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1 APPROXIMATION OF ACTUAL PHOTON PATH

We have defined a geometric path as a path using scene geometry
at time t and used it for the path integral in the main paper. While,
we can also define an actual photon path as a trajectory followed
by a moving photon, which is physically more accurate. However,
because an object keeps moving while photons travel, the actual pho-
ton path may deviate from the geometric path. Figure 1 illustrates
the difference between the geometric path and the actual photon
path. Assume that the camera and the directional light source with
unit intensity are collocated at x. = X., and the object is moving
away from the camera with constant speed v. Let’s say time t as a
time when a photon observed at the sensor and x(t) as the object’s
position at time ¢. To determine the elapsed time At for the geomet-
ric path, we can readily calculate the distance d between the camera
and the object as dy + vt where dy = ||xc — x(¢)|| is a constant value.
(Fig. 1-(a)). Then,

= 2_d = Z_d() + @t, (1)

c c c

Assuming illumination modulation is cos (wgt) and ignoring the
geometric attenuation, the observed illumination at the sensor at
time ¢ is equal to

cos (g (t — At)) = cos (w9 (l—%)t—@). 2)

C

At

The Doppler frequency shift Aw could be calculated as
2wgv
Awgeom = . (3)
Now let’s look at the actual photon path (Fig. 1-(b)). We can
separately calculate elapsed time from object to camera and light
source to object. Let’s say each time At; and Aty. Note that because

of the principle of constancy of light velocity, the observed photon
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Fig. 1. Geometric path versus actual photon path.

speed is always c. Then, we can obtain two equations from the
photon path from light to object (1)-(3) and object to light (3)-(5)

d — oAty = cAty,d — oAt = cAty. 4)
This gives
Aty = Aty = d (5)
1=aR= (c+0)
or,
2d
Aty + Aty = ——. 6
1A = 0 (6)

Considering Eq. (2), the actual photon path causes the Doppler
frequency shift of
2wgv
Awactual = m ()
The difference in the Doppler frequency shift between the two
paths is O(v?/c?), while the Doppler frequency shift itself is O (v/c).
Assuming ¢ >> v, we can ignore the deviation due to the discrepancy
between the geometric path and the photon’s actual path.
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2 LOW-PASS FILTERING FOR OTHER WAVEFORMS

In the main paper, we ignored the high-frequency term from the
multiplication of two sinusoidal sensor and illumination modulation
functions, s(t) and g(t). However, for arbitrary periodic signals s(t)
and ¢g(t), we can do a similar thing. Let’s express each signal using
the Fourier series,

[

s(t) = ) an cos (naxs(t +1), ®)
n=1
9(t) = go+ g1 ) bn cos (ngt). ©

n=1
Assuming ws, wg > |wg| where wg = ws — wg, the low-frequency
terms of multiplication of modulation functions s(t), g (t — ||X(¢)||)
can be calculated as

I anby cos (nfwat +y — $E(1)]), (10)
2 n=1
where ¢(X(t)) = —wyl|X(t)||. We can calculate the summation of

cosine terms as a correlation of two periodic functions,

() = Z an cos (nt’), lg(t') = Z by, cos (nt’). (11)
n=1 n=1

where t’ = wgt +  — $(X(t)). s and I; could be also thought of as
original modulation signals with the same frequency, w4. For some
special signals, we can analytically calculate them.

e Sinusoidal : 0.5 cos ¢/

e Rectangular: 1 — 2 % foro<t' <nm

1 v\ a(r)?
e Triangular : 3 —2 (;) +3 (;) foro<t' <nx
For rectangular and triangular waves, we only denoted the first half
of the signal for convenience. The signal is symmetric at . If one
modulation is a delta function, then the low-pass filtered signal is

equal to the other non-delta function. We plot some examples of
low-pass filtered signals in Fig. 2.

3 DETAILS FOR ANTITHETIC SAMPLING

In this section, we discuss antithetic sampling in detail with mathe-
matical proof. We will mainly focus on shifted antithetic sampling.

3.1 Proof for an Optimal Shift for Shifted Antithetic
Sampling
In the main paper, we exploit the fact that shifted antithetic sampling
has an optimal value at t; = 0.5T regardless of frequency or phase
offset. We will prove it mathematically in this subsection.
We have defined the variance Var(t;) of the antithetic estimator
with shift ¢ for integration of arbitrary signal x(¢) over [0, T] as

T 2
Var(t,) =/0 (x(t) +x(mc;d(t+ts, 7)) N AT

where pi, is mean of x(¢) in [0, T], or ground truth value for the
integration. Extracting ts dependent terms, we are effectively mini-
mizing the following term

T
R(ts) = /0 x(t)x (mod(t +t5, T)) dt, (13)
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Fig. 2. Low-pass filtered modulation for some signals. Trapezoidal signal is
called Hamiltonian in Gupta et al. [2018].

which is known as auto-correlation. Replacing the modular repre-
sentation, we can rewrite it as the following equation,

ts T
R(ts) = / x(H)x(t —ts + T)dt + / x(H)x(t —t)dt.  (14)
0 tS
One important property of R(t;) is that it is symmetric over t5; =
0.5T. To prove this, define the first term of R(#5) as F(is),

F(ts) = /0 ® ()t — 1o + T, (15)

Then, we can find that the second term is equal to F(T — t5)
T—t,
F(T—-1t) = / x(t)x(t + ts)dt
0

T
=/ (' = t)x(¢)dt’ (16)
ts

where t' =t + t.

Therefore, R(ts) = F(ts)+F(T —ts) and this infers R(ts) = R(T —ts).
Another interesting property is that R has a global maximum at
ts = 0 regardless of x(¢). This could be shown using rearrangement
inequality.

Our goal is to find an optimal #; that minimizes R(ts). Gener-
ally, finding such globally optimal ¢ is not straightforward, but we
can find it for some special functions, and the sinusoidal function
is one of them. Let’s express R(ts) using x(t) = cos (wt +¢). In
the main manuscript, it was x() = cos (wqgt + 6), but we will use
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Fig. 3. Variance of using different antithetic shift a for different w, 6. We plotted for a total of 6 different waveforms at 6 = 0,0.87.

x(t) = cos (wt + ¢) instead for convenience. Also, for simplicity,
let’s assume T = 1 without loss of generality and denote ts = a.
Then,

R(a) = /a cos (wt + ¢) cos (w (t + 1 — a) + ¢)dt
0 (17)
+ / cos (wt + @) cos (w (t — a) + ¢)dt

and
F(a) = /acos (wt+¢@)cos(w (t+1—a)+¢)dt. (18)
0
Because

2 / ! cos (w(t —c) + ¢) cos (w(t —d) + $)dt
= (cos (w(y +x) +2¢ — w(c+d))sin(w(y —x))) (19)
+ (y — x) cos (w(c — d)),

we can rewrite F(a) as following:
1
F(a) = 75 8 (w + 2¢) sin (wa) + g cos (w (1 - a)). (20)
1)

Our intuition is that R(a) has a minimum value at a = 0.5. Because
R(a) is symmetric at a = 0.5, we can show that R(a) has a minimum
ata=0.5ifR’(a) <0for0 <a< % Here is our objective:

Show that R"(a) < 0
1
Given 0 < a < Eand0<a) <2m

To calculate R’ (a), let’s first calculate F’ (a) and F’ (1 — a).

F'(a) = 1 cos (w + 2¢) cos (wa) + 1 cos(w (1 —a))
2 2 (21)

a

+Ew sin (o (1 — a))

FF(1-a)= %cos (@ +2¢) cos (w (1 —a)) + % cos (wa)

(22)
+ (l;a)cosin(w (1-a))
Because R(a) = F(a) + F(1 —a),
R'(a)=F'(a)-F (1-a)
= (1 - cos (20)) sin (%) sin (wa - %) (23)

+ % (wsin (0 (1 -a)) — (1 — a)w sin (wa))

where 0 = ¢ + 0.50. Note that such substitution is equivalent with
phase compensation used in Hu et al. [2022]. We will use 6 instead
of ¢ from now. Let’s examine the first term and the second term
separately. We can easily show that the first term is < 0 because,

1-—cos(20) >0

L (w
sm(;) >0("0<w<2m)

W 1
sin(wa—;)<0('.'O<w<27[,0<a<5

The second term is related to sinc function. Let’s consider two
possible cases.

Case 1.0 < wa < w(1 — a) < x. In this case, the sinc function is
positive and also a decreasing function.
sin (w (1 —a))
wa w(1-a)
Sawsin(w (1—a)) — (1 - a)wsin (wa) < 0

sin (wa)

Case 2.0 < wa < 7 < w(1 —a) < 2x. In this case, the sign of the
two sinc functions are different.
sin (wa) sin (0 (1 — a))
wa g w(1-a)

cawsin(w (1 —a)) — (1 - a)wsin (wa) < 0
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Therefore, we can conclude that
1
R'(a) <0 for0<a<§,0<a)<27r

Since R(a) is symmetric at 0.5, showing R’(a) < 0 for 0 < a < 0.5
proves that R(a) has a global minimum at a = 0.5.

We plot Var(w, 0, a) of various functions on Fig. 3. Because R, Var
also depends on w, 0, we added them as a variable. Their shapes vary,
but you can easily notice that they are all symmetric over a = 0.5
and have a global minimum at a = 0.5. Also, we could find that a
similar optimal property holds for other waveforms. Although we
only show mathematical proof for sinusoidal waves, other wave-
forms in Fig. 3 could be also mathematically proved that a = 0.5 is
optimal regardless of w, 8. However, we will omit the detailed proof
because it is just a tedious calculation over several cases considering
discontinuities. We could not find the exact condition for x(¢) that
a = 0.5 becomes optimal, but this could be further studied in future
work.

3.2 Variance Gain Analysis

We want to know how much variance reduction using the optimal
antithetic shift is efficient compared to not using the antithetic
sampling. We can rewrite the antithetic estimator’s variance for
sinusoidal wave as follows,

Var(w, 6, a) = %y%(w, 0) — 1(w,0) + %R(w, 6,a)  (24)
where p and pp are mean and quadratic mean respectively.

To evaluate the worst case variance, we can plot Var(w, 0, %)
over w € [0,2r],0 € [0,2r] and find maximum value. However
as variance innately depends on w, 6, it does not tell the relative
effectiveness of using the antithetic sampling. Instead, we can calcu-
late the variance ratio (or gain) compared to the uniform sampling
counterpart. The uniform sampling counterpart could be thought
of as antithetic sampling with a = 0 with double the number of
samples, which halves the variancel. Therefore, the variance ratio
could be calculated as

Var(w, 0, %)

P EEE—— 25
%Var(a), 0,0) (5)

The antithetic sampling becomes more effective as the above ratio
becomes smaller (equal to gain becomes infinite). The variance
and the variance ratio are plotted in Fig. 4. We could notice that
using the antithetic sampling is useful for every w, , making the
variance less than half compared to uniform sampling. We could
also observe the worst case at @ = 0 where the ratio is 0.5 and
the best case at = 27 where the ratio is 0. This is consistent
with our expectation that shifted antithetic sampling is useful for
full heterodyne mode while not that useful for homodyne mode.
One may wonder why shifted antithetic sampling is not useful for
homodyne mode in the rendering case, because it still gives half of
the variance compared to uniform sampling. This is because, for
lower w, the path space variance dominates the total variance, and
effect of the time-sampling method becomes less noticeable.

'We can also calculate this with an MC estimator with two independent uniform
samples.
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Fig. 4. (Left) Variance of using using a = 0.5. (Right) Relative variance
compared to uniform sampling counterpart.

3.3 Sinusoidal Wave with Truncate or Geometric
Attenuation

The actual signal can be truncated because of discontinuity and also
slightly deformed because of geometric attenuation. This could be
modeled as follows.

cos(wt+¢1) - ——— ift <ty
x(1) = (hran™ (26)
cos (wt + ¢2) - o)’ ift >ty

Note that using the discontinuity option makes the R(a) not optimal
at a = 0.5 for some w, ¢. But instead, at least we can empirically
expect that using antithetic sampling with a = 0.5 gives the best
result on average. We calculated an expected variance using above
signal with I1, Iy € [1,3],01,02 € [-0.01,0.01], p1, P2 € [0,27]), 24 €
[0, 1]. Note that the v value is relatively small because the exposure
time is a few ms and object speed is a few m/s, so it has a small value
if T is normalized to 1. If the object speed is 5 m/s and exposure
time is 2ms, v becomes 0.01. We plotted two results in Fig. 5. The
left image shows a configuration that the variance can be a local
maximum at a = 0.5. The right image shows the averaged variance
which has a minimum value at a = 0.5, assuming each variable has
a uniform distribution. Such observation supports that using a = 0.5
is still optimal on average under several possible variations.

Var(w, a, ¢, = 0,¢, =m,tq = 0.3) Eg, ¢, tqVar(w, a, ¢, ¢2,tq)]

|

Fig. 5. (Left) Variance under specific configuration that a = 0.5 is no longer
optimal. (Right) Expectation over all of the variables except a, w.

1 0.07

0.01



3.4 Antithetic Sampling with Higher Frequency

Here, we assumed that 0 < w < 27, but what happens if frequency
becomes higher? Variance has a local optimum at a = 0.5, but it
is not guaranteed to be a global minimum or a local minimum for
higher frequency. Our observation is plotted in Fig. 6.

Var(w,0 = 0,a)

1
0.5
a
0.0
0 2m 4m 6m 8m

w

Fig. 6. Variance for higher frequency. For certain ranges, a = 0.5 is not a
global minimum, but a local maximum.

3.5 Multiple Antithetic Sampling

In the previous subsections, we have demonstrated that antithetic
sampling with time shift 0.5 gives an optimal result for sinusoidal
wave and also optimal in average with some variations. The ques-
tion then naturally arises: What if multiple antithetic samples are
available?

Interestingly, if we can use N samples, then using antithetic sam-
ples with shift [0, ﬁ % %] seems to minimize the variance
of the estimator. Such sampling is also known as periodic sampling,
systematic sampling or uniform jitter sampling [Ramamoorthi et al.
2012]. We plot the example of using two antithetic samples with the
shift of a, b on Fig. 7. For each case, the global minimum could be
observed at [0.33,0.66]. We also could observe that an equal inter-
val shift gives the best result for larger N among several variations
without rigorous mathematical proof. Instead, a weaker suggestion,
we could show that such periodic sampling has a global minimum if
R is convex with regard to a, which could be proved using Jensen’s
inequality.

Var(w = 1.87,60 = 0.3, a, b) Var(w = 0.6w,6 = 0.17, a, b)

1.4 ! .

min at (0.33, 0.66)

min at (0.33, 0.66)

Fig. 7. Variance when using two antithetic samples of a, b. We only show
two cases, but it seems that [0.33, 0.66] is also optimal for other cases.
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Variance Reduction using Periodic Sampling. Now saying that mul-
tiple antithetic sampling is optimal with periodic shift, we want
to investigate the effect of variance reduction by using more sam-
ples. We plotted the result of the expectation of the variance over
both w, 6 in Fig. 8 assuming they both have a uniform distribution.
The x-axis means the number of antithetic samples N. We could
observe that periodic sampling decreases variance by the rate of
1/N?. We also plot other sampling methods, uniform sampling, and
stratified sampling in the same figure. For uniform sampling, N
means the number of independent samples, and for stratified sam-
pling, N means the number of strata. Uniform sampling decreases
variance by the rate of 1/N while we found that stratified sampling
decreases variance by the rate of 1/N3. Such fast variance reduction
of stratified sampling makes stratified sampling better than periodic
sampling over a certain N. This is not a surprising result because
there are no clear antithetic samples that make zero variance for
arbitrary frequencies.

However, as pointed out in the main manuscript, increasing the
number of correlated time samples reduces diversity in the path
domain which eventually increases the total variance. Therefore
even though stratified sampling works better than periodic sampling
for large N, it does not cause practical advantage in rendering. While,
the fact that periodic sampling outperforms others at N = 2 (in this
case, periodic sampling is the same as shifted antithetic sampling)
is more important.

—— uniform
—— stratified
- periodic

slope : -1.0

slope : -2.93

Expected variance over w, 0

2! 22 23 24 25 26 27
Number of samples

Fig. 8. Variance reduction using more samples for uniform, stratified, and
periodic sampling.

3.6 Optimal Antithetic Shift for Other Sampling Methods

The mirrored antithetic sampling mentioned in the main paper
does not have a globally optimal antithetic shift regardless of w, 6.
A similar thing happens for stratified sampling, that there is no
globally optimal starting point of strata. Usually, a starting point of
strata is 0, but to be fair with the shifted antithetic sampling method,
we consider a non-zero starting point for stratified sampling. The
first row of Fig. 9 shows such non-global optimal property for both
sampling methods at w = 27x. Thus, instead, we have considered

ACM Trans. Graph., Vol. 42, No. 6, Article 271. Publication date: December 2023.
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the expected variance over uniform 0, Ey[Var(w, 0, a)], which is
shown in the second row of Fig. 9. It shows that mirrored antithetic
sampling has an optimal value at a = 0, 1, and stratified sampling
has an optimal value at a = 0, 0.5, 1. Therefore, the optimal shift
value of a = 0 is used for both mirrored antithetic and stratified
sampling.

Shifted Antithetic

Stratified

MY

Mirrored Antithetic

A

Variance at w = 27

Expected variance over 6

Fig. 9. The effect of shift a for other sampling methods. Note that for
mirrored antithetic sampling and stratified sampling, a does not have 6
independent optimal value.

Using this optimal shift, we can calculate Eg[Var(w, 0)] for each
sampling method.

. 242 -2
e Uniform : Z(@7+2c0s (@) =2) cos (@)-2)

(5}
Stratified : (@ ¥8cos (§)-8)
20?

m(w?+4cos (w)—4) |, 7 W
=7 —— t7cos (7)

7 (e*+4 cos (w)—4) + sin (w)

20?2 2 o
Such mathematical expression clearly demonstrates superiority of
shifted antithetic in w € [x, 27] and mirrored antithetic in w €
[0, z]. Note that this is also plotted in the main paper, Fig.7-(b).

e Shifted antithetic :

e Mirrored antithetic :

4 ANTITHETIC SAMPLING WITH MIS

In this section, we will discuss antithetic sampling with MIS (mul-
tiple importance sampling). Although antithetic sampling is not
exactly an importance sampling, let us just call it as MIS for conve-
nience. Let’s think about the following integration,

I= /X f(x)dx. (27)

Without loss of generality, we can say that I = 0 for simplicity. If not,
we can add a constant value to f(x). Let’s also define the bijective
antithetic mapping function T(x) such that

X={Tx)|x e X}, T(T(x)) =x (28)
and f(T(x))Jr(x) + f(x) = 0 where Jr(x) = ||dT(x)/dx||. Assume
that we sample primal sample x with pdf p. Then, we can calculate
antithetic pdf p7 for antithetic sample T(x) as follows:
p(x)
Jr(x)

pr(T(x)) = (29)
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With primal and antithetic sample of x and T (x) respectively, we
get following antithetic estimator:

—os(f® M)
=3[+ L) ©o
Substituting pr, we can rewrite the above as
=03 (L2 LT 0) o1

It is important to note that f(T(x))J7(x)+f(x) = 0, so the variance
of (I) is also close to zero.

4.1 MIS between Primal and Antithetic Samples

We can consider MIS between primal and antithetic samples. In
other words, primal sample x could be also sampled as an antithetic
sample of another primal sample. Because T(T(x)) = x, the primal
sample that makes x as an antithetic sample is T(x). To utilize MIS
between primal and antithetic samples, we have to calculate the
following MIS weight,

w(x) = plx)  _ p(x) _
PP pi) + £, (32)
p(x)
p(x) + Jr(x)p(T(x))’
p(x)
_ pr(T(x)) B Jr(x)
WT(T(X)) - p(T(x)) +pT(T(x)) - p(T(x)) + };((7;)) (33)
_ p(x)
p(x) + Jr(x)p(T(x))

Therefore, we can know that w(p(x)) = w(pr(T(x))). We only
show a balance-heuristic, but it also works for arbitrary powers.
Introducing MIS between primal and antithetic sampling replaces
the constant 0.5 in Eq. (31) to MIS weight. Remember that the term
f(T(x))Jr(x) + f(x) remains the same, so we can still enjoy the
advantage of using antithetic sampling.

4.2 MIS between Two Antithetic Strategies

Now let’s consider MIS between two antithetic mapping function
T, T>. Note that primal sample that makes T; (x) as antithetic sample
of T is T2 (T1(x)) (Fig. 10). Then, we need to calculate pr, (T1(x))
and pr, (T2(x)) to evaluate MIS weight between two strategies. This
could be calculated as follows:

- _ p(I2(Ti(x)))
p1,(T1(x)) = pr, (L(T2(Th(x)))) = T (B (x0) (34)
Using previously calculated pdf, we can evaluate MIS weight for
T
i (T () =~ PO (39)

1 (Ti (%) + pr, (Th ()

We can do a similar process to calculate wr, (T2 (x)). For simplicity,
let’s represent wr, (T1 (x)) = @ and w, (T2 (x)) = . Using these MIS



primal antithetic

0

T, (T1 (x))

T1(x)

T, (Tz (x)) T,(x)

\ )

Fig. 10. Relationship between primal and antithetic samples.

weights, we can express antithetic estimator as

_g S f(Ti(x) f(B(x))
=050 +°5(“pn(n<x» pn<n(x»)
) PTG () ﬂmmmuw
= O.SP(X) + 0.5 (0{ p(x) + ﬁ p(x) (36)
g oS e (TG () + B (), ()
' p(x)

Note that we knows f(T1(x))Jr, (x)+f (x) = 0and f(T2(x))J, (x)+
f(x) = 0. However, unless @ + = 1, it is not guaranteed that the
above Eq. (36) leverages the advantage of antithetic sampling. And
in the general case, we cannot say that a + § = 1.

Here is one simple counter example when x = (y, z):

f(y,z) = sin(y) sin(z),
Ti(y. 2) = (y,—2),
T2(y. 2) = (-y, 2),
T1(T2(y. 2)) = 2(T1(y, 2)) = (-y,—2).

Note that f(x)+ f(T(x)) Jr(x) is exactly zero and all of the Jacobian
terms become 1. Then,

p(T2(Ti(y, 2)))

p1,(T1(y,2)) = T (T (3.2) =p(-y,—2)
_ vz _
1 (Ti(y,2) = T (52) =p(y,2)
_ p(y.2)
p(=y,—2) +p(y,2)
and
_ r(L((y.2) _
pTl(TZ(y’Z))_J—Tl(Tl(Tz(y,z))) =p(-y,—2)
_ p(y2)
1, (T2(y,2)) = T2 =p(y,2)
?(y,2)

T

Unless p(—y, —z) = p(y, z), @ + f is not equal to one, which makes
antithetic sampling not efficient for variance reduction.
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