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Fig. 1. We propose a ray-tracing based Monte Carlo rendering framework for simulating optical heterodyne detection (OHD). (A) OHD is a technique that

measures the frequency modulation of light using optical interferometry. Through spectral analysis of the photon-induced current on the photodetector, we

can obtain useful information such as object velocity/distance or Doppler spectra. (B) Our MC simulation is based on the OHD path integral that resembles

radiometric path integral [Veach 1997], but is resolved by the path frequency which depends on the path length and velocity. (C) Using our simulator, one can

simulate various OHD scenarios, such as coherent lidar used in autonomous vehicles, non-invasive blood flow measurement, and atmospheric Doppler sensing.

Optical heterodyne detection (OHD) employs coherent light and optical

interference techniques (Fig. 1-(A)) to extract physical parameters, such as

velocity or distance, which are encoded in the frequency modulation of

the light. With its superior signal-to-noise ratio compared to incoherent

detection methods, such as time-of-flight lidar, OHD has become integral to

applications requiring high sensitivity, including autonomous navigation,

atmospheric sensing, and biomedical velocimetry. However, current sim-

ulation tools for OHD focus narrowly on specific applications, relying on

domain-specific settings like restricted reflection functions, scene configura-

tions, or single-bounce assumptions, which limit their applicability. In this

work, we introduce a flexible and general framework for spectral-domain

simulation of OHD. We demonstrate that classical radiometry-based path

integral formulation can be adapted and extended to simulate the OHD

measurements in the spectral domain. This enables us to leverage the rich

modeling and sampling capabilities of existing Monte Carlo path tracing

techniques. Our formulation shares structural similarities with transient

rendering but operates in the spectral domain and accounts for the Doppler

effect (Fig. 1-(B)). While simulators for the Doppler effect in incoherent

(intensity) detection methods exist, they are largely not suitable to simulate

OHD. We use a microsurface interpretation to show that these two Doppler

imaging techniques capture different physical quantities and thus need differ-

ent simulation frameworks.We validate the correctness and predictive power

of our simulation framework by qualitatively comparing the simulations
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with real-world captured data for three different OHD applications—FMCW

lidar, blood flow velocimetry, and wind Doppler lidar (Fig. 1-(C)).
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1 INTRODUCTION

Optical heterodyne detection (OHD) is a widely used interferometric

technique for measuring frequency and phase modulations in light.

OHD mixes a weak signal beam with a strong, coherent reference

beam, often referred to as the local oscillator [Cummins and Swinney

1970; DeLange 1968]. The interference between these two optical

fields generates a beat signal at a lower frequency, encoding how the

received signal is modulated relative to the reference signal. This

often includes useful information such as the velocity or distance

of various objects in the scene. This beat frequency, being within

the measurable range of electronic devices (few hundred MHz), al-

lows for precise detection of otherwise imperceptible optical signal

variations (few hundred THz). While both phase [Crouch and Ru-

pavatharam 2019] and frequency modulations can be employed for

OHD, we focus on frequency modulation due to its predominant

use in numerous applications [Piggott 2020].
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One of the most common causes of optical frequency modulation

is the Doppler effect arising frommoving objects or particles. OHD is

sensitive to these frequency shifts thatmanifest in awide range of ap-

plications, including velocity sensing in automobiles [Behroozpour

et al. 2017; Peng and Shan 2021], atmospheric profiling and tur-

bulence measurements [Chanin et al. 1989; Menzies and Hardesty

1989], and non-invasive biomedical Doppler techniques [Detre et al.

1992; Holloway Jr and Watkins 1977]. Frequency modulation can

also be induced by specially designed transmitters, e.g. those used in

frequency-modulated continuous-wave (FMCW) lidar. In this method,

the temporally varying frequency makes time-of-flight values corre-
spond to different frequencies, enabling not only velocity but also

distance measurement through spectral analysis of the received sig-

nal. In general, OHD is pivotal for high-resolution spectral interpre-

tation across various optical systems. While incoherent (intensity)

imaging techniques like amplitude-modulated continuous-wave

(AMCW) lidar can be used for similar purposes, the coherent detec-

tion offered by OHD provides substantial advantages such as high

signal-to-noise ratio or immunity to ambient light.

Despite the widespread adoption and growing interest in OHD,

a general-purpose simulation framework for OHD does not exist,

which is hindering the progress in these imaging techniques. We

build a generic and scalable Monte Carlo OHD simulator that is

applicable to various scenarios including FMCW lidar measuring

multi-bounced light from moving objects, blood flow velocimetry

to compute the speed of blood inside vasculature made of diverse

tissue layers, and wind Doppler lidar imaging complex atmospheric

layers. Our key contribution is to write the OHD measurements in

the spectral domain as a path integral (Eq. (26)), which allows us to

leverage rich modeling and sampling capabilities of existing Monte

Carlo path tracers.

This paper is structured into three main parts (Fig. 4): (1) (Sec. 4)

We derive the OHD path integral that describes the average behav-

ior (statistical mean) of power spectrum of OHD measurements. (2)

(Sec. 5) We develop two approaches to sample a power spectrum

from a single micro-surface realization, using speckle statistics. (3)

(Sec. 6)We use amicro-surface interpretation followingDolan [2009]

to show that OHD Doppler differs fundamentally from incoherent

(intensity) Doppler, necessitating OHD simulation to be distinct

from incoherent Doppler simulation [Kim et al. 2023]. Finally, We

validate the proposed technique on three real-world applications:

FMCW lidar, blood flow velocimetry, and wind Doppler lidar (Sec. 7-

Sec. 9). We expect that our simulator will assist researchers in vari-

ous fields who use OHD under different configurations. Our code

and data can be found in the following project page
1
.

2 RELATED WORKS

2.1 OHD Techniques

Heterodyning is a widely used technique in electrical signal process-

ing that mixes two signals at different frequencies 𝑓1, 𝑓2, creating a

new signal at a lower frequency 𝑓1 − 𝑓2, called the beat frequency.
However, due to the bandwidth limits of electronics, such heterodyn-

ing has been limited to radio frequencies (RF). Optical heterodyne

1
https://juhyeonkim95.github.io/project-pages/ohd_rendering

detection (OHD) [DeLange 1968], in principle, is the same as het-

erodyning in the RF domain, but the heterodyning is now achieved

by an optical interferometer (Fig. 1-(A)). The beat frequency arises

as an AC component of a photon-induced current on a square-law
intensity detector. Here, we show three specific use cases of OHD.

2.1.1 FMCW lidar. FMCW techniques were first introduced in the

radio-wave spectrum [Barrick 1973], but later applied to the lidar

field with the advent of broadband tunable lasers such as distributed

feedback laser [Passy et al. 1994] or vertical-cavity surface-emitting

laser [Jewell et al. 1991]. Since optical FMCW provides much higher

spatial resolution compared to RF, FMCW lidars are widely used for

microscale 3D detection [Hariyama et al. 2018; Iiyama et al. 2011;

Ula et al. 2019]. FMCW lidars also enable simultaneous distance

and velocity estimation, making them suitable for a variety of ap-

plications [Karlsson et al. 2000; Piracha et al. 2011]. There are also

other works that exploit FMCW lidars for 2D synthetic aperture

imaging [Beck et al. 2005], Doppler vibrometry [Zhang et al. 2019],

or autonomous driving [Li and Ibanez-Guzman 2020].

2.1.2 Non-invasive biomedical Doppler velocimetry. In the biomedi-

cal field, OHD is widely used to measure blood flow, commonly with

the name of laser Doppler flowmetry, or velocimetry (LDV) [Riva

et al. 1992; Shepherd and Öberg 2013]. LDV operates by directing a

coherent laser beam onto a biological tissue, where the light scat-

ters off of moving red blood cells, inducing a Doppler frequency

shift. LDV is particularly valuable in assessing microvascular blood

flow [Rendell et al. 1989] and detecting abnormalities in circula-

tion [Kruger et al. 2006], offering real-time blood flow measure-

ment [Bonner et al. 1981; Stern et al. 1977] which is critical for

diagnosing and monitoring conditions like diabetes [Hu et al. 2017]

or peripheral vascular diseases [Cochrane et al. 1986]. Here, we

simulate the real-data of laser Doppler holography [Puyo et al. 2021,

2019], a variation of LDV that measures full-field retinal blood flow.

2.1.3 Atmospheric sensing. OHD, or coherent Doppler wind lidar
(C-DWL) in this literature, plays a crucial role in atmospheric sens-

ing, particularly for measuring wind velocities, turbulence, and

aerosol dynamics [Chanin et al. 1989; Frehlich and Cornman 2002;

Werner 2005]. These methods rely on the principle of detecting

Doppler frequency shifts caused by the motion of air particles or

aerosols scattering a coherent laser beam. C-DWL’s high sensitivity

makes it invaluable for weather forecasting [Yuan et al. 2020], avia-

tion safety [Yuan et al. 2022], and cloud seeding [Yuan et al. 2021],

offering a versatile tool for studying complex meteorological phe-

nomena. C-DWL could be either continuous wave [Huffaker et al.

1970; Lawrence et al. 1972] or pulsed [Liu et al. 2019; Menzies and

Hardesty 1989]. We simulate the hardware results from Wei et al.

[2019], which uses a pulsed C-DWL for wind and rainfall detection.

2.2 OHD Simulation

Though various simulation works in different OHD applications

exist, they are highly specialized and typically tailored to specific do-

mains. Separate models have been developed for applications such

as blood flow velocimetry [Bonner and Nossal 1981; de Mul et al.

1995; Fredriksson et al. 2007; Jentink et al. 1990; Nilsson et al. 1992;

Stern 1985], atmospheric sensing [Banakh and Werner 2005; Szczap
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et al. 2021], and coherent lidar for autonomous vehicles [Hofrichter

et al. 2024; Rosenberger et al. 2020], yet these models rarely ex-

tend their applicability beyond the original contexts. Many of these

methods rely on domain-specific assumptions, such as restricting to

single-bounced rays or focusing exclusively on volume or surface

scattering. Furthermore, due to a lack of modeling capability, they

often employ oversimplified geometries (e.g., cylinder or plane to

model blood vessels) or limited reflection models (e.g., perfectly

diffuse reflection or Mie scattering). In contrast, our proposed al-

gorithm which is based on the path integral formulation [Veach

1997], can take advantage of existing radiometric Monte Carlo path

tracers, offering significant scalability across various scenarios.

2.3 Related Rendering Literature

2.3.1 Speckle Rendering. Since OHD uses coherent illumination, we

observe speckle when light is scattered by a rough surface. Although

most rendering models are designed for incoherent light sources

and thus ignore speckle effects, several works [Bar et al. 2019, 2020;

Steinberg and Yan 2022] render speckles arising from perfectly or

partially coherent light. One of the most relevant works to this

paper is Bar et al. [2019], who proposed a Monte Carlo rendering

framework for fully-developed speckles scattered by participating

media. Our work also shares the same philosophy—evaluation of

speckle statistics through macroscopic path-space formulation in-

stead of evaluating all of the microscopic configurations. However,

we render OHD measurements and not an intensity image like Bar

et al. [2019], which requires a different formulation. We also do not

explicitly model spatial speckle statistics (covariance), but introduce

a global attenuation term—heterodyne efficiency, to account for it.

2.3.2 Time-of-Flight and Doppler Rendering. Time-of-Flight (ToF)

rendering aims to synthesize physically accurate measurements

of ToF cameras, which basically belong to incoherent (intensity)

detection. These works have mostly concentrated on transient sim-

ulation [Jarabo et al. 2014; Liu et al. 2022; Marco et al. 2017] or time-

gated simulation [Liu et al. 2022; Pediredla et al. 2019]. Interestingly,

our frequency-resolved OHD path integral exhibits structural simi-

larity with their time-resolved path integral, with the difference that

we also consider the Doppler shift. Simulation of dynamic scenes

for ToF cameras has rarely been explored, with the exception of

Kim et al. [2023], who faithfully reproduced the Doppler effect of

heterodyne AMCW ToF cameras [Heide et al. 2015]. However, Kim

et al. [2023] lacks on a detailed explanation of underlying physics.

We perform a theoretical comparison of the Doppler effect in co-

herent (OHD) and incoherent (AMCW) detection, extending the

discussion of micro-surface models by Dolan [2009], and highlight

that we need a different strategy for each simulation.

3 BACKGROUND

In this section, we provide background knowledge necessary to

understand the contributions of this paper. Readers familiar with

OHD imaging may skip Sections 3.1 and 3.2, while those with a

background in wave-optics rendering may skip Sections 3.3 and 3.4.

3.1 Basics of Optical Heterodyne Detection

Let’s start with the incoherent detection (also called direct or intensity
detection) that measures the intensity of the signal. Assume we

have received signal with an optical field of 𝐸s (𝑡) = 𝐴s𝑒
𝑗𝜙s (𝑡 )

, with

amplitude 𝐴s and time-varying phase 𝜙s (𝑡). Then, the conventional
photodetector measures the photocurrent 𝑖 (𝑡) which is proportional

to the electromagnetic power 𝑃EM carried by the signal

𝑖 (𝑡) ∝ 𝑃EM (𝑡) = |𝐸s (𝑡) |2 = 𝐴2

s
, (1)

which only depends on the square of the signal amplitude.

In coherent detection or heterodyne detection (OHD), we use a

beam splitter (or fiber-optic splitter) to split the transmitted light

into the object and the reference mirror (Fig. 1-(A)). Therefore, not

only the signal from the object, but also the reference local oscillator

(LO) field 𝐸LO (𝑡) = 𝐴LO𝑒
𝑗𝜙LO (𝑡 )

(typically 𝐴LO ≫ 𝐴s), falls onto

photodetector, generating an optical interference. For simplicity, we

assume the phase of the LO field is equal to the phase of the trans-

mitted light. The square-law photodetector then measures the 𝑖 (𝑡)
which is from the coherent sum of the signal and the LO fields:

𝑖 (𝑡) = |𝐸LO (𝑡) + 𝐸s (𝑡) |2 = 𝐴2

LO
+𝐴2

s
+ 2ℜ𝔢

(
𝐸LO (𝑡)𝐸∗s (𝑡)

)
. (2)

We ignore the DC terms (𝐴2

LO
,𝐴2

s
) and the high-frequency (few hun-

dred THz) term, which is beyond the bandwidth of the electronics.

The simplified model for the heterodyne measurement is:

𝑖AC (𝑡) := 𝐴s𝐴LO cos(𝜙LO (𝑡) − 𝜙s (𝑡)). (3)

The frequency of this measurement is called the beat frequency, and
is typically obtained from Fast Fourier Transform (FFT) as illustrated

in Fig. 1-(A).

3.2 Velocity and Distance Detection from OHD

There are two types of light sources that are typically used for OHD.

3.2.1 Single-frequency Laser. For a single-frequency laser, the phase
terms are given by

𝜙LO (𝑡) = 2𝜋 𝑓0𝑡, 𝜙s (𝑡) = 2𝜋 (𝑓0 + Δ𝑓0) (𝑡 − 𝜏), (4)

where Δ𝑓0 = 𝑓02𝑣/𝑐 is Doppler frequency shift and 𝜏 = 2𝑑/𝑐 is

time-of-flight, which depends on the object velocity 𝑣 , distance 𝑑

and speed of the light 𝑐 . Then, we have

𝜙LO (𝑡) − 𝜙s (𝑡) = −2𝜋Δ𝑓0𝑡 +𝜓 (Δ𝑓0, 𝜏), (5)

where 𝜓 (Δ𝑓0, 𝜏) is phase offset. Therefore, performing FFT gives

Doppler frequency shift Δ𝑓0, which is proportional to 𝑣 .

3.2.2 Swept-Frequency Laser. A swept-frequency laser, which is

used for FMCW lidar, emits a linearly increasing frequency signal

also known as linear chirp (Fig. 2-(A)). It could be modeled as

𝜙LO (𝑡) = 2𝜋 𝑓0𝑡 +
𝜋𝐵𝑡2

𝑇
,

d

d𝑡
𝜙LO (𝑡) = 2𝜋

(
𝑓0 +

𝐵

𝑇
𝑡

)
, (6)

where 𝑓0 is the base frequency, 𝐵 is the chirp bandwidth and 𝑇 is

the sweep period. We can calculate 𝜙s and the phase difference as

𝜙s (𝑡) = 2𝜋 (𝑓0 + Δ𝑓0) (𝑡 − 𝜏) +
𝜋𝐵(𝑡 − 𝜏)2

𝑇
(7)

𝜙LO (𝑡) − 𝜙s (𝑡) = 2𝜋

(
𝐵𝜏

𝑇
− Δ𝑓0

)
𝑡 +𝜓 (Δ𝑓0, 𝜏), (8)
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Fig. 2. (A) Two types of laser, single- and swept-frequency, typically used for

OHD. We plot the amplitude over time for each laser. (B) Triangular chirp

is commonly used for swept-frequency laser in FMCW lidar to decompose

Doppler and ToF terms from the beat frequency.

where𝜓 is again the 𝑡 independent offset term. The beat frequency

𝑓p now comprises not only the Doppler term 𝑓𝐷 = Δ𝑓0 = 𝑓0
2𝑣
𝑐 , but

also the distance term 𝑓𝑅 = 2𝐵𝑑
𝑐𝑇

. A commonly employed technique

to decompose each term is using a triangular chirp with opposite

bandwidths (±𝐵) as depicted in Fig. 2-(B), resulting in:

𝑓p,inc = 𝑓𝑅 − 𝑓𝐷 , and 𝑓
p,dec = 𝑓𝑅 + 𝑓𝐷 . (9)

With these two measurements, we can compute 𝑓𝑅 and 𝑓𝐷 , which

are directly proportional to distance 𝑑 and velocity 𝑣 .

Problem of the Simple Model. The primary limitation of the model

used to interpret OHD detection here (Eq. (3)) is that it considers

only a single reflector (Fig. 3-(A)). In reality, the object surface is

rough compared to the wavelength of light, which is on the microm-

eter scale in the visible-infrared range, as illustrated in Fig. 3-(B). As

a result, the optical field from the rough surface must be modeled as

a composition of multiple reflectors with random phases. This ran-

domness introduces a speckle effect, causing the OHD measurement

𝑖AC (𝑡) to fluctuate across different micro-surface realizations (e.g.,

different areas of the samematerial). It also causes 𝑖AC (𝑡) to spatially
vary over the photodetector necessitating space-dependent model-

ing. Moreover, the presence of multiple bounces further complicates

the problem (Fig. 3-(C)). The multi-bounce effect is important when

simulating the Doppler effect in dense aerosols or blood cells. In

such cases, the beat frequency does not peak at a single value but

instead exhibits a broad spectrum.

(A) Single 
Reflector

(B) Multiple 
Reflectors

(C) Multiple Reflector 
+ Multiple Bounce

Fig. 3. (A) Single reflector model, (B) rough surface comprise of multiple

reflectors and (C) also multiple bounce contribution. Transparent lines

represent the wavefront (points with equal phase) of the propagating light.

While the most accurate way to handle these limitations would

be to model all microscopic geometries and evaluate 𝑖AC (𝑡) using
complex light transport, it is not practically feasible due to the

associated computational costs. Instead, to address this problem, (1)

we treat the optical field as a stochastic process and evaluate its

average property (or statistics) through (2) radiometric path tracing

which incorporates multi-bounce contributions.

3.3 Optical Field as a Stochastic Process and Speckle

The rough surface itself and eventually the resulting optical field

are often modeled as a stochastic process. A stochastic process is

a collection of random variables, typically indexed by time, that

describe the evolution of a system. While the exact optical field

could be determined if the configurations of all microscopic random

processes were known, in practice, the statistical properties of the

field are of greater interest than the precise value of any single

realization. To analyze these statistical properties, we utilize the

ensemble average, denoted as ⟨·⟩, which averages over all possible

realizations, or the ensemble. Here, we restrict our discussion to the

wide-sense stationary case, meaning their first- and second-order

statistical moments are time-invariant.

Most radiometric reflectionmodels (BRDFs) are based on ensemble-

averaged measurements [Nayar 1991; Stam 1999; Ticconi et al. 2011].

Therefore, these models are valid only for incoherent light sources

(the sun or an LED lamp), which naturally smooth out the stochastic

speckle effect. Nevertheless, explicit ensemble-averaging on reflec-

tion from coherent light sources (e.g., repeated measurement on

different regions of the same material) should still conform to the

BRDF, which can thus provide useful information on the average
behavior of the measurement.

3.4 Path Integral in Terms of Optical Field Decomposition

Although light inherently exhibits wave-like behavior, most simu-

lations adopt a ray-based approach. Each ray propagates indepen-

dently, with no interference between rays, and their intensities can

be linearly added. A sequence of ray segments forms a path x, and
by adding the contribution of all possible paths in the scene, we

arrive at the well-known path integral [Veach 1997]:

𝐼 =

∫
𝒫
𝑓 (x) d𝜇 (x), (10)

where 𝒫 is path space, the set of all possible paths in macroscopic

geometry, 𝐼 is the camerameasurement and 𝑓 (x) is the path through-
put determined by the BRDF, visibility, and geometry terms as well

as sensor importance function and emitted radiance.

This ray-based approach can also be interpreted through optical

field theory. The key idea is the decomposition of the optical field

into mutually incoherent components corresponding to different

paths, so that the intensity of each component can be incoherently

(i.e., linearly) summed. Formally, the decomposition of the optical

field can be expressed as: 𝐸s (𝑡) =
∫
𝒫 𝐸s (x, 𝑡) d𝜇 (x), where 𝐸s (x, 𝑡)

represents mutually incoherent fields associated with each path, sat-

isfying

〈
𝐸s (x, 𝑡)𝐸∗s (y, 𝑡 + 𝜏)

〉
= 𝛿 (x, y) for any 𝑡 and 𝜏 by definition.

Note that while each ray is infinitesimally narrow from a macro-

scopic perspective, it intersects with numerous random reflectors

from a microscopic perspective. Hence, the paths are stochastic in

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.
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Fig. 4. Overview of our proposed method. In Sec. 4, we show PSD (ensemble-averaged power spectrum) of OHD photocurrent 𝑆AC (𝜔 ) is equivalent to an
attenuated replica of optical PSD of the signal 𝑆𝑠 (𝜔 ) . We propose a Monte Carlo path tracing algorithm to evaluate 𝑆AC based on OHD path integral (Eq. (26)),

which shares structural similarity with and transient rendering [Jarabo et al. 2014]. In Sec. 5, we derive a single measurement with two methods (1) sample

𝑆AC (𝜔 ) with negative-exponential distribution or (2) sample optical field with random phase addition and performing FFT. Note that both Sec. 4 and Sec. 5

are based on macroscopic geometry. In Sec. 6, we perform the most thorough Doppler simulation with actual micro-surface realization. We also discuss the

difference between the Doppler effect in incoherent (intensity) detection and its simulation strategy.

nature. Also, the micro-reflectors that each path encounters are as-

sumed to be independent, whichmakes 𝐸s (x, 𝑡) mutually incoherent.

2
Under this mutual-incoherence assumption, we have:〈
|𝐸s (𝑡) |2

〉
=

〈����∫
𝒫
𝐸s (x, 𝑡) d𝜇 (x)

����2〉 =

∫
𝒫

〈
|𝐸s (x, 𝑡) |2

〉
d𝜇 (x) (11)

since all cross-terms vanish due to mutual incoherence. Further re-

moving the time-dependence with the stationary assumption gives:

⟨𝑃EM (𝑡)⟩ =
〈
|𝐸s (𝑡) |2

〉
=

∫
𝒫

〈
|𝐸s (x) |2

〉
d𝜇 (x) . (12)

Equation (12) aligns with the path integral in Eq. (10). As previ-

ously discussed in Sec. 3.3, 𝐼 in Eq. (10) is indeed an ensemble-

averaged measurement, where 𝑓 (x) is computed using reflection

models based on ensemble averaging. Importantly, 𝒫 is defined

based on macroscopic geometry, while all microscopic variations of

the surface are incorporated into the ensemble averaging within the

reflection model. The key takeaway here is the mutual incoherence,
which will also be used to derive the path integral for OHD.

4 SPECTRAL DOMAIN PATH INTEGRAL OF OPTICAL

HETERODYNE DETECTION

Here, we derive the spectral domain path integral that characterizes

the power spectral density (PSD) of the OHD photocurrent which

allows us to use existing ray-based techniques to simulate OHD.

The formulation derived here is an ensemble-averaged value and

the sampling of a single measurement will be addressed in Sec. 5.

4.1 OHD Modeling - Revisited

We now assume that 𝐸s is a stochastic process. Also we extend

Eq. (2) to account for non-zero surface area—𝑖 (𝑡) is now integration

2
To be precise, a ray should be considered as a beamwith an extent of lateral correlation

length of the surface to be mutually independent, but we assume it is infinitesimal in

macroscopic geometry, following the assumption of conventional path tracing.

of infinitesimal photocurrent at position ®r on the detector 𝒜
det

:

𝑖 (𝑡) =
∫
𝒜

det

|𝐸s (®r, 𝑡) + 𝐸LO (®r, 𝑡) |2 d®r. (13)

Expanding the integrand yields three terms. |𝐸LO (®r, 𝑡) |2 = 𝐴2

LO
is

still the DC component and hence, ignored. Although |𝐸s |2 is no
longer guaranteed to be a DC term, the LO field is typically much

stronger than the signal [Cummins and Swinney 1970; Goodman

2007] and hence, ignored as well. We have the remaining AC term:

𝑖AC (𝑡) :=
∫
𝒜

det

ℜ𝔢
(
𝐸s (®r, 𝑡)𝐸∗

LO
(®r, 𝑡)

)
d®r. (14)

Here, we assume 𝐸s is stationary (further explained in Sec. 5), which

makes 𝑖AC stationary.

4.2 Spectral Evaluation of Optical Heterodyne Detection

We aim to simulate the spectral distribution of the photocurrent

as the downstream algorithms for computing physical parameters

(distance, velocity) use spectral information rather than raw 𝑖AC.

Mathematically, the goal is to evaluate the power spectral density
(PSD) of 𝑖AC (𝑡), denoted as 𝑆AC (𝜔), which is defined as:

𝑆AC (𝜔) := lim

𝑇→∞
1

𝑇

〈
|ℱ (𝑖AC (𝑡)𝑤𝑇 (𝑡)) |2

〉
. (15)

Here,𝑤𝑇 (𝑡) is a window function of width 𝑇 , introduced to ensure

convergence of the Fourier transform. For stationary processes,

the PSD and the autocorrelation are related as a Fourier transform

pair according toWiener-Khinchin theorem, so we have 𝑆AC (𝜔) =
ℱ (𝐶AC (𝜏)), where 𝐶AC (𝜏) =

〈
𝑖AC (𝑡)𝑖∗

AC
(𝑡 + 𝜏)

〉
is autocorrelation.

We begin by evaluating 𝑖AC (𝑡)𝑖∗
AC

(𝑡 + 𝜏) which is given by∫
𝒜2

det

𝐸s (®r1, 𝑡)𝐸∗
LO

(®r1, 𝑡)𝐸∗s (®r2, 𝑡 +𝜏)𝐸LO (®r2, 𝑡 +𝜏) d®r1 d®r2 + c.c (16)

where c.c. represents the complex conjugate and can be computed

from the first term. So, we will omit it for notational simplicity.
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Using themutual coherence function (MCF), defined as Γ(®r1, ®r2, 𝜏) :=
⟨𝐸 (®r1, 𝑡)𝐸∗ (®r2, 𝑡 + 𝜏)⟩ and taking the ensemble average leads to

𝐶AC (𝜏) =
∫
𝒜2

det

Γs (®r1, ®r2, 𝜏)Γ∗
LO

(®r1, ®r2, 𝜏) d®r1 d®r2 . (17)

Assuming the optical PSD is approximately constant across the

detector (this does not mean phase is constant), we have

𝐶AC (𝜏) ≈ 𝜂h
(∫

𝒜
det

Γs (®r, ®r, 𝜏) d®r
) (∫

𝒜
det

Γ∗
LO

(®r, ®r, 𝜏) d®r
)
. (18)

Here, 𝜂
h
is heterodyne efficiency, a constant that shows how well the

signal and LO match (or coherent), which is known to be inverse-

proportional to the number of speckles on the photodetector [Cum-

mins and Swinney 1970; Goodman 2007]. As OHD applications use

a spectral distribution and the absolute scale is not that important,

we do not explicitly compute 𝜂
h
. Please refer to the supplementary

material for details of 𝜂
h
and also a proof of Eq. (18).

Taking the Fourier transform and using definition of optical PSD

𝑆 (®r, 𝜔) = ℱ (⟨𝐸 (®r, 𝑡)𝐸∗ (®r, 𝑡 + 𝜏)⟩) = ℱ (Γ(®r, ®r, 𝜏)) yields the impor-

tant conclusion:

𝑆AC (𝜔) = 𝜂h𝒜2

det
𝑆s (𝜔) ∗ 𝑆∗

LO
(−𝜔), (19)

where 𝑆LO (𝜔) and 𝑆s (𝜔) represent the optical PSD of the LO and

the signal, which are assumed to be constant over𝒜
det

. Note that if

the LO field has a delta-peaked spectrum at 𝜔0, 𝑆AC just becomes a

frequency-shifted version of the signal’s optical PSD.

4.3 Spectral Domain Path Integral Derivation

Now we derive the path integral formulation for Eq. (19). Before en-

tering into the calculation, we first explicitly define a time-evolving

path x in macroscopic geometry, composed of the vertex x𝑘 , 𝑘 ∈
[0, 𝐾] as illustrated in Fig. 5-(A). x0 is a vertex at the light source
while x𝐾 is a vertex at the detector. Each path vertex is a func-

tion of time x(𝑡), but we omit time dependence. We denote with

v𝑘 = d

d𝑡
x𝑘 (𝑡) the instantaneous velocity at x𝑘 . As mentioned in

Sec. 3.4, each scattering point includes numerous independent ran-

dom micro-reflectors. We further assume that these micro-reflectors

are attached to the vertex so that the composition of micro-reflectors

at each vertex does not change over time. The rationale for this as-

sumption will be further explained in Sec. 6.

We now evaluate each term in Eq. (18). For LO term, we have∫
𝒜

det

ΓLO (®r, ®r, 𝜏) d®r = 𝑃LO𝑒 𝑗 (𝜙LO (𝑡 )−𝜙LO (𝑡+𝜏 ) ) where 𝑃LO = 𝒜
det
𝐴2

LO
.

For the signal term, we decompose the optical field into mutually

incoherent components from different paths, similar to Eq. (11),∫
𝒜

det

Γs (®r, ®r, 𝜏) d®r =
∫
𝒜

det

〈
𝐸s (®r, 𝑡)𝐸∗s (®r, 𝑡 + 𝜏)

〉
d®r (20)

=

∫
𝒜

det

∫
𝒫 (®r)

〈
𝐸𝑠,x (®r, 𝑡)𝐸∗𝑠,x (®r, 𝑡 + 𝜏)

〉
d𝜇 (x) d®r (21)

=

∫
𝒫

〈
𝐸s (x, 𝑡)𝐸∗s (x, 𝑡 + 𝜏)

〉
d𝜇 (x) (22)

=

∫
𝒫

〈
|𝐸s (x) |2

〉
𝑒 𝑗 (𝜙x (𝑡 )−𝜙x (𝑡+𝜏 ) ) d𝜇 (x), (23)

where 𝒫 (®r) is the path space that includes ®r as end point and we

merged integration domain from Eq. (21) to Eq. (22). 𝜙x (𝑡) is the

phase of the path x, which is determined by macroscopic geome-

try and hence can be factored out of the ensemble average. The

remaining phasor term 𝐸s (x) which is related to the microscopic

random perturbation at each scattering point, is time-invariant as

we assumed x(𝑡) and x(𝑡 + 𝜏) are composed of the same pool of

micro-reflectors. One can also understand this as assuming a perfect

temporal coherence of 𝐸s (x, 𝑡).
We can now calculate the final phase difference term. For a single-

frequency laser, we have:

{𝜙x (𝑡) − 𝜙x (𝑡 + 𝜏)} − {𝜙LO (𝑡) − 𝜙LO (𝑡 + 𝜏)}
= 2𝜋 (𝑓0 + Δ𝑓0 (x)) {(𝑡 − ∥x∥) − (𝑡 − ∥x∥ + 𝜏)} − 2𝜋 𝑓0 {𝑡 − (𝑡 + 𝜏)}
= −2𝜋Δ𝑓0 (x)𝜏 . (24)

where ∥x∥ is ToF and Δ𝑓0 (x) is Doppler frequency shift from the

path x. For a swept-frequency laser, 𝐸s is not stationary so we need

generalized MCF and repeat the derivation, but eventually, we get

2𝜋

(
𝐵
𝑇
∥x∥ − Δ𝑓0 (x)

)
𝜏 , whichmakes 𝑖AC (𝑡) stationary. Interestingly,

the if and only if the condition thatmakes 𝑖AC (𝑡) stationary is𝜙LO (𝑡)
to be linear (single-frequency laser) or quadratic (linear-chirp laser).

We include the proof in the supplementary material. Note that, in

all these cases, the phase difference term can be written as 𝜔 (x)𝜏 ,
where 𝜔 (x) is the frequency shift due to both path length and path

velocity. Substituting 𝜔 (x)𝜏 in Eq. (18), we obtain:

𝐶AC (𝜏) = 𝜂h𝑃LO
∫
𝒫

〈
|𝐸s (x) |2

〉
𝑒 𝑗𝜔 (x)𝜏

d𝜇 (x) . (25)

Taking the Fourier transform and replacing the ensemble-averaged

field intensity with the radiometric path throughput, we arrive at:

𝑆AC (𝜔) = 𝜂h𝑃LO
∫
𝒫
𝑓 (x)𝛿 (𝜔 − 𝜔 (x)) d𝜇 (x) . (26)

which we refer to as the OHD path integral. This result demonstrates

that conventional radiometric path tracing can be employed to

simulate the average spectral distribution of OHD photocurrent!

Similarity with Transient Rendering. OHD path integral exhibits

structural equivalence to the transient path integral [Jarabo et al.

2014; Pediredla et al. 2019] which is given by:

𝐼 (𝑡) =
∫
𝒫
𝑓 (x)𝛿 (𝑡 − ∥x∥) d𝜇 (x) . (27)

In transient rendering, each path contributes to a corresponding

time bin based on its path length. In OHD, each path contributes to

a corresponding frequency bin based on the frequency modulation

of the path, which depends on the path length and velocity.

Finite Measurement Time. In practice, we can only measure a

finite length of 𝑖AC, resulting in a convolved spectrum with the

window function:

𝑆AC,𝑇 (𝜔) = 𝑆AC (𝜔) ∗ |𝑊𝑇 (𝜔) |2 , (28)

where𝑊𝑇 (𝜔) is the Fourier transform of𝑤𝑇 (𝑡).
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Fig. 5. (A) Time-evolving path consisting of 𝐾 + 1 vertices and their instan-

taneous velocities. Each vertex contains several micro-reflectors which we

assume are not changing significantly with time. (B) By calculating the dis-

tance change after infinitesimal time Δ𝑡 , we derive path velocity in Eq. (32).

Sign Sensitiveness. Reviving the c.c term thatwe omitted in Eq. (16)

modifies Eq. (26) into

𝜂
h
𝑃LO

∫
𝒫
𝑓 (x) (𝛿 (𝜔 − 𝜔 (x)) + 𝛿 (𝜔 + 𝜔 (x))) d𝜇 (x), (29)

which indicates it is not possible to distinguish the sign of the

frequency shift. However, such ambiguity can be easily resolved

using a quadrature demodulator (90-degree phase shift of LO field),

so we will keep using the sign-sensitive formulation of Eq. (26).

4.4 Frequency Contribution from Each Path

In this part, we derive the exact representation of 𝜔 (x) from the

path. Consider a time-evolving path in Fig. 5-(A) as explained before.

We also define the unit ray direction vector
ˆd𝑘 =

x𝑘+1−x𝑘
∥x𝑘+1−x𝑘 ∥ and 𝜂𝑘

as the refractive index for the path segment x𝑘x𝑘+1. We use 𝑓𝑘 to

represent the observed frequency at x𝑘 . Then, for the path segment

x𝑘x𝑘+1, we can calculate the Doppler frequency shift as follows

from well-known Doppler formula [Drain 1980]:

𝑓𝑘+1 = 𝑓𝑘

(
𝑐/𝜂𝑘 − v𝑘+1 · ˆd𝑘
𝑐/𝜂𝑘 − v𝑘 · ˆd𝑘

)
≈ 𝑓𝑘

(
1 + 𝜂𝑘 (v𝑘 − v𝑘+1) · ˆd𝑘

𝑐

)
, (30)

as ∥v𝑘 ∥ ≪ 𝑐 . We can then calculate the final observed frequency as

𝑓𝐾 = 𝑓0

𝐾−1∏
𝑘=0

𝑓𝑘+1
𝑓𝑘

≈ 𝑓0

(
1 +

𝐾−1∑︁
𝑘=0

𝜂𝑘 (v𝑘 − v𝑘+1) · ˆd𝑘
𝑐

)
. (31)

We define the (optical) path velocity 𝑢 (x) as

𝑢 (x) =
𝐾−1∑︁
𝑘=0

𝜂𝑘 (v𝑘 − v𝑘+1) · ˆd𝑘 , (32)

which gives path Doppler shift Δ𝑓 (x) ≔ 𝑓𝐾 − 𝑓0 = 𝑓0𝑢 (x)/𝑐 . For cor-
respondence in notation, instead of ToF ∥x∥, let’s also define (optical)
path length as 𝑙 (x) = ∑𝐾−1

𝑘=0
𝜂𝑘 ∥x𝑘+1 − x𝑘 ∥. The path length and ve-

locity are two components that determine frequency in general

OHD simulation. Interestingly, they are in a derivative relationship

𝑢 (x) = − d

d𝑡
𝑙 (x) which is intuitively understandable as the Doppler

effect arises due to phase change, which is equivalent to path length

change as illustrated in Fig. 5-(B). Using optical path velocity and

path length, we can rewrite 𝜔 (x) in Eq. (26) as

𝜔 (x) = 2𝜋

(
𝐵

𝑇

𝑙 (x)
𝑐

− 𝑓0
𝑢 (x)
𝑐

)
. (33)

5 SINGLE MEASUREMENT SAMPLING FROM SPECKLE

STATISTICS

While the previous section provides an ensemble-averaged power

spectrum 𝑆AC, it can be different from a single measurement power

spectrum 𝑃AC. In this section, we first review the speckle statistics

from Goodman [2007], and propose two approaches to sample a

single measurement for OHD: (1) sampling from the PSD in Eq. (26)

using a negative-exponential distribution, and (2) sampling 𝑖AC (𝑡)
by incorporating random phase noise, and performing FFT.

5.1 Basics of Speckle Statistics and Extension to Path

We can represent 𝐸s as the sum of 𝑁 (𝑡) independent microscopic

elementary phasor components:

𝐸s (𝑡) =
1√︁
𝑁 (𝑡)

𝑁 (𝑡 )∑︁
𝑛=1

𝐴𝑛 (𝑡)𝑒 𝑗𝜙𝑛 (𝑡 ) , (34)

where 𝐴𝑛 (𝑡) is amplitude and 𝜙𝑛 (𝑡) is phase of 𝑛-th element. The

normalization factor 1/
√︁
𝑁 (𝑡) is included to ensure energy preser-

vation. The above equation also holds given a macroscopic path x.
Assuming that all the micro-reflectors the path encounters (Fig. 5-

(A)) are not changing significantly over time, we can factor out

macroscopic phase 𝜙x (𝑡) and compute 𝐸𝑠 for the path as:

𝐸s (x, 𝑡) = 𝑒 𝑗𝜙x (𝑡 )
1

√
𝑁

𝑁∑︁
𝑛=1

𝐴𝑛𝑒
𝑗Δ𝜙𝑛 = 𝑒 𝑗𝜙x (𝑡 )𝐸s (x), (35)

where Δ𝜙𝑛 is time-independent phase perturbation with regard to

macroscopic properties and 𝐸s (x) is random phasor sum [Goodman

2007]. The phase Δ𝜙𝑛 is often assumed to be uniformly distributed in

the interval (−𝜋, 𝜋]. This assumption holds when the surface is suf-

ficiently rough compared to the wavelength of the light. Given the

wavelengths of interest (∼1 µm), it is satisfied for most man-made

and natural surfaces [Goodman 2007; Steinberg and Yan 2022]. From

the central limit theorem, the distribution of 𝐸s (x) converges to the
circular complex Gaussian 𝒞𝒩 (0, 𝜎2) with uniformly distributed

phase and Rayleigh-distributed amplitudes. Importantly, the inten-

sity 𝐼 = |𝐸s (x) |2 follows a negative-exponential distribution:

pdf(𝐼 ) = 1

⟨𝐼 ⟩ exp
(
− 𝐼

⟨𝐼 ⟩

)
. (36)

where ⟨𝐼 ⟩ = 2𝜎2 is the mean intensity. Speckles whose intensities

follow this PDF are called fully developed speckles, and we only con-

sider such speckles here. Note that ⟨𝐸s (x, 𝑡)⟩ = 0 and as we assume

the micro-reflectors do not change over time, its autocorrelation

only depends on the time difference, which makes it stationary.

We also discuss the statistics of the sum of 𝑀 independent fully

developed speckles (e.g. different speckle grains belonging to the

same pixel), which can arise as a phasor sum or an intensity sum.

In phasor sum (coherent sum), the addition of𝑀 different speckle

patterns is equivalent to a single speckle pattern with a total number

of component phasors 𝑁𝑠 = 𝑁1 + 𝑁2 + ... + 𝑁𝑀 . Therefore, the

statistical properties of the speckle do not change. On the other hand,
for intensity sum (incoherent sum), as 𝑀 increases, the probability

density function transitions from a negative exponential distribution

(𝑀 = 1) to a sharp Gaussian as𝑀 → ∞.
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5.2 OHD Speckle from PSD Sampling

For incoherent (intensity) detection, the intensity of the field is inte-

grated over each point on the photodetector region. Therefore, as

the photodetector measurement includes more independent compo-

nents (e.g., 𝒜
det

covers more speckle grains), we get less noise in

the measurement. For coherent heterodyne detection, we have:

𝑖AC (𝑡) =
∫
𝒜

det

ℜ𝔢
(
𝐸s (®r, 𝑡)𝐸∗

LO
(®r, 𝑡)

)
d®r. (37)

Only considering a specific frequency component 𝜔 , we have:

𝑖AC (𝜔, 𝑡) = 𝐴LO |𝐵 | cos(𝜔𝑡 + 𝜃𝐵), (38)

where 𝐵 =
∫
𝒜

det

𝐸s (®r) d®r = |𝐵 |𝑒 𝑗𝜃𝐵 or using path-domain formu-

lation 𝐵 =
∫
𝒫 𝐸s (x) d𝜇 (x). Thus, 𝑖AC is a phasor sum, and speckle

statistics do not change due to integration over 𝒜
det

or 𝒫—its in-

tensity follows a negative exponential distribution regardless of the
number of speckles on 𝒜

det
[Goodman 2007], or more generally,

independent path components. Therefore, all we need to do to get

𝑃AC is a sampling from 𝑆AC = ⟨𝑃AC⟩ according to the negative expo-
nential distribution at each frequency bin (Algorithm 1). We assume

that speckles contributing to each frequency bin are uncorrelated so

that the power distribution at each frequency bin is independent.

Real Data Validation. We present real data from an FMCW li-

dar measurement to support our argument. Fig. 6-(A) shows the

FFT result of an FMCW lidar measurement on a specular material,

revealing two distinct peaks within 80 FFT bins. We show the aver-

age power spectrum for 100 measurements as the red line and two

single measurements as transparent lines. Fig. 6-(C) shows the inten-

sity across different measurements for a specific frequency, while

Fig. 6-(D) shows the histogram of Fig. 6-(C) data. The orange line

in Fig. 6-(D) is the regression fit which qualitatively and quantita-

tively (chi-square and Kolmogorov–Smirnov tests) aligns well with

the histogram data demonstrating that a single measurement fre-

quency follows a negative exponential distribution. Apart from our

empirical observations, Baumann et al. [2014]; Dabas et al. [1994];

Flamant et al. [1984]; Hardesty et al. [1981] also reported that OHD

measurements follow a negative exponential distribution, though

they did not observe that each spectral channel is also statistically

independent. Fig. 6-(B) illustrates the covariance map of the power

spectrum over frequencies. We calculate the covariance based on

the normalized power spectrum (i.e. normalize the power spectrum

with a shape of [100, 80] over the first axis). Overall, it showed a

diagonal shape especially showing no correlation between the two

peaks.
3
However, there are "+" shaped artifacts at each peak, which

are due to spectral leakage inherent to FFT—because of discretiza-
tion, frequency components not only contribute to a single bin but

also to the nearby bins [Lyons 2011]. If a bin has a signal that is

strong enough to dominate the spectral leakage from the nearby

bin, it remains uncorrelated (dark part of +), otherwise we can see

some correlation (bright part of +). Sampling PSD is not capable of

reproducing such spectral leakage as each frequency bin is treated

independently, but one can use direct evaluation in the next section.

3
In fact, the bins other than the peaks are from shot noise of LO field, which have same

statistics with the signal. Please see the supplementary for details.
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Fig. 6. (A) FFT result for 100 different measurements using FMCW lidar.

We plot the averaged spectrum with red lines while transparent lines rep-

resent two different single measurements. (B) Covariance map that shows

independence between different frequencies. We can observe the “+" shape
near the peak due to spectral leakage. (C) The power measurements at the

second peak and (D) the histogram of the measurements and curve-fitted

negative-exponential plot. We also denote chi-square and KS statistics.

5.3 OHD Speckle from Field Sampling

One way to directly evaluate 𝐸s, 𝑖AC, and eventually 𝑃AC is by con-

sidering all of the microscopic geometries, which would be most

accurate, but computationally expensive. Instead, here we mimic

the speckle effect keeping the path-tracing formulation with macro-

scopic geometry. Since 𝐸s (𝑡) =
∫
𝒫 𝐸s (x, 𝑡) d𝜇 (x) and 𝐸s (x) is a

circular complex Gaussian, we can sample 𝐸s (𝑡) with 𝑁 paths:

𝐸s (𝑡) =
1

√
𝑁

𝑁∑︁
𝑛=1

𝑍𝑛𝑒
𝑗𝜙x𝑛 (𝑡 ) , (39)

where 𝑍𝑛 is a random variable that follows 𝑍𝑛 ∼ 𝒞𝒩
(
0,

𝑓 (x𝑛 )
2𝑝 (x𝑛 )

)
.

The path throughput is 𝑓 (x𝑛) and 𝑝 (x𝑛) is the sampling pdf. Also,

𝑍𝑛s are sampled independently to make all paths mutually inco-

herent. Compared to expensive evaluation from explicit micro-

reflectors in Eq. (34), we now reproduce stochastic optical field

𝐸s (𝑡) using path space in Eq. (39). Note that evaluating the ensem-

ble average of the square of Eq. (39) matches with Monte Carlo

evaluation on intensity 𝐼 which is given by

𝐼 =
〈
|𝐸s (𝑡) |2

〉
=

1

𝑁

𝑁∑︁
𝑛=1

〈
|𝑍𝑛 |2

〉
=

1

𝑁

𝑁∑︁
𝑛=1

𝑓 (x𝑛)
𝑝 (x𝑛)

. (40)

Interestingly, instead of sampling the amplitude term (𝑍𝑛), we can

use the fact that when we add circular Gaussian variables, from

the central limit theorem, their statistics converge to the sum of

constant amplitude with uniform random phase random variables.

Thus, we can skip sampling 𝑍𝑛 and simplify the sampling as

𝐸s (𝑡) =
1

√
𝑁

𝑁∑︁
𝑛=1

√︄
𝑓 (x𝑛)
𝑝 (x𝑛)

𝑒
𝑗

(
𝜙x𝑛 (𝑡 )+𝜓 rand

𝑛

)
, (41)
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where𝜓 rand

𝑛 ∈ (−𝜋, 𝜋] is uniformly random phase noise term. We

can also sample 𝑖AC accordingly:

𝑖AC (𝑡) =
1

√
𝑁

𝑁∑︁
𝑛=1

√︄
𝑓 (x𝑛)
𝑝 (x𝑛)

𝑒
𝑗

(
𝜔 (x𝑛 )𝑡+𝜓 rand

𝑛

)
, (42)

and 𝑃AC could be evaluated from FFT of 𝑖AC (Algorithm 2). This

approach is in fact equivalent to the Fourier tracing with random

phase addition proposed by Hofrichter et al. [2024]. However, we

provide a more principled explanation grounded in speckle statistics.

PSD Sampling (Algorithm 1) vs Field Sampling (Algorithm 2). The
key shortcoming of field sampling is that it is difficult to know the

average distribution - we need a lot of samples to get 𝑆AC, which

PSD sampling already offers. Fig. 7-(A) shows simulation using field

sampling under GT PSD (gray line) of two peaks with different

widths, and baseline noise. Blue and orange transparent lines repre-

sent two different single measurements and the red line represents

an averaged power spectrum over 1000 realizations. The green dot-

ted line shows ground truth PSD with convolution as Eq. (28). We

could observe that repeated direct evaluation converges to GT PSD,

but it took a lot of repeats to converge. We also plot distribution

at the peak, which follows negative-exponential distribution as ex-

pected. In terms of FFT accuracy, PSD sampling cannot reproduce

spectral leakage and the resulting correlation. Field sampling, on

the other hand, captures this effect by directly computing 𝑖AC and

performing the FFT, which is illustrated in Fig. 7-(B), similar to that

of Fig. 6-(B). If the spectrum is broad, it is hard to detect spectral

leakage because each independent peak cancels out the correlation

of others. Users may select between each algorithm based on needs.

(A
) P

SD
(B

) C
ov

 M
ap

Averaged
GT

PSD
(w/ conv) Distrib 

at peak

GT PSDMeasurement #1
Measurement #2

0

1

Fig. 7. (A) Simulation result for two-peak scenario as Fig. 6, but with different

peak widths. The blue and orange lines are two different direct evaluation re-

sults and the red line is averaged over 1000 measurements, which converges

to GT PSD with convolution (dotted green line). We also plot distribution

at the peak which follows a negative exponential. (B) As width becomes

smaller, we can clearly observe + shaped correlation due to spectral leakage

as Fig. 6.

6 COMPARISON OF DOPPLER EFFECT OF COHERENT

VS INCOHERENT DETECTION

In this section, we compare the Doppler effect in coherent detec-

tion (OHD) and incoherent detection methods such as AMCW lidar.

Algorithm 1 OHD Speckle with PSD Sampling

result_avg = 0

for iteration = 1 : 𝑁 do
Sample path x and evaluate 𝑓 (x), 𝑝 (x)
𝜔 (x) = CalculateFreq(𝑙 (x), 𝑢 (x))
bin_index = FreqToBinIdx(𝜔 (x))
result_avg[bin_index] +=

1

𝑁

𝑓 (x)
𝑝 (x)

result_single = SampleNegativeExponential(result_avg)

return result_avg, result_single

Algorithm 2 OHD Speckle with Field Sampling

𝑖AC = 0

for iteration = 1 : 𝑁 do
Sample path x and evaluate 𝑓 (x), 𝑝 (x)
𝜔 (x) = CalculateFreq(𝑙 (x), 𝑢 (x))
Sample𝜓 rand ∼ Uniform[0, 2𝜋]

for time_index = 1 : 𝑁𝑇 do
𝑡 = GetTime(time_index)

𝑖AC[time_index] +=
1√
𝑁

√︂
𝑓 (x)
𝑝 (x) exp 𝑗

(
𝜔 (x)𝑡 +𝜓 rand

)
result_single = |FFT(𝑖AC)|2
return result_single

While the fundamental nature of the Doppler effect remains the

same for both types of measurements—where phase changes across

time result in frequency shifts—the significant difference in oper-

ating wavelengths leads to distinct Doppler frequency shifts. This

disparity necessitates different simulation strategies to accurately

model each phenomenon. Our discussion complements the AMCW

Doppler simulation detailed in Kim et al. [2023], offering a more

comprehensive theoretical understanding of Doppler simulation.

6.1 Nature of the Doppler Effect

The Doppler effect fundamentally arises from phase changes due to

geometric displacement. Consider a single reflector with a phase of

Φ, measured relatively from the observer. If the object is located at a

distance 𝑑 , the phase is given by Φ = 2𝑑
𝜆

where 𝜆 is the wavelength

of the signal, which could be both optical field (OHD, µm scale) or

from intensity modulation (AMCW, m scale). If the object moves

away from the camera with velocity 𝑣 , Φ increases at a rate of
2𝑣
𝜆
,

leading to linear growth in the observed frequency. This rate is

referred to as the Doppler frequency shift. It is important to note

that the measurement is not the direct Φ, but rather exp 𝑗Φ. This
sinusoidal waveform can be implemented either via optical fields

(OHD) or intensity modulation (AMCW). In both cases, heterodyn-

ing is applied through an optical interferometer or electronic mixing.

However, we are more interested in typical rough surfaces that are

composed of numerous random micro-reflectors. In the following

subsections, we analyze the Doppler effect originating from a rough

surface. Our discussion is similar to that of Dolan [2009], but we

consider a more general case of continuous height map instead of

stair-step geometry assumed in their work.
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Fig. 8. Light scattering on a rough surface. (A) Assume incident and outgoing

wavefront with wavevector of ki and ks. Then, the wave scattered at r =

x +ℎ (x)n has phase variation compared to the origin point o. This could be

geometrically calculated from the distance difference between two different

light paths. (B) The surface moves with velocity v composed of normal

component vN = 𝑣Nn and transverse component vT. At the time 𝑡 , the ray

hit point changes from x to z which has a different local coordinate with y.

6.2 Phase Variation on Rough Surface

First, consider a wavefront incident on a static rough surface (Fig. 8-

(A)). The incident wavevector is denoted as ki = 2𝜋𝜆−1âi where âi is
the unit vector along the incident direction. Similarly, the scattered

wavevector along a specific direction is denoted as ks. Each point

x ∈ 𝒮 on the certain region of macro-surface 𝒮 generates a phase

variation due to differences in the geometric path length traveled by

the wavefront. For a specific rough surface realizationℎ(x) : 𝒮 → R,
the relative optical path length difference ΔΦ(x, ki, ks) between the

scattering point r = x + ℎ(x)n and the origin point o is given by:

ΔΦ(x, ki, ks) = oa − rb = ℎ(x)
(
km · n

)
+

(
km · x

)
. (43)

For a simpler notation, we use wavevector difference km = ks − ki

and omit o, assuming that x is defined relative to o.
The observed field𝑈 at the far-field is then the superposition of

the phasors corresponding to each phase variation
4
:

𝑈 (ki, ks) =
∫
𝒮
exp

[
𝑗ΔΦ(x, ki, ks)

]
dx, (44)

where we assume amplitude at each point is constant over 𝒮 . Indeed,
the above equation is a continuous version of the discrete phasor

sum in the previous section (Eq. (34)). Evaluating the ensemble-

averaged field intensity over the statistical surface yields the BRDF,
which has been extensively studied using various models [Nayar

1991; Ticconi et al. 2011; Yan et al. 2018]. Instead, we are particularly

interested in how the power distribution changes in the spectral

domain when the surface undergoes motion over time.

4
We use𝑈 instead of 𝐸 to cover both coherent (field) and incoherent (intensity) cases.

6.3 Doppler Frequency Shift of Coherent Detection

Now, let’s consider the case that the surface moves over time (Fig. 8-

(B)) with macroscopic velocity v, which has a normal component

vN = 𝑣Nn and a transverse component vT. Similar to Eq. (44), we

can evaluate 𝑈 at time 𝑡 as:

𝑈 (𝑡) =
∫
𝒮𝑡

exp

[
𝑗
(
ℎ(x)

(
km · n

)
+ km · (𝑀𝑡x)

) ]
dx, (45)

where 𝒮𝑡 is a set of local coordinates that is illuminated at 𝑡 and

𝑀𝑡x = x+v𝑡 , which is y in Fig. 8-(B). We omitted ki, ks for simplicity.

If transverse velocity only exists, we have 𝒮𝑡 = 𝒮 − vT𝑡 , where
𝒮 = 𝒮𝑡=0. However, if incident angle 𝜃𝑖 is not zero, normal velocity

also affects the local coordinate change. We can calculate this local

coordinate change rate u1 = vT − âi
T
𝑣N tan𝜃i. Since 𝒮𝑡 = 𝒮 + u1𝑡

and𝑀𝑡x = x + v𝑡 , we can rewrite Eq. (45) on integration domain 𝒮
as :

𝑈 (𝑡) =
∫
𝒮
exp

[
𝑗
(
ℎ(x + u1𝑡)

(
km · n

)
+ km · (x + v𝑡 + u1𝑡)

) ]
dx.

(46)

To make the notation simpler, we also define u2 = v + u1. In fact,

this is the instantaneous velocity of the intersection point on the

macroscopic geometry along the ray, or spot, z = x+u2𝑡 which can be
calculated as −𝑣N/cos𝜃iâi = vN − âi

T
𝑣N tan𝜃i. Using u1, u2, we can

evaluate PSD of𝑈 (𝑡) from its ensemble-averaged autocorrelation

⟨𝑈 (𝑡)𝑈 ∗ (𝑡 + 𝜏)⟩ or just 𝐶𝑈 (𝜏) with stationary assumption:

𝐶𝑈 (𝜏) =
∫
𝒮

∫
𝒮

〈
exp

[
𝑗 (ℎ(x1) − ℎ(x2 + u1𝜏))

(
km · n

) ] 〉
exp

[
𝑗
(
km · (x1 − x2 − u2𝜏)

) ]
dx1 dx2 (47)

If the surface is sufficiently rough (RMS height 𝜎
h
≫ 𝜆) and uncor-

related (spatial autocorrelation function is approximated to delta

function), which was also assumed in Goodman [1975]; Kliese and

Rakić [2012], the ensemble averaged term in last line of Eq. (47)

becomes negligible unless x1 = x2 + u1𝜏 . Substituting this, we get

𝐶𝑈 (𝜏) ≈ 𝛼
∫
𝒮
exp

[
𝑗
(
km · (u1 − u2) 𝜏

) ]
dx = 𝛼 |𝒮 | 𝑒− 𝑗 (k

m ·v)𝜏 ,

(48)

where 𝛼 is a constant term proportional to BRDF, which is inserted

to satisfy the energy conservation law. Taking Fourier transform

gives PSD of frequency shift,

𝑆 (Δ𝜔) = ℱ (𝐶𝑈 (𝜏)) = 𝛼 |𝒮 | 𝛿
(
Δ𝜔 − km · v

)
(49)

This indicates that observed frequency is shifted by the amount of

Δ𝜔 = km · v. We can use another expression using unit vectors :

Δ𝜔 = km ·v =

(
ks − ki

)
·v =

2𝜋

𝜆

(
âs − âi

)
·v =

𝜔

𝑐

(
âs − âi

)
·v, (50)

which matches with traditional Doppler shift formula. We can define

a scalar value called target velocity for this Doppler shift as

𝑣tg =

(
âs − âi

)
· v. (51)

In fact, this name is from Dolan [2009], and is coined so, as it mea-

sures the velocity of microscopic geometry (target) on the surface.
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6.4 Doppler Frequency Shift of Incoherent Detection

For incoherent (intensity) detection such as AMCW, the Doppler

effect occurs on intensity modulation instead of the optical field

itself. Still, we can make use of Eq. (44), considering𝑈 as an intensity

summation, instead of field summation. Furthermore, in this case,

𝜆 is in meter scale (carrier frequency is still in micrometer scale,

but amplitude modulation frequency that causes Doppler effect has

meter scale), so 𝜎ℎ ≪ 𝜆 and we can ignore height dependent terms

in Eq. (45), which gives

𝑈 (𝑡) = 𝛼
∫
𝒮
exp

[
𝑗
(
km · (x + u2𝑡)

) ]
dx, (52)

where BRDF related term 𝛼 now appears directly at𝑈 (𝑡). Assuming

𝜆2 is much larger than 𝒮 , we can further approximate into

𝑈 (𝑡) ≈ 𝛼 |𝒮 | exp
[
𝑗
(
km · u2𝑡

) ]
exp

[
𝑗
(
km · xmean

) ]
, (53)

where xmean = 1/|𝒮 |
∫
𝒮 x dx. Consequently, we have〈

𝑈 (𝑡)𝑈 ∗ (𝑡 + 𝜏)
〉
= 𝛼2 |𝒮 |2 exp

[
− 𝑗

(
km · u2

)
𝜏
]
. (54)

Similar to target velocity, we can get

𝑣sp =

(
âs − âi

)
u2 =

𝑣N

cos𝜃i
(1 − âs · âi), (55)

which is called spot velocity. Again, this name is from Dolan [2009],

which describes the velocity of spot point on a macroscopic surface

lit by illumination that is detached from micro-geometry.

6.5 Target vs Spot Velocity

To help with understanding, comparison between target and spot

velocity is presented in Fig. 9 for normal and transverse motions

illuminated at an oblique angle. For both cases, the target velocity

arises from correspondence that conserves local geometry, which

we call attached correspondence of the microscopic target geometry.

5
Since the illuminated surface is finite in practice, not all attached

correspondences are valid. However, assuming such an invalid re-

gion is small enough, the property of the bulk region, where the

attached correspondence is valid, governs the whole property. Note

that such attached correspondence was already exploited in our

discussion in Sec. 4 and Sec. 5. On the other hand, for spot velocity,

locality is not preserved as every point is identical (due to long

wavelength). Instead, we can find correspondence of macroscopic

surface region change, which we call detached correspondence of

spot point lit by the incident light. Such distinct correspondence

leads us to observe different Doppler values for each case.

Monte Carlo Simulation. Here, we also show the MC simulation

results to show the difference between target and spot velocity. As

shown in Fig. 10-(A), we generated a Gaussian random rough sur-

face ℎ(x) parameterized by RMS height 𝜎
h
and correlation length

𝑙 . The light wavelength is set to 1.55 µm and illuminated area is

100 µm × 100 µm. The camera and light source are set to be collo-

cated and oriented at 45 degrees with respect to the surface normal

and we set the surface to move along its normal direction with a

velocity of 10m/sec. By default, 𝜎
h
and 𝑙 are set to 2𝜆 and 10𝜆. In

5
We only considered surface reflection in this section, but one can easily notice that

particles in participating media should naturally belong to attached correspondence

that follows the well-known Doppler formula [Drain 1980].
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Fig. 9. Spot and target velocity comparison for normal and transverse mo-

tions. Target velocity originates from local microgeometry correspondence,

which is called attached, while spot velocity comes from detached macro-

scopic correspondence.
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Fig. 10. (A) Experimental setup of MC simulation for coherent detection.

We show the height field lit by the laser and collocated camera. (B) PSD

with different 𝜎
h
s. If 𝜎

h
is small compared to 𝜆, the peak appears at the spot

velocity, but it gradually translates to the target velocity as 𝜎
h
increases. (C)

PSD with different 𝑙s. If 𝑙 is too large, we observe spot velocity, as nearby

points become highly correlated which invalidates our assumption for target

velocity detection.

Fig. 10-(B), we show results for different 𝜎
h
averaged over 64 sur-

face realizations. If 𝜎
h
is small, we could detect spot velocity, and if

𝜎
h
becomes larger, we could detect target velocity. This is because

whether each microscopic structure becomes undistinguishable de-

pends on 𝜎
h
as explained before. In Fig. 10-(C), we show results for

larger 𝑙 . We found that larger 𝑙 makes us detect spot velocity. This

is because large 𝑙 makes the neighboring point of the surface highly

correlated which invalidates our assumption on target velocity de-

tection. Though we haven’t explicitly modeled BRDF, we could also

notice that the field intensity decreases for smaller 𝜎
h
and larger 𝑙 ,

which coincides with the fact that slope 𝜎
h
/𝑙 determines the BRDF

in microfacet theory.
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Table 1. Comparison of Doppler effect in coherent and incoherent detection discussed in Sec. 6.

Measurement Type Incoherent Detection (AMCW) Coherent Detection (OHD)

Physical Principle Macro scale depth change rate Doppler effect on micro geometry

Wavelength for Doppler Long (intensity modulation: 𝜆 = 10m) Short (optical field : 𝜆 = 1550 nm)

What is measured? Spot velocity 𝑣sp Target velocity 𝑣tg
Simulation Need to explicitly move objects [Kim et al. 2023] static geometry + calculate Eq. (32)

Treadmill, Rotating wheel Cannot detect frequency shift Can detect frequency shift

6.6 Implications on Simulation Strategy

The argument in the previous section implies that we need a dif-

ferent simulation strategy for AMCW and OHD Doppler measure-

ment. First, AMCW cameras do not detect the Doppler effect that

occurs due to micro-scale reflectors, and hence, we only have to

consider macroscopic object movements over time. As Kim et al.

[2023] pointed out, shift-mapping in gradient-rendering literature

[Kettunen et al. 2015; Lin et al. 2022; Manzi et al. 2016] could be

helpful to find macroscopic correspondence under complex path

domain. On the other hand, OHD detects the Doppler effect that

occurs due to micro-scale reflectors’ motion, and hence, we have

to either consider their movement at the microscopic scale, which

is computationally expensive or use their statistics to simulate the

OHD system, which is what we propose in this manuscript. We

provide a summary of this section in Tab. 1.

7 APPLICATIONS: (1) FMCW LIDAR

In this section and the following two, we use the proposed technique

to simulate three different OHD applications—FMCW lidar, blood

flow velocimetry, and wind Doppler lidar. Each part is structured

with a brief explanation of the application principle and demonstra-

tion using our simulator, except for FMCW lidar, which has been

already explained sufficiently before. For FMCW lidar, the real mea-

surements are from our hardware prototype, while for others, they

are from previous papers. We implemented our algorithm based on

the Mitsuba renderer [Jakob 2013].

7.1 FMCW: Simulation

7.1.1 Demonstration of Proposed Algorithms. We first demonstrate

the correctness of our proposed algorithms—PSD evaluation (Algo-

rithm 1) and field sampling (Algorithm 2) for rendering case, similar

to Fig. 7. As shown in Fig. 11-(A), we consider a Specular Cornell-

Box scene, which is the same as the well-known Cornell-Box

scene, but with a specular floor. The velocity of the moving objects

is shown in the scene figure (Fig. 11-(A)). The simulated power

spectrum at the target point (red dot) is plotted on Fig. 11-(B), for

both up and down chirp. Orange colored lines are from Algorithm 1,

the bright solid line represents 𝑆AC (𝜔), while the dark dashed line

represents convolved 𝑆AC (𝜔) as Eq. (28). Blue colored lines are from
Algorithm 2, the lighter one shows a single measurement, while the

darker line shows the averaged power spectrum from 1000 realiza-

tions. We could find that each algorithm gives the same spectrum,

which validates the convergence of the proposed method, even for

complex scene rendering. Another important observation is regard-

ing the multi-bounce effect. The green line in Fig. 11-(B) shows a

Up-chirp

Down-chirp

Frequency

Single Measurement from Alg.2

Avg of 1000 Single Measurements

𝑆AC(𝜔) from Alg.1

With convolution

Single Bounce Model
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B
)
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-20m/s

2m/s
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Target 
Point

(A) (B)

BRDF

(1) (2)

(1)

(1)

(2)

(2)

Fig. 11. (A) We show simulated power spectrum evaluated for Specular

Cornell-Box with proposed method. The camera and laser are outside

of the box, looking at the target point. (B) Orange lines represent results

from Algorithm 1, where a bright solid line is evaluated PSD and a dark

dashed line is convolved with time-window. The light blue line shows a

single measurement using Algorithm 2, while dark blue is an averaged result

over 1000 measurements, which converged to the result from Algorithm 1.

simple single-bounce model from the floor point, which is denoted

as (1). However, it fails to reproduce the spectrum from the multi-

bounced light (e.g., from the tall box denoted as (2)), which verifies

the importance of considering the multi-bounce effect.

Rendering performance statistics. We also report performance sta-

tistics under our hardware (AMD 3955WX). Instead of single-point

rendering as Fig. 11, we rendered the whole image for evaluation.

The bin number is set to 3072 for both methods with 256 spp. The

image size is 128× 128 and the maximum bounce is set to 4. For PSD

sampling, it took 6 seconds to build the 128 × 128 × 3072 PSD his-

togram while field sampling took a much longer time, (75 seconds)

due to the existence of double for-loops. Considering that it took

1000 iterations to make field sampling converge to GT PSD in the

single-point case, Algorithm 2 is not practical for image-wide simula-

tion. Thus, in general, we believe that PSD evaluation and sampling

(Algorithm 1) would be a default option for OHD simulation.

7.1.2 Distance and Velocity Reconstruction. We also show more

results on the complex scenes in Fig. 12 and perform image-wide

distance and velocity reconstruction from the evaluated PSD using

Algorithm 1. We used the argmax operator to determine the peak

frequency. For the Living-Room scene, we found that there are lots
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Fig. 12. We show distance and velocity reconstruction results for several

different scenes. We denote the object moving direction as red arrows.

Overall, due to the multi-path effect, we found that the result deviates from

just considering the first hit point.

of inter-reflections at the corners which makes depth reconstruction

inaccurate. For Road scene, the observer is also moving forward,

but the pink car is moving faster. Thus, we see a small Doppler

effect for the pink car, but much larger for the green car. The car

windows show different behavior from its body as most of the light

gets refracted after it hits the window. Finally, for the Doggler

scene (dog treadmill + Doppler), we could clearly observe the wrong

distance and velocity at the shiny floor. We will defer the details

for Doggler scene to Sec. 7.2.1, where we compare it with real

experiments. Overall, these simulations show that when single-

bounce assumptions fail, it is important to consider the full power

spectrum.

7.1.3 Simulation Comparison with Kim et al. [2023]. We visualize

the simulation difference between our FMCW formulation and Kim

et al. [2023]’s method for AMCW Doppler simulation for Cornell-

Box scene in Fig. 13. For better visualization, we only considered

a direct bounce. For Fig. 13-(A), we used explicitly moving objects

over time as Kim et al. [2023] suggested for D-ToF simulation. Note

that we still use the FMCW camera but simulate the Doppler effect

with explicit movement as their method. For Fig. 13-(B), we used

a path velocity calculation from Eq. (32). Both methods give the

same result for depth reconstruction but largely differ in velocity

reconstruction. (A) gives the spot velocity, which is larger at the

grazing angle (side of boxes, floor). On the other hand, (B) gives

near-constant results over a single object as vN is almost the same.

Also since the floor moves nearly perpendicularly to the camera,

we could observe very small velocity. As discussed in Sec. 6, the

correct simulation for FMCW is (B), but for the simulation of the

D-ToF camera, we need to use (A).

7.2 FMCW: Real Data Validation

We already showed some speckle statistics from real FMCW data

in Sec. 5, here we demonstrate two more experiments. Except for

simple cases, it is in general challenging to accurately calibrate

Velocity (m/s)Distance (m) 40

(A) Explicit moving [Kim et al. 2023] (B) Path velocity calculation (ours)

Distance

100 -30 +30

Velocity Distance Velocity

20m/s

-20m/s

2m/s

Fig. 13. Comparison between two different simulation strategies-(A) explic-

itly move objects as Kim et al. [2023] and (B) calculating path velocity from

Doppler formula. They give the same depth reconstruction, but different

velocities that (A) gives spot velocity, which is larger at the edge of boxes or

floor, and (B) gives constant value over a single object.

geometric and photometric aspects of a scene and create its digital

twin. So, we resort to qualitative comparisons similar to previous

rendering papers [Kim et al. 2023; Pediredla et al. 2020].

7.2.1 FMCW Measurement on Different Materials. We first demon-

strate the correctness of our simulator using real FMCW measure-

ment on different materials which may cause a multipath effect as

shown in Fig. 14. We have a single-pixel FMCW scanner that is

scanning along a line on the floor with varying reflection properties.

The ray reflected on the floor material hits the back wall, made of

spectralon, a highly diffuse material. We experimented with four

different floor materials. Inside the simulator, we tried to match

all simulation materials as closely to the real materials as possible

using various Mitsuba materials, whose details could be found in

the supplementary material.

The average PSD along the scanning line for both real and sim-

ulation with various floor materials is shown in Fig. 14. Since the

scene is static (ignore scanning speed for now) we can compute the

distance from the PSD. If the floor material is specular, most of the
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Fig. 14. To show the accuracy of our simulator, we built a multipath scene

with different floor materials. The back wall is spectralon, a highly diffuse

material. By interpreting the average PSD over the scanning line, we ob-

served that the real-world measurements matched our simulator for a wide

range of materials.
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Fig. 15. (A) We demonstrate our simulator for an experiment that measured copper with the treadmill behind. We represent the first hit points which align

with the scan direction with a sky-blue color and the second hit points on the treadmill with a light-green color. (B) We represent material on the first and

second hit points as a bar plot. We also denote the dominant hit point as a black line. Considering the material property, these dominant hit points could be

grouped into three regions with different reflections: (1) retro (2) copper-treadmill, and (3) copper-retro. (C) We show velocity and distance reconstruction

from the power spectrum, along the scan line. We found that our simulator faithfully reproduces the result corresponding to each region, even including the

smooth transition region (pink dashed circle).

light received by the sensor arrives from the back wall, which is at

a larger depth and hence shows up as a peak at a higher frequency.

When the floor is made up of a non-reflective material (fabric), the

dominant light return is from the first bounce and the peak is at a

lower frequency. Overall, we qualitatively found that our simulator

matches the real data for varying materials in the spectral domain.

7.2.2 FMCWMeasurement on Treadmill after Reflection. Wedemon-

strate our simulator on dynamic scene as illustrated in Fig. 15. The

overall setting is similar to the previous static case; the floor material

is fixed to be copper and the back wall is replaced with a treadmill at

an oblique angle. A total of four retroreflectors are used to indicate

the start and end points on both the copper plane and the treadmill.

They are all fixed on nearby objects. The only moving object in the

scene is the treadmill surface.

Given this scene configuration, we can expect two possible domi-

nant hit points on the copper plane and on the treadmill. We mark

the first bounce hit points as sky-blue color in Fig. 15-(A), which is

equal to where the scan line is. We also mark the possible second

bounce hit points on the treadmill with a light green color. The

corresponding material for each region is represented as a bar graph

(gray:treadmill, yellow:copper, orange: retroreflector) in Fig. 15-(B).

Considering the reflectivity properties, we denote the point that

most of the rays are reflected back, as a black line on the bar plot in

Fig. 15-(B). Then, we can find three distinguishable regions:

(1) retro (first) - the laser beam is directly reflected back from the

first hit point, which shows a distance around 14m without

velocity

(2) copper (first), treadmill (second) - the laser beam is reflected

on copper and reflects back from the treadmill. It shows dis-

tance at secondary hit around 16m with velocity of 2m/s.
(3) copper (first), retro (second) - the laser beam is reflected on

copper and reflects back from the retroreflector on the tread-

mill which is at a distance of 16m without velocity.

The exact region is denoted in Fig. 15-(B) as (1), (2), (3) for both real

data and simulation.

In Fig. 15-(C), we reconstruct the distance and velocity for both

real data and simulation from the evaluated PSD.We set the bin with

the maximum power to be the representative hit point. Overall, we

find that our simulator reliably reproduces the experiment for each

region that distinguishes one another, even though there are some

disparities due to imperfect calibration. There are three things to

point out here. First, there is a slight increment of distance over the

scan line. This is due to the treadmill being at an oblique angle and

thus not at a fixed distance from the lidar. Second is the presence of

background velocity - we could observe a small amount of velocity

even when detecting the fixed retroreflector on the copper plane.

This is because the imaging system is actively scanned at a high rate.

To reproduce this, we also added a small velocity component for the

sensor for simulation. Finally, between (2) and (3), there is a smooth

transition region, which is not strictly divided by a retro-reflector

(marked as a pink dashed circle in Fig. 15). For this region, distance

and velocity give unexpected values that deviate from both (2) and

(3). We found that our simulator even managed to reproduce these

artifacts, which could be useful for future studies to resolve them.
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Fig. 16. We show frequency domain distribution for three different points,

using FFT on real data and simulation. We also plot GT simulation frequency

in the last row. For region (2), we could observe a split between up and down

chirps as the ray hits the treadmill after the reflection. For region (1), the

ray hits the retroreflector, but we still could observe a small peak difference

which is due to the laser scan. For region (3), strong frequency distribution

broadening was observed as reflected light can hit both treadmill (moving)

or retroreflector (fixed).

In Fig. 16, we show the spectral analysis of the data and simulation.

We plot the aforementioned three different regions for both up and

down chirps. For the copper-treadmill case (Region 2), we could

not observe that much reflection from copper as most of the rays

are reflected due to the grazing angle (Fresnel reflection). For the

retroreflector case (Region 1), we could expect and observe a single

strong peak at the retroreflector. Also since the camera is moving,

we could clearly observe that the down and up chirp peaks do not

match which causes small bias velocity in Fig. 15-(B). Lastly, for

the copper-retroreflector case (Region 3), we could clearly observe

the effect of frequency distribution spreading. To elaborate, there

is one dominant peak from the retroreflector on the treadmill, but

we could also observe a secondary peak from the treadmill. Overall,

we could verify that our FMCW simulator faithfully reproduces

real-world measurements in both distance-velocity reconstructions

and power spectrum.

8 APPLICATIONS: (2) BLOOD FLOW VELOCIMETRY

In this section, we show a biomedical OHD application called laser

Doppler holography [Puyo et al. 2021, 2018, 2019], a type of laser

Doppler velocimetry, but provides full-field Doppler image with

high temporal resolution.

8.1 Laser Doppler Holography: Principle

Laser Doppler holography (LDH) uses the OHD principle to non-

invasively measure the retinal blood flow dynamics. Traditional

biomedical laser Doppler velocimetry (LDV) is point-based tech-

nique that measures Doppler frequency shift at a specific location.

Thus, we need scanning systems to monitor blood flow over a full

field (similar to FMCW). In contrast, LDH is inherently a full-field

imaging technique based on digital holography, where the entire

interference pattern is recorded as a sequence of images from a

digital camera, which is called hologram stream. The space-resolved

PSD can be obtained by performing a short-time Fourier transform

(STFT) along the temporal axis. LDH offers the advantage of high

temporal resolution (1.6ms), en-face imaging, and the ability to an-

alyze dynamic flow changes, such as during a cardiac cycle, which

traditional LDV cannot achieve.

The overall optical setup is similar to that of FMCW lidar. The

difference is that since blood flow (1–100 mm s
−1
) is much slower

than target velocity in FMCW applications (1–100 m s
−1
), beat fre-

quency also is much smaller in 10–20kHz [Riva et al. 1985]. Thus,

unlike FMCW, which requires a sampling rate of GHz, a fast CMOS

camera that operates in tens of the range kHz can be used for LDH.

8.2 Laser Doppler Holography: Simulation

We replicate and demonstrate experimental results from Puyo et al.

[2018, 2019] using our simulator. We use the same settings from

these papers in our simulation. A fast CMOS camera has a frame

rate of 39 kHz, 512 × 512 size. Laser has a wavelength of 𝜆 = 785nm.

Single STFT time window 𝜎w is set to 1.6, 13.1ms which results in

number of STFT samples 𝑁w = 64, 512 respectively.

We show the overall simulation configuration in Fig. 17-(A-C).

We modeled a retina as Fig. 17-(A), whose radiometric image at the

camera is shown in Fig. 17-(B). The circular shape in Fig. 17-(B)

represents the pupil of the eye, and we can see the retinal blood ves-

sels behind it. Fig. 17-(C) shows examples of three different possible

paths in the simulation, the path from other retinal tissues which

are static (𝑝1, solid line), frommoving red blood cell (𝑝2, dashed line)

and other multi-bounced paths (𝑝3, dotted line). We modeled light

transport at RBC and eye tissue/matrix as volumetric path tracing

with the Henyey-Greenstein model following Hammer et al. [1998,

2001]. We adjusted several coefficients to avoid path tracing too

dense particles, but one can apply advanced rendering algorithms

such as subsurface scattering or translucent rendering [Jimenez et al.

2010; Wann Jensen et al. 2023] in the future.

The simulation results are presented in Fig. 18-(A-D). First, we

evaluate zeroth-order moment 𝑀
0
± which is often used for both

Retinal artery or vein
RBC

Other retinal tissue 
(not-moving)(A) (B) (C)

𝑝1

𝑝2

𝑝3

Fig. 17. (A) A coherent light illuminates the eye pupil and we detect it with

a high frame rate CMOS camera. (B) An image from standard rendering.

We can see retinal tissues over the pupil. (C) We visualize simplified light

transport inside the eye. The red blood cells (RBC) in a retinal artery or

vein cause a Doppler frequency shift. We also mark three different paths 𝑝1

(static object), 𝑝2 (direct bounce from RBC), and 𝑝3 (multi bounced path).
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Fig. 18. (A, B)𝑀
0
+ for different STFT (𝑁w = 64, 512). Similar to Puyo et al.

[2018], longer 𝑁w gives less noisy result. (C)𝑀
0
+ with 𝑁w = 512 shows the

direction of the flow. We can see different colors for the artery and vein as

the blood flow direction is opposite in these two vessels. (D) PSD of two

ROIs at an artery and a vein. We can see a high peak at zero as most of the

tissue is not moving (from 𝑝1 in Fig. 17), and different frequency shifts for

artery and vein. We could also see contribution at a high frequency due to

multi-bounce (𝑝3 in Fig. 17).

analysis and visualization, that is defined as

𝑀
0
± =

∫ 𝜔2

𝜔1

𝑆 (𝜔) ± 𝑆 (−𝜔) d𝜔. (56)

𝑀
0
± is also known as power Doppler images (PDIs) in this literature.

𝑀
0
+ represents the total power of the Doppler PSD, while 𝑀0

−

represents the asymmetry (direction) of the Doppler PSD so that we

can obtain full Doppler information. Fig. 18-(A,B) shows𝑀
0
+ for two

different STFT windows (𝑁w = 64, 512). We could find less noisy

results for 𝑁w = 512 which matches [Puyo et al. 2018]’s empirical

observations. Note that since the sampling frequency remains the

same, we have the same frequency range from FFT for both cases.

Though each frequency bin has the same distribution statistics,

larger 𝑁w has more frequency bins so when we calculate𝑀
0
+ , we

effectively have 8 times more samples, which gives the less noisy

image. However, for full LDH, we need to time-average the sequence

of𝑀
0
+ , and this gives the same noise for both cases.

Fig. 18-(C) shows 𝑀0
− for 𝑁w = 512. We can see two different

colors, red and blue which show the direction. Typically artery and

vein have different flow directions, so red corresponds to the artery

while blue corresponds to the vein in this case. Compared to blue, red

has smaller values as the vein typically has slower velocity compared

to the artery. Also due to multiple scattering, we can see Doppler

shift even for static tissues. In fact, the diminished Doppler shift in

choroidal vessels is caused by the presence of pigment layers and

denser tissue. Overall, the results resemble real results from Puyo

et al. [2018] (Fig. 5-(c,d)). Fig. 18-(D) shows PSD of two ROIs in

Fig. 18-(C). We can see a high peak at zero frequency as most tissues

are static (𝑝1 in Fig. 17). Also, we can see two different distributions

at vein and artery that resemble results from Puyo et al. [2021]

(Fig. 1-(C)) and Puyo et al. [2018] (Fig. 7-(d,e)). Compared to single

scattering (𝑝2 in Fig. 17), we could also see the contributions of

multiple scattering (𝑝3 in Fig. 17) at higher frequency region which

is over the maximum velocity range.

9 APPLICATIONS: (3) ATMOSPHERIC SENSING

For atmospheric applications, we showpulsed coherentwindDoppler

lidar (C-DWL), which has been widely used in applications like wind

profiling, weather forecasting, and atmospheric research [Dabas

et al. 1994; Shangguan et al. 2022].

9.1 Pulsed Coherent Wind Doppler Lidar : Principle

Pulsed C-DWL is a laser-based (usually 𝜆 =1.5 µm) remote sensing

system used to measure wind speed and direction at various dis-

tances (range-resolved) by exploiting the Doppler shift of backscat-

tered light. The operating principle of pulsed C-DWL is plotted

in Fig. 19. It operates by emitting a short, coherent laser pulse into

the atmosphere, where the light interacts with aerosols or particles

in the air and is reflected back to the lidar system. Same as other

OHD applications, the backscattered signal is mixed with the LO

beam and we perform STFT to measure the frequency shift caused

by the motion of the scatterers within a certain time window. By

analyzing this Doppler shift and time-of-flight, the system detects

range-resolved 2D Doppler spectra as illustrated in Fig. 19. Pulsed

C-DWL is widely used for line-of-sight wind speed detection, but

its spectral information also allows us to observe precipitation [Wei

et al. 2019], or identify clouds [Yuan et al. 2020] and raindrops [Wei

et al. 2021].

9.2 Pulsed Coherent Wind Doppler Lidar : Simulation

Here, we aim to reproduce the results from Wei et al. [2019], who

demonstrated C-DWL PSD under different weather conditions. We

modeled the atmosphere from [0, 1000]m, with 100 different layers

with different properties. We use the Henyey-Greenstein model for

aerosol, with varying 𝜎𝑡 ∈ [0.001, 0.01] and 𝑔 = 0.7. Each air layer
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Fig. 19. The principle of pulsed C-DWL. We shoot a pulsed laser and mea-

sure the transient photocurrent signal. Then, we perform STFT to get the

power spectrum at each ToF. Finally, we get ToF (distance), and frequency

(velocity) resolved 2D spectrum as shown. We also denoted 4 regions and

corresponding lines on the 2D spectrum.
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Fig. 20. (A) Aerosol density and velocity profile used for simulation. (B)

Distance-resolved 2D PSD result for sunny and rainy days. Compared to a

sunny day, a rainy day shows another sharp peak from the raindrops. We

also plot multi-bounce components for the rainy day. (C) We show Gaussian

curve fitting at three different height points (0.12, 0.30, 0.84 km) for rainy

days, which faithfully replicates [Wei et al. 2019]’s observation.

is set to have a different velocity 𝑣 ∈ [0.0, 0.5] with some variation.

The aerosol profile used for simulation is plotted in Fig. 20-(A). We

simulated two scenarios: one for a sunny day and another for a rainy

day, similar to Wei et al. [2019]’s measurements. For a rainy day,

we additionally simulated raindrops, which have different profiles

compared to aerosols, as plotted in Fig. 20-(A). Fig. 20-(B) shows

ToF resolved PSD for each weather condition. We could observe a

single peak in sunny day PSD due to aerosols and a double peak in

rainy day PSD due to both aerosols and raindrops. We also plot PSD

at three different height points (0.12, 0.30, 0.84 km) as a black dot in

Fig. 20-(C). We perform curve-fitting with two Gaussians (blue and

orange dashed lines) and find that the sum of two Gaussians (red

line) well fits with the original data, which coincides with Wei et al.

[2019].

We also plot the contribution of multi-bounced paths in the third

row of Fig. 20-(B). In fact, decomposing light into such multi-bounce

components is typically not possible with real data, but in simula-

tion, we could easily compute it by controlling the total number

of bounces. Such new information from simulators could be use-

ful in improving the imaging systems, as shown for virtual optical

waveguides (acousto-optics) by Pediredla et al. [2023].

10 DISCUSSION AND CONCLUSION

In this paper, we presented physically accurate Monte Carlo simula-

tor for OHD techniques and demonstrated its utility on three OHD

imaging systems. Our key contribution is the path-integral formu-

lation [Veach 1997] for spectral-domain OHD simulation, which

brings Monte Carlo path sampling techniques to accurately model

and simulate various OHD systems. We also investigated sampling

using speckle statistics and conducted a theoretical comparison of

the Doppler effect in coherent (OHD) and incoherent (AMCW) de-

tection. Our findings suggest that different rendering techniques

are needed for each Doppler effect—[Kim et al. 2023] for AMCW

Doppler and the proposed method for OHD Doppler.

Here, we discuss several points that we have not considered. First,

we do not explicitly model the micro-surface itself and insteadmodel

its statistics (Sec. 6). While this reduces the computational complex-

ity, our simulator cannot directly reproduce some resulting phenom-

ena. One of them is the Doppler broadening due to time-varying

micro-geometry. We ignored the effect of invalid correspondence

in target velocity, but if the illuminated region moves quite fast

over time compared to its area, we cannot ignore this effect—new

micro-geometry contributes each time. This makes the Doppler

frequency shift not single-peaked, but it will have a broadened spec-

trum. One can also understand this as time-varying perturbation

𝜓 in phasor calculation which effectively decays temporal coher-

ence and hence causes frequency broadening. In fact, such Doppler

broadening has been reported for fast-moving objects or small beam-

waist by Kliese and Rakić [2012]. Though our current model cannot

handle this case directly, one can easily incorporate this in post-

processing by replacing the 𝛿 function in our path integral Eq. (26)

with the broadening kernel. Second, we assumed a constant hetero-

dyne efficiency, coming up with a better model for more accurately

evaluating heterodyne efficiency is an interesting future direction.

To do so, we need to consider accurate spatial speckle statistics,

which may be done similarly to Bar et al. [2019]. Third, we stick

to the path-tracing framework in this manuscript and did not con-

sider other wave-optics effects such as diffraction. Incorporating the

same, similar to Steinberg et al. [2023]; Steinberg and Yan [2021],

but for OHDwould be an interesting future direction. Finally, we did

not address non-idealities of lasers, such as non-linear frequency

modulation [Amann et al. 2001], phase noise [Vasilyev 2013] or

wide-band spectrum (white light interferometry), which could be

further studied in the future works.

In spite of these limitations, we noticed that our rendered data

matches the real hardware data and our model performs much

better than the simple formation models and provides a scalable

OHD simulation framework under various scenarios. We anticipate

that our OHD simulator can act as a digital twin and empower

imaging researchers to investigate OHD systems more effectively,

both to improve them and to find new avenues for these systems.
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