we use a transient version of the photon beams algorithm [Jarosz
et al. 2011a] to obtain the radiance samples due to scattering in the
media. For the single image visualization of Figure 1 we use the
peak-time visualization proposed by Velten et al. [2013].

2We could use a Gaussian pulse, although this would introduce a num-
ber of downsides: 1) an ideal delta pulse does not introduce any additional
temporal blur; 2) in reality, the scale of physical Gaussian pulses is 2-3
orders of magnitude smaller than the shutter open interval, in effect consti-
tuting a delta pulse; and 3) a delta pulse allows us to distinguish between
effects caused by the actual behavior of light and effects due to limitations
of current hardware.

a

0.9 1.50.2

Standard Sampling 128K 
Standard Sampling 1K 
Time Sampling 1K

t t t

Time-resolved Log Radiance at (a)

Figure 7: Comparison of our three time sampling strategies com-
bined, against the standard techniques used in steady state, in the
dragon scene accounting for multiple scattering (top). Each graph
shows the time-resolved radiance (bottom) at pixel (a), for three
different scattering coefficients σs = {0.2, 0.9, 1.5}, and absorp-
tion σa = 0.1. For 1K samples per pixel and frame, our combined
techniques (red) feature a similar quality as standard steady state
techniques with 128 times more samples (green), while with the
same number of samples, our techniques significantly outperform
standard sampling (blue), especially in highly scattering media. To
emphasize the differences between sampling techniques, here we
use the histogram path reuse (see Section 4). Additional results for
other types of media can be found in the supplementary material.

Figure 10 compares our simulation against a real scene captured
with the femtophotography technique of Velten et al. [2013]. We
can see that our simulation faithfully reproduces the different or-
ders of scattering events occurring during light propagation. Fi-
nally, Figure 11 shows different examples of non-trivial phenomena
visible in transient state, including temporal chromatic dispersion
due to wavelength-dependent index of refraction, refraction delays
for ordinary and extraordinary rays in birefringent crystals [Wei-
dlich and Wilkie 2008; Latorre et al. 2012] and fluorescence due to
energy re-emission after absorption [Gutierrez et al. 2008b]. We re-
fer to the supplementary video for full visualization of the different
phenomena.

7 Discussion

In summary, we have extended the classical path space integral to
include the temporal domain, and shown how the high frequency
nature of transient light transport leads to severe sampling prob-
lems. We have proposed novel sampling strategies and density esti-
mation techniques, which allow us to distribute samples uniformly
in time, resulting in reduced variance and a constant distribution
of bias. Our supplementary material contains a rigorous mathe-
matical analysis of all our technical contributions. Last, we have
presented simulations of interesting transient light transport effects
using modified versions of a representative cross section of com-
mon rendering algorithms.

Apart from educational benefits, our work could be used to help de-
sign prototypes of novel ultra-fast imaging systems, or as a forward
model for inverse problems such as recovering hidden geometry or
material estimation. Our temporal progressive density estimation
(Section 4) could also be used to accelerate radiance reconstruction
in time-resolved imaging techniques, reducing the need for taking
repeated measurements to improve the SNR. Moreover, synthetic
ground truth data may become a very valuable tool for designing
and benchmarking future ultra-fast imaging devices.
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Figure 8: Comparison of different sampling techniques for comput-
ing single scattering, in a scene consisting of a dragon illuminated
by point light source within participating media (left). As opposed
to simple mean-free-path sampling and the state-of-the-art equian-
gular sampling [Kulla and Fajardo 2012], that distributes samples
based on radiance, our point-to-line sampling (Section 5.2) dis-
tributes samples so that the are uniformly distributed in time (bot-
tom, right). This allows performing better in terms of relative error
(bottom, left) when rendering time-resolved radiance, avoiding the
radiance signal degradation at longer times. Here we use the his-
togram (Section 4) to emphasize the performance of the algorithms.

Our time-resolved simulations can help analyze the complex phe-
nomena involved in light transport, and gain new insights. For in-
stance, Figure 12 shows how during the early stages of light prop-
agation, the first orders of scattering determine the shape of the
light distribution (a spherical wavefront), but over time this shape
becomes a Gaussian of increasing variance. This observation is
consistent with previous work [Yoo and Alfano 1990], where it
is shown that light in a medium exhibits diffusion after traveling
about ten times the mean-free-path, and might explain some of
the errors near the light source reported in the quantized diffusion
model [D’Eon and Irving 2011]. This effect is more accentuated in
the presence of anisotropic media, where the wavefront behavior is
even more dominant.

Future work. There are many compelling avenues of future work:
First, it would be interesting to extend a unified path sampling
framework [Křivánek et al. 2014] to transient state. We have shown
how the photon beams algorithm [Jarosz et al. 2011b] can be used
in transient rendering, combined with our temporal density estima-
tion; however, a spatio-temporal progressive photon beams frame-
work would be needed to achieve optimal convergence in transient
state. Additionally, by building a joint sampling strategy in both an-
gle and distance, as in recent advanced steady state sampling tech-
niques [Novák et al. 2012; Georgiev et al. 2013], we could lever-
age the benefits of both to ensure better uniformity in the tempo-
ral distribution of samples. Furthermore, the three proposed time
sampling strategies are limited to participating media; extending
this to surface transport results in a much narrower sampling space.
Metropolis Light Transport techniques [Veach and Guibas 1997]
represent promising candidates in this regard, where temporal mu-
tation strategies would be needed.

We hope that our research will inspire future work on our under-
standing of light transport, the design of ultra-fast imaging and the
development of novel rendering techniques. For instance, several
geometric approaches to acoustic rendering are also based on ray
tracing: a more extensive analysis of similarities between acous-

d)c)b)a)

Figure 9: Selected frame of the dragon scene with σs = 0.2, ren-
dered with a) standard sampling and histogram, b) our time sam-
pling and histogram, c) standard sampling and our kernel-based
density estimation, and d) time sampling and kernel-based density
estimation. We can see how using our techniques combined lead to
frames with significantly lower noise.
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Figure 10: Comparison between the Cube scene from [Velten et al.
2013] and our rendered simulation of the same scene. Visible dif-
ferences are due to approximate materials and camera properties.

tic and transient rendering might prove fruitful to both domains.
Our code and datasets (scenes and movies) are publicly available at
http://giga.cps.unizar.es/˜ajarabo/pubs/transientSIGA14/.
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