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Abstract
We present a new method for efficiently simulating the scattering of light within participating media. Using a
theoretical reformulation of volumetric photon mapping, we develop a novel photon gathering technique for
participating media. Traditional volumetric photon mapping samples the in-scattered radiance at numerous points
along the length of a single ray by performing costly range queries within the photon map. Our technique replaces
these multiple point-queries with a single beam-query, which explicitly gathers all photons along the length of an
entire ray. These photons are used to estimate the accumulated in-scattered radiance arriving from a particular
direction and need to be gathered only once per ray. Our method handles both fixed and adaptive kernels, is faster
than regular volumetric photon mapping, and produces images with less noise.

Keywords: participating media, light transport, global illumination, rendering, photon tracing, photon map, ray
marching, nearest neighbor, variable kernel method.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: raytracing; color, shading,
shadowing, and texture; I.6.8 [Simulation and Modeling]: Monte Carlo; G.1.9 [Numerical Analysis]: Fredholm
equations; integro-differential equations.

1. Introduction
The appearance of many natural phenomena, such as human
skin, clouds, fire, water, or the atmosphere, are strongly in-
fluenced by the interaction of light with volumetric media.
Therefore, efficiently rendering scenes with participating me-
dia has been an area of interest within computer graphics.
This problem is challenging, however, because accurately
simulating light transport in participating media is compu-
tationally very expensive. Cerezo et al. [CPP∗05] provide a
recent and comprehensive overview of the wealth of research
that has been devoted to address this problem.

Light transport in arbitrary participating media is modeled
by the radiative transfer equation [Cha60]. The pioneering
contributions by Kajiya and von Herzen [KH84] and Rush-
meier and Torrance [RT87] are at the beginning of a long
list of work on rendering participating media in the computer
graphics community. Some of the most popular techniques
to date are based on stochastic path-tracing and Monte Carlo
integration [PM93, LW96, PKK00]. These approaches are
attractive because of their sound underlying theoretical frame-
work and their generality. They are unbiased and guaranteed
to converge to the exact solution. In addition, it is straight-
forward to include heterogeneous media, anisotropic phase
functions, and scattering from surfaces. The downside of

these approaches is that they suffer from noise that can only
be overcome with a huge computational effort.

One strategy to solve this issue is to make simplifying as-
sumptions about the participating media. For example, homo-
geneous media with a high scattering albedo can be modeled
accurately using a diffusion approximation [Sta95, JMLH01],
which leads to very efficient rendering algorithms. Premoze
et al. [PARN04], under the assumption that the medium is
tenuous and strongly forward scattering, use a path integral
formulation to derive efficient rendering algorithms. Sun et
al. [SRNN05] render single scattering in real time, but with-
out shadowing effects.

In contrast, photon mapping [JC98] improves the efficiency
of path-tracing without making additional assumptions about
the properties of the medium being rendered. Similar to
Monte Carlo methods, photon mapping handles isotropic,
anisotropic, homogeneous, and heterogeneous media of ar-
bitrary albedo. A disadvantage of photon mapping is that it
introduces bias to the solution of the radiative transfer equa-
tion. In practice, however, this bias is preferable to the noisy
solutions of pure Monte Carlo methods.

Intuitively, photon mapping works by splitting the energy
emitted by each light source into discrete packets, so called
photons. In a first pass, the propagation of light is simulated
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Symbol Units Description

σs(x) m−1 Scattering coefficient at x
σa(x) m−1 Absorption coefficient at x
σt(x) m−1 Extinction coefficient at x

p(x,~ω,~ω′) sr−1 Normalized phase function
τ(x↔x′) unitless Optical thickness:

R x
x′ σt(x) dx

Tr(x↔x′) unitless Transmittance: e−τ(x↔x′)

Ω4π sr Sphere of directions
L(x→x′) Wm−2sr−1 Outgoing radiance at x towards x′

L(x,~ω) Wm−2sr−1 Incident radiance at x from ~ω

We(x,~ω) m−3sr−1 Importance at x towards ~ω

We(x→x′) m−3sr−1 Importance at x towards x′

Table 1: Definitions of quantities used throughout the paper.

by scattering photons in the scene. At each scattering event
(at surfaces or within the medium) the incident energy carried
by a photon is stored in a photon map. In a second pass, the
photon map is used to evaluate the radiance at discrete points
in the scene by locally computing the photon density. To com-
pute the radiance carried along each ray towards the eye, the
radiance is estimated within the medium at several sample
points along the ray [JC98]. At each point the attenuation
through the medium to the eye is computed, and the attenu-
ated radiance is added to the ray. The main disadvantage of
this procedure, however, is that it is difficult to find a good dis-
tribution of sample points along the ray. On one hand, if not
enough sample points are used, the result is likely to be noisy.
On the other hand, increasing the number of sample points is
very costly and can slow down rendering significantly.

In this paper, we propose a novel approach for computing
the contribution of in-scattered radiance. We gather photons
along viewing rays and analytically compute their contri-
butions, without point sampling. We present the following
contributions:

• We derive a reformulation of volumetric photon mapping
as a solution to the measurement equation. This theory
allows for arbitrary measurements of radiance to be com-
puted within participating media, where a measurement
is simply an integral of the radiance multiplied with a
weighting function.

• Using this new theory, we present an improved radiance
estimate for volumetric photon mapping based on “beam
gathering.” This technique eliminates the need for stepping
through the medium to find photons. Instead, it gathers all
photons along a ray. We show how to efficiently implement
this new gathering technique for both fixed and adaptive
smoothing kernels and demonstrate that our method pro-
duces images with less noise than conventional photon
mapping.

The rest of this paper is organized as follows. In Section 2,
we review the theory of radiance transport within partici-
pating media and the volumetric photon mapping method.
In Section 3, we reformulate volumetric photon mapping
in terms of the measurement equation and show how the
photon map can be used to estimate any measurement of

radiance within the scene. In Section 4, we present our new
beam radiance estimate using this theory and describe the
data structures needed to evaluate it efficiently. Finally, we
show comparisons of our approach to conventional photon
mapping in Section 5 and discuss avenues of future work in
Section 6.

2. Photon Mapping in Participating Media
Light transport within participating media is described by the
radiative transfer equation (RTE) [Cha60], which defines the
radiance that reaches a point x from direction ~ω as a sum
of the exitant radiance from the nearest surface from this
direction, and the accumulated in-scattered radiance from the
medium between the surface and x (see Figure 1). This can
be expressed as:

L(x,~ω) = Tr(x↔xs)L(xs,~ω)+Z s

0
Tr(x↔xt)σs(xt)Li(xt ,~ω) dt, (1)

where Tr is the transmittance, s is the distance through the
medium to the nearest surface at xs = x−s~ω, and xt = x− t~ω
with t ∈ (0,s). We define the remaining quantities in Table 1.

The surface radiance, L(xs,~ω), at the boundary of the
medium is governed by the rendering equation [Kaj86]. The
in-scattered radiance, Li(xt ,~ω), depends on the radiance ar-
riving at xt from all directions~ωt over the sphere of directions
Ω4π and is defined as:

Li(xt ,~ω) =
Z

Ω4π

p(xt ,~ω,~ωt)L(xt ,~ωt) d~ωt , (2)

where p is the normalized phase function.

Volumetric photon mapping [JC98] solves the RTE using
a combination of photon tracing, ray-marching, and density
estimation. In a preprocess, packets of energy are shot from
light sources, scattered at surfaces and within the medium,
and their interactions are stored in a global data structure. Dur-
ing rendering, ray marching is used to numerically integrate
Equation 1 for radiance seen directly by the observer,

L(x,~ω)≈ Tr(x↔xs)L(xs,~ω)+(
S−1

∑
t=0

Tr(x↔xt)σs(xt)Li(xt ,~ω)∆t

)
, (3)

L(xs, !ω)

medium object



                                  

x xsxt

Tr(x↔xt)σs(xt)

Tr(x↔xs)

Li(xt, !ω)

Figure 1: The radiance reaching the eye L(x,~ω) is the sum of the
radiance from the surface L(xs,~ω) and the accumulated in-scattered
radiance Li(xt ,~ω) along a ray.

c© 2008 The Author(s)
Journal compilation c© 2008 The Eurographics Association and Blackwell Publishing Ltd.



W. Jarosz & M. Zwicker & H. W. Jensen / The Beam Radiance Estimate

Conventional Gathering Beam Gathering

Gathered Other photonsMissedDouble-counted

Figure 2: Conventional gathering (left) searches for photons in a
sphere around numerous samples along the ray. Our method (right)
assigns a radius to each photon and performs a single range search to
find all photons along the length of the entire ray.

where ∆s is the length of each segment along the ray and
x0, . . . ,xs are the sample points for each segment (x0 is the
point where the ray enters the medium and xs is a point on a
surface past the medium).

The most expensive part to compute in Equation 3 is the
in-scattered radiance Li, because it involves accounting for
all light arriving at each point xt along the ray from any other
point in the scene. Instead of computing these values indepen-
dently for each location, photon mapping gains efficiency by
reusing the computation performed during the photon tracing
stage. The in-scattered radiance is approximated using den-
sity estimation by gathering photons within a small spherical
neighborhood of radius r around each sample location xt ,

Li(xt ,~ω)≈
n

∑
i=1

p(xt ,~ω,~ωi)∆Φi
4
3 πr3

, (4)

where ∆Φi is the power of photon i, and ~ωi is its incident
direction [JC98].

Though photon mapping is much more efficient than brute-
force techniques like path tracing, the density estimation
requires searching for photons within a global data structure,
which is quite expensive. This formulation is suboptimal,
firstly because it may gather the same photons more than
once if the spherical neighborhoods overlap and, secondly,
because it can lead to noise if the step size is too large and
photons are omitted (see Figure 2).

3. Reformulation of Volumetric Photon Mapping
Our technique solves these shortcomings by querying once
for photons along the length of an entire ray, instead of mul-
tiple times near points along the ray (see Figure 2). More
formally, whereas regular photon mapping estimates Li at
discrete points using Equation 4, our main contribution is to
directly estimateZ s

0
Tr(x↔xt)σs(xt)Li(xt ,~ω) dt (5)

along rays.

Though the explanation of photon mapping from the pre-
vious section is appealing at an intuitive level, it does not
rigorously present the algorithm as a numerical solution to
the RTE. Furthermore, this explanation is heavily tied to the
geometric interpretation of gathering photons within a disc
(on surfaces) or within a sphere (in participating media). In
order to avoid these limitations and use the photon map to
estimate general radiometric quantities in the volume, such
as Equation 5, we use a more flexible derivation of particle
tracing methods presented by Veach [Vea98]. We extend this
derivation to handle participating media (Section 3.1) and
show how to represent particle tracing algorithms like volu-
metric photon mapping in terms of the measurement equation
(Sections 3.2 and 3.3). Finally, we show how to use the same
photon maps to estimate more general quantities of radiance
(Section 3.4).

3.1. Volumetric Path Integral Formulation
We use the path integral formulation of the RTE, which arises
by recursively expanding the right hand side of Equation 1.
Instead of expressing the radiance equilibrium recursively,
the resulting path integral formulation is a sum over light-
carrying paths of different lengths. For conciseness we restrict
the following derivation to include only scattering within the
volume. A full derivation incorporating scattering at surfaces
is available in a technical report [JZJ08].

A path of length k, x̄k, with k +1 vertices is defined as

x̄k = x0,x1, . . . ,xk, (6)

where light starts on a light source at xk and scatters k− 1
times within the medium before reaching x0. The outgoing
radiance Lo at x1 towards x0 can be expressed as a sum over
all possible light paths, of any length, arriving at x1,

Lo(x1→x0) =
∞
∑
k=1

L̄(x̄k). (7)

L̄(x̄k) measures the amount of radiance transported to x1 from
all paths of length k,

L̄(x̄k) =
Z
A(xk)
· · ·

Z
V(x2)

Le(xk→xk−1)cos(θk) (8)(
k−1

∏
j=1

p(x j)G(x j+1→x j)

)
dV(x2) · · ·dA(xk),

where V and A are the domains of the volume and surfaces
respectively (all integrals except at xk are over volume), θk is
the angle between the surface normal at xk and vertex xk−1,
and we use the shorthand p(x j) = p(x j+1→x j→x j−1) for
the phase function. The geometry term, G, is defined as

G(x→y) =
V (x↔y)σs(x)Tr(x↔y)

‖x−y‖2 . (9)

The radiance transported along an example path is shown in
Figure 3.
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Figure 3: An example path, x̄3, with length k = 3. The radiance
transported along the path, L̄(x̄3), is the emitted radiance at the light
multiplied by a series of scattering events (blue) and geometry terms
(green).

3.2. The Measurement Equation
Many global illumination algorithms can be described in
terms of the measurement equation. The measurement equa-
tion describes an abstract measurement of incident radiance
taken over some set of rays in a scene

I = 〈We,L〉=
Z
V

Z
Ω4π

We(x,~ω)L(x,~ω) d~ω dV(x). (10)

The importance function We represents an abstract measuring
sensor and is defined over the whole ray space V ×Ω4π

(though typically We is non-zero for only a small subset of
this domain).

Path tracing, for instance, measures the contribution of ra-
diance arriving over the area of a pixel. Radiosity algorithms
integrate the contribution of radiance over basis functions de-
fined on the scene geometry. Both of these approaches can be
described using Equation 10 with an appropriate importance
function.

In his dissertation, Veach [Vea98] showed how particle trac-
ing methods for surface illumination can also be expressed as
a solution to the measurement equation by using the path in-
tegral form of the rendering equation. We extend on this idea
and use the volumetric path integral formulation to describe
volumetric photon tracing in the same way.

3.3. Volumetric Photon Tracing
Photon tracing methods can be thought of as a way of gen-
erating samples from the scene’s equilibrium radiance dis-
tribution and then using this single collection of samples to
render the entire image. The photon tracing stage generates
N weighted sample rays, or photons, (αi,xi,~ωi), where each
(xi,~ωi) is a ray and αi is a corresponding weight. Our goal
is to use these samples to take unbiased estimates of the
radiance as a weighted sum,

E

[
1
N

N

∑
i=1

We(xi,~ωi)αi

]
= 〈We,L〉, (11)

for an arbitrary importance function We. We must therefore
determine the proper distribution of samples for Equation 11
to hold. By expanding the measurement equation (10) in

terms of the outgoing radiance using the path integral formu-
lation (7 and 8), it can be shown that distributing the samples
using a random-walk satisfies the necessary requirements if

αi =
Le(xi,ki →xi,ki−1)
pdf (xi,ki ,xi,ki−1)

(12)

ki−1

∏
j=1

(
1

qi, j

p(xi, j)G(xi, j+1→xi, j)
pdf (xi, j−1)

)
G(xi,1→xi,0),

where qi, j is the probability of terminating the walk at the jth

vertex. A detailed derivation is provided in the supplemental
technical report [JZJ08].

Connection to Conventional Photon Tracing. Though de-
rived in a different fashion, Equation 12 is exactly how con-
ventional photon mapping distributes photons within the
scene. For instance, for a diffuse area light, photons are emit-
ted using a cosine distribution with the power of the light
source. In Equation 12 photons are emitted with the radiance
of the light source divided by the pdf of choosing a position
and direction on the light. These quantities are equivalent.
Hence the particles generated above represent differential
flux. The correspondence between the photon powers [JC98]
and the sample weights is ∆Φi = αi

N .

3.4. Radiance Estimation Using the Measurement
Equation

The main advantage of the reformulation in Section 3.3 is that
it naturally accommodates computation of any measurement
of radiance within the scene simply by using an appropriately
defined importance function We. In this section, we first show
how the conventional estimate for in-scattered radiance can
be expressed as a measurement. We then go one step further
and show how to derive a beam radiance estimate which
approximates Equation 5 along rays directly.

Conventional Radiance Estimate. The conventional radi-
ance estimate approximates the value of the in-scattered ra-
diance Li at fixed points within the scene. To express this
using the theory from Section 3, we need to transform Equa-
tion 2 into the measurement equation. Since the measurement
equation is an integral over all of ray space (V ×Ω4π), we
artificially expand Li to also integrate over the volume

Li(xt ,~ω) =
Z

Ω4π

p(xt ,~ω,~ωt)L(xt ,~ωt) d~ωt (13)

=
Z
V

Z
Ω4π

δ(‖x′−xt‖)p(x′,~ω,~ωt)

L(x′,~ωt) d~ωt dV(x′).

In order to keep the expressions equivalent when we add
the integration over volume, we also introduce a Dirac delta
function δ.

The bottom row of the above equation is now the measure-
ment equation where We = δ(‖x′− xt‖)p(x′,~ω,~ωt). Hence
we can compute an unbiased estimate using the photon map
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by evaluating Equation 11 with this importance function.
However, in order to obtain a useful estimate of radiance at
all points in the scene a normalized kernel function is used in
place of the delta function. This is where bias is introduced in
the photon mapping method. Another interpretation is that by
replacing the delta function with a kernel, photon mapping
computes an unbiased estimate of blurred radiance. Jensen
and Christensen [JC98] use a constant three-dimensional ker-
nel with a radius based on the nth nearest neighbor. This
results in the following radiance estimate by applying Equa-
tion 11

Li(xt ,~ω)≈
Z
V

Z
Ω4π

Kn(‖x′−xt‖)p(x′,~ω,~ωt) (14)

L(x′,~ωt) d~ωt dV(x′),

≈ 1
N

N

∑
i=1

Kn(‖xi−xt‖)p(xi,~ω,~ωi)αi (15)

where the kernel Kn is defined as

Kn(r) =

{
3

4πd3
n

if r ∈ [0,dn]

0 otherwise
, (16)

and dn is the distance to the nth photon. Note that this is
equivalent to the conventional volumetric radiance estimate
in Equation 4.

Beam Radiance Estimate. A similar procedure can be used
to derive an estimate for the accumulated in-scattered radi-
ance along an entire ray. To accomplish this, we first expand
out Li in Equation 5 and then artificially inflate the resulting
expression to integrate over the whole volume,

Z s

0

Z
Ω4π

Tr(x↔xt)σs(xt)p(xt ,~ω,~ωt)L(xt ,~ωt) d~ωt dt = (17)Z
R

Z 2π

0

Z
R

Z
Ω4π

δ(r)(H(t)−H(t− s))Tr(x↔x′)σs(x′)

p(x′,~ω,~ωt)L(x′,~ωt) d~ωt dr dθ dt. (18)

R is the set of real numbers and x′ is expressed in cylindrical
coordinates, (t,θ,r), about (x,~ω), where r is the radius to the
ray (see Figure 4). We have added a Dirac delta function δ

as before, and the Heaviside step functions (H(x) = 1 when
x > 0 and 0 otherwise) constrain the computation to t ∈
(0,s). Equation 18 is now equivalent to the measurement
equation where the integral over volume has been converted
into cylindrical coordinates and where We = δ(r)(H(t)−
H(t− s))Tr(x↔x′)σs(x′)p(x′,~ω,~ωt).

Since the probability of photons landing exactly on the ray
(x,~ω) is zero, we introduce bias by blurring the radiance and
replacing the delta and step functions with a smooth kernel,
K. This integral can then be estimated with the measurement

r x

θ

x′

t

"ω

Figure 4: In the beam radiance estimate, x′ is parameterized in
cylindrical coordinates, (t,θ, r), about the ray (x,~ω). An unbiased
estimate would only consider points directly on the ray, while a
biased version uses a kernel (shown in grey) to blur the radiance
within a beam.

equation using the photons as:Z
R

Z 2π

0

Z
R

Z
Ω4π

K(t,θ,r)Tr(x↔x′)σs(x′)p(x′,~ω,~ωt)

L(x′,~ωt) d~ωt dr dθ dt = (19)

1
N

N

∑
i=1

K(ti,θi,ri)Tr(x↔xi)σs(xi)p(xi,~ω,~ωi)αi, (20)

where (ti,θi,ri) = xi are the cylindrical coordinates of photon
i about the ray.

The blurring in the conventional radiance estimate is spher-
ical and so the kernel needs to be normalized for 3D. However,
with the beam radiance estimate, we blur in two dimensions
(perpendicular to the ray) since the radiance we are com-
puting already includes the integration along the ray itself.
Therefore, the kernel in the beam estimate is normalized for
2D.

3.5. Kernel Radiance Estimation
For both the conventional and beam radiance estimates the
characteristics of the bias and blur are determined by the
smoothing function chosen. Several options exist for applying
a smoothing kernel to the photon map data.

The kernel method uses a fixed-radius smoothing kernel
and results in a uniform blur of radiance within the scene. In
practice, using a fixed-width circular kernel implies that in
order to evaluate the beam radiance estimate (Equation 19)
using the photon map (Equation 11) we only need to con-
sider photons which are located within a fixed-radius cylinder
about the ray (x,~ω). Alternatively, the equivalent dual inter-
pretation considers each photon as the center of an oriented
disc facing the ray and all photon-discs that intersect the ray
need to be found.

If the density of photons varies significantly it can be diffi-
cult to choose a single radius that works well for all regions
of the scene. This can be solved by allowing the size and
shape of the blurring kernel to vary spatially. In conventional
photon mapping, the nearest neighbor method (k-NN) is
used to adapt the kernel width to the local density. Generaliz-
ing point-based k-NN to a visually comparable range search
along rays is challenging. However, spatial variation can eas-
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Figure 5: After photons have been distributed in the scene, our algorithm constructs a balanced kd-tree (left). We assign a valid radius to each
photon by querying in the kd-tree (middle). Finally, we rapidly construct a bounding-box hierarchy over the photon-discs (right) by reusing the
same hierarchical structure (shown in red) as the kd-tree.

ily be applied to the dual photon-discs interpretation using
the variable kernel method (VK) [BMP77]. A smoothing
kernel is “attached” to each photon and the radius of the ker-
nel is allowed to vary from one photon to another, based on
the local density. In contrast to k-NN estimation, where the
kernel widths vary based on the distance from the evalua-
tion location to the data points, in the VK method the kernel
widths only depend on the data points themselves. In order
to facilitate this, the method relies on a pilot estimate of the
local density at each data point in order to assign the kernel
widths. This is the approach we take.

4. Algorithm
In order to use the dual interpretation to evaluate the beam
radiance estimate (Equation 19), we need an efficient way
of locating all photon-discs that intersect an arbitrary ray.
Additionally, to use variable width kernels we need to effi-
ciently compute a radius for each photon in the photon map.
At a high level, our volumetric photon mapping technique
performs the following five steps:
1. Shoot photons from light sources.
2. Construct a balanced kd-tree for the photons.
3. Assign a radius for each photon.
4. Construct a bounding-box hierarchy over the photon-discs.
5. Use the photon BBH to render the image.

Steps 1 and 2 are identical to conventional photon mapping
while 3–5 are unique to our approach and are explained in
more detail below.

Photon Radius Computation. We augment the traditional
photon map by associating a radius with each photon. For
fixed width kernels the radius is a constant for all photons
and does not need to be explicitly stored. For variable width
kernels using the VK method, we perform a density estima-
tion at each photon to assign a radius. At each photon we
compute the local density by estimating the distance to the nth

nearest photon and use this as the photon-disc’s radius. This
pilot estimate is performed using the photon map kd-tree. The
value n plays the same role as in the conventional radiance
estimate, it controls the amount of blur.

As an optimization, we only search for the nearest m� n
photons and estimate the necessary radius for n photons. By

Algorithm 1 CONSTRUCTBBH(p)
Require: p is a node in a balanced photon map.
Ensure: The subtree at p contains a valid BBH.

1: B⇐ BOUNDINGBOX(p.position, p.radius)
2: if p.leftChild then
3: B⇐ B ∪ CONSTRUCTBBH(p.leftChild)
4: end if
5: if p.rightChild then
6: B⇐ B ∪ CONSTRUCTBBH(p.rightChild)
7: end if
8: p.bbox⇐ B
9: return B

assuming locally uniform photon density, if di,m is the dis-
tance to the mth photon from photon i, we estimate the radius
as ri = di,m

3
√ n

m . The m parameter controls the sensitivity of
the computed radius to the local variation in density. Very
small values of m, m < 5, can produce noisy radii, which
change drastically between neighboring photons, while large
values are more expensive to compute. In practice, we have
found that m =

√
n works well as a default value and this

value was used for all our scenes, significantly accelerating
the preprocessing step.

Bounding Box Hierarchy Construction. In order to effi-
ciently locate all photons-discs which intersect a ray, we
construct a bounding box hierarchy. Heuristics for construct-
ing efficient BBHs have been extensively studied within the
context of ray tracing [WMG∗07]. However, the performance
characteristics of our ray intersections are different than for
regular ray tracing since we are interested in all intersections,
not just the first intersection along a ray. Furthermore, the best
heuristics tend to induce long construction times. We employ
a rapid construction scheme by exploiting the information in
the photon map kd-tree and re-using that hierarchy for our
BBH.

For each photon in the photon map, we compute the bound-
ing box of all descendent photon-discs. The bounding box of
each node encloses the node’s photon radius and the bound-
ing boxes of its two child nodes. The computation starts at
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Scene

Cornell
Stage
Cars
Lighthouse

Photon Tracing
N Shoot (s) Balance (s) Radius (s)

0.4M 1.50 0.30 2.0
1M 3.25 0.76 5.0
2M 19.0 1.50 2.0
1M 2.83 0.78 6.0

Fixed Radius Comparison
r ∆t C (m) O (m)

0.4 0.40 3:19 3:00
0.3 0.20 4:21 4:15
0.4 1.25 1:30 1:30
0.4 0.25 1:07 0:59

Adaptive Radius Comparison
r+ n ∆t C (m) O (m)

0.6 1.5K 0.80 4:03 3:35
0.5 0.5K 0.70 6:38 6:22
0.5 1K 1.25 2:02 1:53
0.5 0.4K 1.00 1:12 1:05

Table 2: Rendering parameters and timings (in seconds (s) and minutes (m)) for all example scenes. Statistics relating to the photon tracing
preprocess are shown in the first table. The middle and right tables compare our method (O) to conventional photon mapping (C) using a fixed
width kernel and adaptive width kernel. The r column represents the fixed-width kernel radius, while r+ is the maximum search radius and the
number of nearest neighbors is n.

the leaves and propagates upwards through the tree. This
procedure results in a balanced median-split-style BBH, but
unlike traditional BBHs our hierarchy contains photons at
interior nodes, not just at the leaves. Figure 5 illustrates the
relationship between the kd-tree and the BBH. The BBH can
be constructed by passing the root of the photon map kd-tree
to Algorithm 4.

Given a balanced kd-tree, this linear-time construction
procedure is extremely fast and produces BBHs which can
be efficiently traversed for nearby photons during rendering.
After the BBH is constructed the photon map kd-tree is no
longer used and can be freed from memory. Using a BBH
and a per-photon radius, an additional 7 floating-point values
need to be stored, increasing the size of each photon from 20
bytes to 46 bytes.

The Beam Radiance Estimate. During rendering we es-
timate the accumulated in-scattered radiance (Equation 5)
along viewing rays by locating all photons whose bounding
spheres intersect the ray. These photons are found using a
standard ray-BBH intersection traversal. The contribution
from each photon (αi,xi,~ωi) is accumulated using Equa-
tion 19; however, with the variable kernel method, a kernel
Ki is defined per photon. This leads to the following radiance
estimate

1
N

N

∑
i=1

Ki(x,~ω,s,xi,ri)Tr(x↔x′i)σs(x′i)p(xi,~ω,~ωi)αi, (21)

where x′i = x + ti~ω is the projection of the photon location
xi onto the ray’s direction ~ω, and ti = (xi−x) ·~ω. We define
the kernel as

Ki(x,~ω,s,xi,ri) =

{
r−2

i K2

(
di
ri

)
if di ∈ [0,ri]

0 otherwise
, (22)

where ri is the pre-computed radius for photon i. We use Sil-
verman’s two-dimensional biweight kernel [Sil86] along the
ray, K2(x) = 3π

−1(1−x2)2, where di is the shortest distance
from photon i to the ray. We chose this kernel because it is
smooth, efficient to evaluate, and has local support. Equa-
tion 21 is the beam radiance estimate, and it replaces the ray
marching computation from conventional photon mapping
(second row of Equation 3).

Scene σs σa g

Cornell 0.225 0.225 0.00
Stage 0.225 0.225 0.75
Cars 0.06 0.015 0.00
Lighthouse 0.24 0.010 0.75

Table 3: Scattering properties of the participating media used in
each of the example scenes.

Heterogeneous Media. For homogeneous media, the trans-
mission terms, Tr(x↔ x′i), can be computed explicitly for
each photon during gathering. Beam gathering in heteroge-
neous media can also be handled efficiently by first marching
along the ray and saving the transmission values in a 1D
lookup table. Then, during gathering, each photon’s trans-
mission is computed by interpolating within the lookup table.
This preprocess needs to be performed independently for
each ray, just prior to gathering, so the lookup table can be
reused. Furthermore, if single scattering is simulated sepa-
rately by directly sampling light sources the lookup table can
be populated during this marching step.

5. Results
We compared our beam gathering technique against conven-
tional volumetric photon mapping using ray marching. In
order to isolate just the performance of the photon gathering
methods, we use the photon map for both single and multiple
scattering. We compared results on four test scenes: Cars,
Lighthouse, Stage, and a Cornell box. For each scene we
compare using a fixed gathering radius for both types of esti-
mates, and we also compare the conventional estimate using
k-NN to the beam estimate using the VK method. The images
were all rendered with a maximum dimension of 1024 pixels
with up to 4 samples per pixels on an Intel Core 2 Duo 2.4
GHz machine using one core.

In our experimental setup, we first choose suitable gather-
ing parameters (search radius and number of nearest neigh-
bors n) and render the scenes using our method. We then use
the same parameters using conventional photon mapping but
tune the minimum step-size ∆t to obtain approximately equal
render times. Note that ∆t is the minimum step-size and that
exponential stepping is used to sample the ray according to
transmission. Finally, we render a high quality result with
conventional photon mapping using a very small step size as
a “reference.”
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Approx. Equal Time

k-NN (6:38) Fixed (4:21)

Conventional Radiance Estimate
Reference Solution

k-NN (5:18:33) Fixed (2:38:57)

Beam Radiance Estimate

Adaptive (6:22) Fixed (4:15)

Figure 6: A comparison between the convention radiance estimate and our beam radiance estimate on the Stage scene with render times
provided as (hours:minutes:seconds). Our method (right) produces images with much less noise than an equal time rendering using conventional
volumetric photon mapping (middle) for both a fixed radius and an adaptive radius gathering approach. Our method does not require stepping but
matches the quality of conventional photon mapping if a very small step size is used (left).

We show visual comparisons of the methods in Figures 6–7.
All images of each scene are rendered using the same photon
map. The only differences in quality and performance are
due to the gathering method used. We report the render times
and gathering parameters, as well as timings for constructing
the photon maps in Table 2. We used the Henyey-Greenstein
phase function for all scenes with the medium parameters
specified in Table 3.

In all cases, our method produces significantly higher qual-
ity images than conventional photon mapping. This is because
querying once for all photons along a ray is more efficient
than repeatedly querying for photons near numerous samples
along the ray. Not surprisingly, we see that the reduced blur-
ring of the adaptive kernel gathering methods is essential for
scenes like the Stage and Lighthouse, where concentrated
beams of light are visible. However, at the same render time
this advantage is difficult to discern in the conventional pho-
ton mapping images.

Though the k-NN and VK methods both adapt the width
of the kernel to the local photon density, they are distinct
approaches which result in similar, but not identical, density
estimates. This is what accounts for the small differences in
blurring between our adaptive results and the k-NN “refer-
ence” images. However, as our results show, the same value
of n produces visually comparable renderings using the two
methods.

6. Discussion and Future Work
Specific trade-offs between the k-NN and VK methods have
been extensively studied within the density estimation liter-
ature [Sil86]. For computer graphics, a visual advantage of

the VK method is that the estimated function inherits all the
differential properties of the smoothing kernel. In contrast,
even with smooth kernels, the k-NN method results in esti-
mates with a discontinuous first derivative. The VK method
does, unfortunately, require a pre-process to compute the ker-
nel width for each photon. However, the amount of time to
compute adaptive radii for each photon using our method is
relatively inexpensive (typically less than 1–2% of the total
render time). On the other hand, k-NN gathering involves
maintaining a priority queue and is much more costly than a
fixed radius query. With our method, the gathering procedure
is identical whether an adaptive or fixed radius kernel is used
and no priority queue is needed.

Though adaptive kernel widths can be a distinct advantage,
in uniformly illuminated scenes a fixed radius may be suffi-
cient. While assigning the radii is inexpensive, each resulting
BBH node consumes more memory than a kd-tree node due
to the additional 7 floating-point values needed to store the
bounding box and radius. If memory is limited and a fixed ra-
dius search is acceptable, then the regular photon map kd-tree
can be used to perform beam gathering by tracing a cylinder
through the kd-tree. This approach could be implemented in
the spirit of ray-bundle traversals [WMG∗07] by bounding
the cylinder using 6 planes. This offers the additional bene-
fit of re-using the exact same data structure as conventional
photon mapping.

Our photon-disc approach using a BBH is not inherently
tied to participating media. VK density estimation could also
be applied to photon mapping at surfaces. It would be inter-
esting to see whether a similar technique could be beneficial
for surfaces by querying the BBH for all photons that overlap
with a surface location. The pilot estimation preprocess may
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k-NN (14:00) Fixed (11:00) k-NN (2:02) Fixed (1:30)
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Adaptive (1:53) Fixed (1:30)

Approx. Equal Time
Conventional Radiance Estimate

Reference Solution
Beam Radiance Estimate
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k-NN (16:23) Fixed (14:43) k-NN (4:03) Fixed (3:19) Adaptive (3:35) Fixed (3:00)

Figure 7: The Cornell box, Cars, and Lighthouse scenes. Render times are shown as (minutes:seconds). For both the fixed and adaptive
gathering approaches our method produces noise-free results while conventional photon mapping suffers from significant noise, especially
around distant light sources.
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also be beneficial at detecting and reducing boundary bias in
photon mapping for surfaces.

The advantages of beam gathering are more pronounced in
large open environments where ray marching needs to be per-
formed over large distances and where potentially interesting
lighting is visible far away. One advantage of the conventional
radiance estimate, however, is that a fast preview render can
be obtained by using a large step-size. Since no step-size
is used for beam gathering, all photons intersecting a ray
need to be considered. In fact, these two approaches estimate
the lighting integral using different pdfs. The ray marching
computation employs exponential stepping, which distributes
photon queries with a pdf proportional to the transmission
term Tr. In contrast, our approach visits every photon that
intersects a line and so concentrates effort where the lighting
is important. Since the radiance seen by the eye is a product
of the lighting and the transmission, optimally we should
concentrate effort according to this product. One way of ex-
ploiting this could be to prune the BBH ray traversal using
Russian roulette based on some upper-bound on the transmis-
sion term and the number of photons in each subtree. Such a
scheme could further reduce render times by not considering
photons which are too distant and faint to contribute much to
the image. We leave this optimization as future work.

It would be interesting to explore what other useful
radiance estimate could be formed using the measure-
ment equation formulation. For instance, Cammarano and
Jensen [CJ02] considered the problem of estimating the den-
sity of photons within four dimensional “cylinders” to prop-
erly simulate motion blurred caustics. This process could
easily be formulated as a measurement by defining the impor-
tance function over space-time.

Photon splatting for participating media was presented
by Boudet et al. [BPPP05], where the conventional photon
mapping method needed to be meticulously transformed into
a splatting algorithm. An extra benefit of our reformulation
is that Equation 21 can immediately be seen as a splatting
operation and could therefore be efficiently implemented in
graphics hardware. Furthermore, whereas Boudet et al. only
considered fixed-size splats, our VK approach could easily
be used to adapt the splat size to the local photon density. A
splatting approach could also be used in software to accelerate
the computation for eye rays; however, the more general beam
gathering would need to be used for any secondary rays.

7. Conclusion
In this paper, we showed how volumetric photon mapping
can be expressed as a solution to the measurement equation.
This formulation showed that any measurement of radiance
within participating can be estimated using the photon map.
We applied this formulation by using the photon map to di-
rectly estimate accumulated in-scattered radiance along rays.
This approach was implemented using an efficient beam gath-
ering method which can be used for both fixed and adaptive
width kernels. The resulting algorithm produces images with

significantly less noise than conventional volumetric photon
mapping using the same render time.
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