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Temporally sliced photon primitives for time-of-flight rendering
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Abstract
We derive a class of new Monte Carlo estimators for volumetric time-of-flight rendering, generalizing prior work on transient
photon points and beams. Conceptually, our method starts with any steady-state photon primitive – like a photon plane,
parallelepiped, or parallelotope – and slices it with a temporal wavefront, producing a primitive of one dimension lower. We
show how different unbiased temporally sliced primitives arise by analytically integrating any four dimensions within a novel
extended spatio-temporal path space formulation. The differences between these estimators reduce to the determinant of a 4×4
Jacobian matrix, with columns dictated by the chosen dimensions. We then show how to combine the relative strengths of different
sliced primitives using multiple importance sampling. Finally, we implement several of the new estimators enabled by our theory
and compare them to each other as well as previous techniques.

CCS Concepts
• Computing methodologies → Ray tracing; Modeling and simulation;

1. Introduction

Recently, time-of-flight imaging has shown transformative potential
in many fields of study. Compared to traditional imaging, time-of-
flight imaging allows recording the time it takes light to arrive at
the sensor with high precision. Disambiguating light paths in this
way enables many exciting imaging applications like seeing around
corners [KHDR11], or reconstructing objects observed through (or
embedded within) scattering materials [HXK*14] (as required for
autonomous driving in foggy conditions or non-invasive imaging
through human tissue).

Such advances in imaging technologies benefit from correspond-
ing advances in rendering techniques. Techniques that accurately
simulate such new, and yet unexplored, imaging modalities hold
great potential to: 1) help researchers explore trade-offs between
new imaging system before physically constructing them, and 2)
provide simulators and realistic training data so that data-hungry
deep learning algorithms can continue to make rapid advances on
computer vision tasks as our definition of imaging evolves.

Related work. We are interested in efficiently simulating time-of-
flight imaging in scenes with participating media and refer to a
recent survey [JMMG17] for a more comprehensive overview of
time-of-flight imaging from a computer graphics (rendering) and
computer vision (imaging) perspective. We adopt the nomenclature
proposed by Pediredla et al. [PVG19] and use “transient rendering”
to refer to simulating the evolution of the light over a continuum
of time (whether with a delta or a non-delta time gate), producing
multiple images; and “time-gated rendering” to refer to simulating a
single image for a specific (and typically short) time gate. We are

interested in efficient “time-of-flight rendering”, which encompasses
both transient and time-gated settings.

Simulating delta light pulses and (near) delta time-gated cameras
is particularly challenging since it restricts the set of admissible light
paths to a lower-dimensional temporal manifold, akin to the specu-
lar manifold [JM12] of caustic light paths in steady-state rendering.
Mirroring the success of photon mapping [JC98; Jen01] for such
steady-state problems, photon density estimation [JMM*14; Mar13]
techniques were some of the earliest general approaches for time-of-
flight rendering. Photon beam methods [JNSJ11; JZJ08; NNDJ12a;
NNDJ12b] tend to reduce both variance and bias in steady-state
rendering and even have progressive variants [HOJ08; JNT*11;
KZ11] which ensure error vanishes in the limit. These have since
been adapted to the time-of-flight domain [JMM*14; MGJ*19]. We
express these prior photon point and beam time-of-flight rendering
methods in a new framework, leveraging their ability to support com-
plex light paths with efficient path reuse across pixels, while general-
izing them to the higher-dimensional photon primitive of Deng et al.
[DJBJ19]. This allows us to achieve unbiased estimation (even in
the delta light pulse and time gate regimes) and improved efficiency
and robustness via multiple importance sampling (MIS) [VG95b].

Path tracing [Kaj86; LW93; LW96; VG95a] has the benefit of be-
ing unbiased, but traditional strategies struggle to sample valid light
paths within the temporal manifold. Pediredla et al. [PVG19] devel-
oped specially crafted “ellipsoidal connections” which give bidirec-
tional path tracing some control in sampling paths with a desired
temporal duration. This algorithm currently only handles surface in-
teractions, though one of our estimators (Sec. 4.5) can be viewed as
a generalization of such ellipsoidal connections to the volumetric set-
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ting. Jarabo et al. [JMM*14] devised strategies to generate path sam-
ples distributed more uniformly in time to accelerate time-resolved
rendering. This is orthogonal to, and could in theory be combined
with, our approach. Importance sampling techniques have also been
developed for the context of optical coherence tomography [LKS11;
PP16] and differential time-gated rendering [WCRZ21; YKC*21].
We are interested in general methods for time-of-flight rendering.

Contributions. Our work builds off of recent steady-state rendering
techniques which extended photon density estimation to form even
higher dimensional and unbiased variants such as photon “planes”,
“surfaces”, and “volumes” [BJ17; DJBJ19]. Our primary contribution
is a transient path space formulation that extends the steady-state
“photon primitives” framework to the transient domain. This results
in a versatile and powerful framework that allows us to derive a
whole new family of robust estimators using a straightforward pro-
cedure. We show that existing approaches can be unified and viewed
as specific instantiations of our formulation. More importantly, our
formulation enables the derivations of novel estimators, including
ones that can simulate delta time-gated volumetric transport with-
out introducing bias, and ones which can be much more efficient
in specific circumstances. Our theoretical formulation places few
restrictions on how the estimators can be implemented. We dis-
cuss implementation considerations and demonstrate two prototype
implementations for a selection of the new estimators, comparing
their performance with previous work. We also demonstrate the
possibility of combining these estimators using multiple importance
sampling [VG95b].

2. Preliminaries

Our methodology is closely related to the photon primitives frame-
work [DJBJ19] which provides a general approach to derive unbi-
ased density estimators for steady-state volumetric rendering. We
briefly review this approach and introduce the notation we use
throughout this paper, before extending the framework to time-of-
flight rendering in Sec. 3. Like Deng et al. we assume homogeneous
media and leave efficient heterogeneous media to future work.

The photon primitive framework starts with a simplified extended
path space formulation [HGJ*17] in which a full light path z := xy
is broken up into two disconnected subpaths: the photon subpath
x := (xl . . .x0) with xl situated on a light source and the camera
subpath y := (y0 . . .yk) with yk on the sensor (see Fig. 1). The
positions of the intermediate scattering vertices are expressed in
terms of a sequence of distances and directions:

xi = xl+
i+1

∑
m=l

tmωm, and y j = yk+
j+1

∑
n=k

snψn, (1)

where ω := (ωl . . .ω1) and t := (tl . . . t1), and ψ := (ψ1 . . .ψk) and
s := (s1 . . .sk) are the sequences of directions and distances along
the photon subpath and camera subpath, respectively.

The measurement contribution function f (z) is the product

f (z) =
l

∏
i=1

fω(ωi) ft(ti)︸ ︷︷ ︸
f (x)

f 1,1
ω K3(g)

k

∏
j=1

fω(ψ j) ft(s j)︸ ︷︷ ︸
f (y)

, (2)

Figure 1: The extended path space considers a photon subpath
x = (xl . . .x0) and a camera subpath y = (y0 . . .yk) defined by a
sequence of distances (t,s) and directions (ω,ψ) from opposite ends
of the path. Once we extend this to the time-of-flight domain we also
consider the sequence of light velocities along the two subpaths,
vp = (vp

l . . .v
p
1) and vc = (vc

k . . .v
c
1).

of distance functions

ft(ti) = Tr(ti)V (xi,xi−1), with Tr(t) = e−σt t , (3)

directional/scattering functions

fω(ωi) =


Le(xl ,ωl)cosθi if i = l
ρs(ωi+1,ωi)cosθi xi ∈ surface and i < l
σsρp(ωi+1,ωi) xi ∈ medium and i < l,

(4)

as well as the phase function evaluated at the connection f 1,1
ω and

a three-dimensional blurring kernel K3 applied to the offset g :=
x0 −y0 between the endpoints of the photon and camera subpaths.
The distance function ft(ti) is the product of the transmittance Tr and
the visibility term V (xi,xi−1). The directional function fω(ωi) is the
cosine-weighted emission function Le cosθi, the cosine-weighted
BSDF ρs cosθi, or the scattering coefficient-weighted phase function
σsρp, depending on where xi resides.

The directional (4) and distance (3) functions fω and ft in Eq. (2)
are defined analogously when applied to the components of the
camera subpath (ψ j and s j), though using the emitted importance
We(yk,ψk) at the sensor vertex (in place of the emitted radiance Le)
for the first case in Eq. (4) when j = k.

By introducing the set of all integration dimensions, ξ :=
{xl , t,ω;yk,ψ,s}, the path integral over all such paths can be written

I =
∫

Ξ

f (ξ)K3(g(ξ)) f 1,1
ω dξ, with f (ξ) = ∏

ξi∈ξ

f (ξi), and (5)

f (ξi) =

{
fω(ξi) ξi ∈ {xl ,yk,ω ,ψ}
ft(ξi) ξi ∈ {t,s}.

(6)

2.1. Deriving a Photon Primitive Estimator

This integral is in general biased if the blurring kernel K3 has a finite
extent, but using a Dirac delta kernel

K3(g) = δ
3(g) = δ(x(g))δ(y(g))δ(z(g)), (7)

where x(g), y(g) and z(g) represent the Cartesian coordinates of
offset vector g, removes bias by considering only paths where x0
and y0 coincide exactly.
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Unfortunately, generating a valid path by sampling the two sub-
paths independently is impossible since the probability that x0 and
y0 coincide exactly is zero. Deng et al. [DJBJ19] solved this by
separating the set of integration dimensions ξ into two subsets: an
analytic dimension set ξa that will be integrated analytically and the
numerical dimension set ξn that will be sampled. This allows us to
rewrite the integral as

I =
∫

Ξn

f (ξn)
∫

Ξa(ξn)
f (ξa)δ

3(g(ξa)) f 1,1
ω dξa︸ ︷︷ ︸

Ia(ξn)

dξn, (8)

where we denote the analytic integral as Ia.

By choosing three analytic integration dimensions ξa =
{ξa1 ,ξa2 ,ξa3}, the analytic integral Ia(ξa) collapses to an evalu-
ation of the path contribution,

Ia(ξn) =
∫

Ξa(ξn)
f (ξa)δ

3(g(ξa)) f 1,1
ω dξa = ∑

r

f (ξ∗r
a ) f 1,1

ω∣∣∣Jg
ξa
(ξ∗r

a )
∣∣∣ , (9)

at the (potentially multiple) roots, ξ∗r
a , of the equation g(ξa) =

0. The denominator contains the absolute value of the change-of-
variable Jacobian determinant from g to ξa because we need to first
express the delta kernel in terms of the integration variables before
integrating it out.

The remaining dimensions ξn can now be estimated numerically
using Monte Carlo. Each split of three analytic dimensions and re-
maining numeric ones results in an unbiased Monte Carlo estimator
of the form

⟨I⟩a,n ≈
f (ξn)Ia(ξn)

p(ξn)
=

f (ξn)

p(ξn)
∑
r

f (ξ∗r
a ) f 1,1

ω∣∣∣Jg
ξa
(ξ∗r

a )
∣∣∣ , (10)

where p(ξn) is the joint PDF of the numerically sampled dimensions.

Deng et al. [DJBJ19] limited three analytic dimensions to the last

x1

x0

x2
2

s∗1

t∗1

t∗2
distance along the camera subpath,

plus two dimensions along the pho-
ton subpath. The two analytic pho-
ton subpath dimensions can be in-
terpreted as sweeping out a “pho-
ton surface”, which is intersected
with a camera ray to form a com-
plete path (see figure on the left).
The formulation, is more general
however, and in the next section we
show how to adapt it to account for
time-of-flight rendering.

3. A Framework for Rendering Time-gated Images

Here we describe how to adapt the photon primitives framework
[DJBJ19] to time-of-flight rendering. Our key idea is that we can
add a fourth temporal component to the vertices in light transport
subpaths to fit time-of-flight rendering into the extended path space
and the photon primitives framework. We denote 4D spatio-temporal
quantities with a prime. A complete extended spatio-temporal path

Figure 2: Spatio-temporal diagram of light propagation in the
extended path space. The photon subpath starts at time delay τl , and
travels in the positive time direction. The camera subpath, on the
other hand, starts at time delay τk and travels in the negative time
direction. When the endpoints x′0 and y′0 overlap, it means we have
found a complete path with total time duration τk. In the figure, both
the time gate function Wτ and the emission pulse function Lτ are
box functions.

z′ := x′y′ consists of two disconnected spatio-temporal subpath ver-
tex sequences x′ = (x′l . . .x

′
0) and y′ = (y′0 . . .y

′
k). These are defined

analogously to Eq. (1),

x′i = x′l +
i+1

∑
m=l

tmω
′
m, y′j = y′k +

j+1

∑
n=k

snψ
′
n, (11)

but where the starting vertex of the photon subpath x′l = (xl ,τl)
now includes the emission time τl , and the camera vertex y′k =
(yk,τk) includes the detection time at the sensor τk. The subsequent
vertices in Eq. (11) are now expressed in terms of 4D spatio-temporal
directions ω

′ := (ω′
l . . .ω

′
1) and ψ

′ := (ψ′
1 . . .ψ

′
k) defined as:

ω
′
i = (ωi,

1
vp

i
), ψ

′
j = (ψ j,−

1
vc

j
), (12)

where vp
i and vc

j denote the speed of light for the i-th and j-th
segments along the photon and camera subpaths, respectively. Fig. 1
annotates a spatial path with some of these temporal quantities,
and Fig. 2 illustrates this as a spatio-temporal diagram. Defined
this way, the temporal component of the product tiω′

i represents
the propagation delay between vertex xi and xi−1. For notational
simplicity, we do not include scattering delays at the interior vertices,
but these could easily be added if needed. Note that ω

′
i and ψ

′
j have

opposite signs in the temporal dimension because spatially they
point in opposing directions with respect to the flow of light.

The spatio-temporal offset vector g′ is simply the difference
(using 4D vector subtraction) between the endpoints of the two
spatio-temporal subpaths: g′ = x′0 − y′0. Using the definitions in

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.



Liu, Jiao, and Jarosz / Temporally sliced photon primitives for time-of-flight rendering

Eqs. (11) and (12), the temporal component τ(g′) of the offset

τ(g′) =

τ(x′0)︷ ︸︸ ︷
︸ ︷︷ ︸

τ(z′)

τl +
1

∑
m=l

tm
vp

m
−

τ(y′0)︷ ︸︸ ︷
(−

k

∑
n=1

sn

vc
n
+ τk), (13)

can be interpreted as comparing the total path duration τ(z′) with
the detection time at the sensor τk.

We can now define the spatio-temporal extension of the measure-
ment contribution function (2) as

f (z′) =
l

∏
i=1

fω(ω′
i) ft(ti)︸ ︷︷ ︸

f (x′)

f 1,1
ω K3(g

′)Kτ(g′)︸ ︷︷ ︸
K4(g′)

k

∏
j=1

fω(ψ′
j) ft(s j)︸ ︷︷ ︸

f (y′)

. (14)

We use a 4D spatio-temporal kernel K4, which is the product of the
original kernel K3 operating on the spatial dimensions of g′, and a
new kernel Kτ operating on the temporal dimension of g′. Since we
do not model relativistic effects, the distance/propagation function
ft remains unchanged (3), but the directional/scattering function fω
now incorporates a time-dependent emission pulse function Lτ(τl)
indicating the weight of light emitted at time τl for the photon
subpath starting vertex xl ,

fω(ω′
i) =

{
Le(xl ,ωl)Lτ(τl)cosθi if i = l
fω(ωi) otherwise,

(15)

and a time gate function Wτ(τk) which weights the sensor response
to light arriving at time τk for the camera subpath starting vertex yk,

fω(ψ′
j) =

{
We(yk,ψk)Wτ(τk)cosθk if j = k
fω(ψ j) otherwise.

(16)

Any complete path from the light source to the camera with a
travel time outside the range will have 0 contribution. For instance,
the time gate could either be a finite box function

Wτ(τk) =

{
1

∆τ
if τk ∈ [τmin,τmin +∆τ]

0 otherwise,
(17)

or a Dirac delta, and likewise for the emission pulse function Lτ.

Crucially, our formulation distinguishes between the time gate
and emission pulse functions (Wτ, Lτ) and the temporal blurring
kernel (Kτ). Although each is a 1D temporal function, they serve
distinct roles. A non-delta blurring kernel would introduce bias, but
a non-delta time gate or emission pulse would not since it is part of
the contribution. We keep Wτ and Lτ distinct, though it is possible
to remove one degree of freedom and use their convolution instead.

Finally, we can write our transient extension of the steady-state
path integral (5) by integrating over the set of all spatial-temporal
integration dimensions ξ′ = {xl ,τl , t,ω

′;ψ
′,s,yk,τk}:

I =
∫

Ξ′
f (ξ′)K4(g

′(ξ′)) f 1,1
ω dξ′. (18)

Camera unwarping. Sometimes it is desirable to render a scene
using “camera unwarping” [VWJ*13] by ignoring the time delay

along the camera ray (y′k−1y′k). We can easily achieve this in our
framework by setting the speed of light along the camera segment
vc

k to infinity. Conceptually, this prevents the time along camera rays
from warping the shape of the light wavefronts, which can provide
a clearer visualization of how light propagates locally in the scene.
The opposite setting, “camera warping”, accounts for camera ray
propagation and provides a closer simulation of real-world sensors.

4. Temporally sliced photon primitives

Our extended transient path space formulation (18) can be readily
used to express prior transient estimators. For instance, the transient
photon mapping algorithm [JMM*14] estimates Eq. (18) as

⟨I⟩ ≈ f (ξ′)K3(g′(ξ′))Kτ(g′(ξ′)) f 1,1
ω

p(ξ′)
, (19)

where p(ξ′) is the joint PDF of sampling all dimensions.

Equation (18), however, is more general than that, and we will
show how to derive a plethora of new estimators, which we call
temporally sliced photon primitives, by choosing to integrate some
of the dimensions analytically.

4.1. A recipe for deriving temporally sliced photon primitives

The way we have generalized the path contribution function in
Eq. (14) allows us to easily derive novel transient estimators using a
procedure analogous to the steady-state one described in Sec. 2.1.

As in Eq. (7) we shrink the blurring kernel, but this time to a
product of three spatial and one temporal Dirac delta kernels:

K4(g
′) = δ

4(g′) = δ(x(g′))δ(y(g′))δ(z(g′))δ(τ(g′)). (20)

If we then choose a subset of at least four dimensions ξ′a ⊂ ξ′ to
integrate analytically,

I =
∫

Ξ′
n

f (ξ′n)
∫

Ξ′
a(ξ

′
n)

f (ξ′a)δ
4(g′(ξ′a)) f 1,1

ω dξ′a︸ ︷︷ ︸
Ia(ξ′n)

dξ′n. (21)

we can write a transient estimator analogously to steady-state (10) as

⟨I⟩a,n ≈
f (ξ′n)Ia(ξ′n)

p(ξ′n)
, (22)

where p(ξ′n) is the joint PDF of all numerically integrated dimen-
sions, and Ia(ξ′n) is the analytically pre-integrated contribution
function.

If we choose any four dimensions to pre-integrate:

ξ′a = {ξ
′
a1 ,ξ

′
a2 ,ξ

′
a3 ,ξ

′
a4} , (23)

then the delta functions collapse the integral Ia to an evaluation

Ia(ξ′n) =
∫

Ξ′
a(ξ

′
n)

f (ξ′a)δ
4(g′(ξ′a)) f 1,1

ω dξ′a = ∑
r

f (ξ∗r
a ) f 1,1

ω∣∣Jg′

ξ′a
(ξ∗r

a )
∣∣ , (24)

at the (possibly multiple) roots ξ∗r
a of the delta constraint g′(ξ′a) = 0.

As before, the Jacobian in the denominator arises from re-expressing
the delta kernels—initially defined in spatio-temporal space—in
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terms of the analytic integration variables. For any choice of four
dimensions, this is simply a 4×4 matrix with the partial derivatives
of vector g′ with respect each of the chosen analytic dimensions:

Jg′

ξa
(ξ∗r

a ) =

 | | | |
∂g′(ξ∗r

a )
∂ξ′a1

∂g′(ξ∗r
a )

∂ξ′a2

∂g′(ξ∗r
a )

∂ξ′a3

∂g′(ξ∗r
a )

∂ξ′a4

| | | |

 . (25)

Deriving and implementing a new estimator in our framework
requires two steps:

1. Solve for each root, ξ∗r
a , of the delta constraint g′(ξ′a) = 0;

2. Derive and evaluate the absolute value of the Jacobian determi-
nant, |Jg′

ξa
(ξ∗r

a )|, at each root.

Each estimator derived in our framework has a geometric inter-
pretation which is closely related to its steady-state counterpart. If
we assume one of the analytic dimensions is the last distance along
the camera subpath, then we can view one of our new estimators
as a steady-state photon primitive sliced by the temporal kernel to
produce a temporal wavefront. When the camera response and light
pulse time τk,τl are numerically sampled, each such sliced photon
primitive is one dimension lower than the steady-state counterpart,
e.g. a sliced parallelopiped is a planar transient primitive (assuming
camera unwarping).

In the following subsections, we derive a few estimators enabled
by our theory to demonstrate the generality of this recipe.

4.2. Sliced Photon Planes

In steady-state rendering, the photon plane is one typical example. It
chooses the last two distances (t1, t2) along the photon subpath and
the last distance along the camera subpath s1 as analytic dimensions.
Here, we derive an estimator that also pre-integrates these three
dimensions analytically and additionally analytically integrates the
time gate τk, meaning its analytic dimensions are

ξa = {t2, t1,s1,τk} , (26)

and Ia becomes

Ia =
∫

Ξ′
ft(t2) ft(t1) ft(s1)Wτ(τk)δ

4(g′(ξ′a)) f 1,1
ω dt2 dt1 ds1 dτk.(27)

Following our recipe, we need to find the roots of the equation,

g′(ξ′a) = x′2 +ω
′
2t2 +ω

′
1t1︸ ︷︷ ︸

x′0

−(y′1 +ψ
′
1s1)︸ ︷︷ ︸

y′0

= 0. (28)

x1

x2

x0

2

s∗1

t∗1

t∗2
Conceptually, this is just the

intersection of a camera ray
with a plane and then further
restricted to a diagonal band
(shown in green in the inset
figure to the left). This band
is essentially a visualization of
the time gate function Wτ(τk)
which slides diagonally along
the photon plane as time ad-

vances (faded green bands). Both the plane and the diagonal strip
become curved when considering camera warping.

Next, we need the Jacobian matrix. When τk is chosen to be
one of the analytic dimensions, the column in the Jacobian matrix
that corresponds to ∂g′

∂τk
is simply [0,0,0,1] since τk only affects the

temporal domain. The Jacobian matrix is

Jg′
t2,t1,s1,τk

=


| | | |

ω2 ω1 −ψ1 0
| | | |
1
vp

2

1
vp

1
− 1

vc
1

1

 , (29)

which gives the same determinant as the steady-state photon plane:∣∣∣Jg′
t2,t1,s1,τk

∣∣∣= |ω2 ×ω1 ·ψ1|. (30)

This estimator is unbiased, but the analytically preintegrated time
gate plays a similar role as the temporal blur in biased transient
photon beams, allowing the primitives to be intersected with the
camera ray. If the time gate is a delta function, then we could instead
use the emission pulse τl as the fourth analytic dimension. This
creates an identical primitive since it simply negates the last column
of the Jacobian matrix, and the absolute value of the determinant
remains the same. If both the time gate and emission pulse are delta
functions, then extra blur will need to be introduced or else the
primitive will have 0 probability of intersecting the camera ray.

4.2.1. Re-interpreting Transient Photon Beams

There’s a noticeable visual similarity between the sliced photon
plane and transient photon beam in previous work. In fact, the
photon beam can be viewed as replacing one analytic dimension and
keeping the blurring kernel on it a box function instead of a delta
function, giving us the analytic dimension set

ξa = {B, t1,s1,τk} . (31)

which includes the blur B instead of t2. The partial derivative of
g over the blur is ω1×ψi

|ω1×ψi| as the blur is perpendicular to both the
camera ray and the last photon segment.

Jg′
B,t1,s1,τk

=


| | | |

ω1×ψi
|ω1×ψi| ω1 −ψ1 0

| | | |
1
vp

1

1
vp

1
− 1

vc
1

1

 , (32)

∣∣∣Jg′
B,t1,s1,τk

∣∣∣= ∣∣∣∣ω1 × (−ψ1) ·
ω1 ×ψi

|ω1 ×ψi|

∣∣∣∣= |ω1 ×ψ1| . (33)

This gives us the same Jacobian determinant as 1D-blurred transient
photon beams as in previous work [MGJ*19].

In previous work [MGJ*19], a transient photon beam is inter-
preted as having a 2D spatio-temporal blur with one spatial blur
and one temporal blur. Our formulation, however, shows that only
a 1D spatial blur is needed if we use the time gate τk or emission
time τl as one of the analytic dimensions. In essence, this allows
the time gate Wτ or emission pulse function Lτ to take the place of
the temporal blur kernel Kτ, without introducing bias. In fact, since
τk and τl reside in the same space, we could trivially integrate both
analytically, which would simplify to using the convolution of Wτ

and Lτ instead of the temporal blur kernel. The ability to remove
the temporal blur implies that the estimator in our framework would
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have less bias, and forming a progressive variant would only require
reducing the single 1D spatial blur kernel to ensure consistency.

In the next section, we show an estimator applicable to the case
where both the time gate and the emission pulse are delta functions.

4.3. Sliced Photon Parallelepipeds

The steady-state photon parallelepipeds uses three edges x3x2, x2x1,
x1x0 to form a parallelepiped, and a numerically sampled point
y1 + s1ψ1 to query it. Since we need one more analytic integration
dimension for unbiased delta time-gated rendering, we can choose
to also preintegrate s1, giving us ξ′a = {t3, t2, t1,s1}. This partic-
ular choice of ξ′a yields a primitive we call a delta-sliced photon
parallelepiped. Ia in Eq. (21) then becomes:

Ia =
∫

Ξ′
ft(t3) ft(t2) ft(t1) ft(s1)δ

4(g′(ξ′a)) f 1,1
ω dt3 dt2 dt1 ds1. (34)

Solving g′(ξ′a) = 0 is trivial since it is a linear system. For this
specific set of ξ′a, we have

g′(ξ′a) = x′3 +ω
′
3t3 +ω

′
2t2 +ω

′
1t1︸ ︷︷ ︸

x′0

−(y′1 +ψ
′
1s1)︸ ︷︷ ︸

y′0

= 0 (35)

⇔ Jg′
t3,t2,t1,s1

ξ′a = y′1 −x′3 (36)

where

Jg′
t3,t2,t1,s1

=


| | | |

ω3 ω2 ω1 −ψ1
| | | |
1
vp

3

1
vp

2

1
vp

1

1
vc

1

 . (37)

For simplicity, we will only consider the case where all the prein-
tegrated photon subpath segments have the same speed of light
v: v = vp

3 = vp
2 = vp

1 . When rendered using camera unwarping
(1/vc

1 = 0), the Jacobian of the transient photon parallelepiped is∣∣∣Jg′
t3,t2,t1,s1

∣∣∣= 1
v
|ψ1 · (ω1 ×ω2 +ω2 ×ω3 +ω3 ×ω1)|. (38)

We can also interpret the Jacobian in Eq. (38) as the dot product
between the camera direction ψi and a scaled temporal surface nor-
mal n = (ω1 ×ω2 +ω2 ×ω3 +ω3 ×ω1), multiplied by an inverse
speed of light term 1

v .

To figure out the geometry of the temporal surface in this setting,
we can start by expressing the spatial intersection point x∗0 using the
constraint on the temporal dimension. The temporal constraint in
the 4th row of the linear system in Eq. (36) can be written as

1
Λ
(t3 + t2 + t1) = 1, with Λ := v(τ(y′1)− τ(x′3)). (39)

Inserting Eq. (39) into the first three spatial dimensions of x′0 defined
in Eq. (35) and regrouping the terms yields:

x∗0 = (x3 +ω3Λ)(1− t2
Λ
− t1

Λ
)+(x3 +ω2Λ)

t2
Λ
+(x3 +ω1Λ)

t1
Λ
,

(40)

which gives the Barycentric coordinate formulation of a point on
the triangle formed by vertices p3 = x3 +ω3Λ, p2 = x3 +ω2Λ,
p1 = x3 +ω1Λ. Please refer to Fig. 3 for the visualization of this

x3
x0

x1

x2

2

3
p1

p2

p3

x∗0

s∗1

t∗1

t∗2

t∗3

Figure 3: Slicing a photon parallelepiped with a delta time gate
in the camera-unwarped case results in the green triangle traveling
diagonally through the parallelepiped as time progresses.

triangle. The normal of this triangle gives the direction of the scaled
temporal surface normal n, while the area of this triangle is a scaled
version of the length of n.

The procedures described above can also be thought of as slicing
a 3D steady-state photon primitive with a time constraint to yield a
2D transient primitive.

4.4. Sliced Photon Parallelotope

The slicing operation described above can be applied to even higher
dimensions. Here we describe how to derive a 3D temporal primi-
tive by slicing a 4D steady-state primitive generalized from photon
parallelepipeds. We start by replacing the camera subpath segment
distance s1 in the analytic dimension set ξ′a with an additional prop-
agation distance t4: ξ′a = {t4, t3, t2, t1}. The resulting steady-state
primitive is a parallelotope whose edges are the last 4 segments in
the photon subpath. With this particular choice of ξ′a, we can rewrite
Ia in Eq. (21) as:

Ia =
∫

Ξ′
ft(t4) ft(t3) ft(t2) ft(t1)δ

4(g′(ξ′a)) f 1,1
ω dt4 dt3 dt2 dt1. (41)

Solving g′(ξ′a) = 0 under this new definition of ξ′a gives:

Jg′
t4,t3,t2,t1 ξ′a = y′0 −x′4, (42)

where Jacobian matrix

Jg′
t4,t3,t2,t1 =


| | | |

ω4 ω3 ω2 ω1
| | | |
1
vp

4

1
vp

3

1
vp

2

1
vp

1

 (43)

converts variables from ξ′a to g′.

If we assume the speed of light is constant inside the parallelotope
v = vp

4 = vp
3 = vp

2 = vp
1 , and insert Eq. (43) into Eq. (41), we obtain

the preintegrated intensity of the photon parallelotope:

Ia =
f 1,1
ω ft (t⋆4 ) ft (t⋆3 ) ft (t⋆2 ) ft (t⋆1 )∣∣∣Jg′

t4,t3,t2,t1

∣∣∣ , (44)
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t∗1
t∗2

t∗3
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Figure 4: The geometry of a camera-unwarped delta-sliced photon
parallelotope is a tetrahedron.

where
∣∣∣Jg′

t4,t3,t2,t1

∣∣∣ is the determinant of matrix J defined in Eq. (43),

and {t∗4 , t
∗
3 , t

∗
2 , t

∗
1 } are the solutions for Eq. (42). The Jacobian∣∣Jg

t4,t3,t2,t1

∣∣ here can also be viewed as a scaled volume for a tetrahe-
dron formed by vertices p4 = x4 +ω4, p3 = x4 +ω3, p2 = x4 +ω2,
p1 = x4 +ω1. Fig. 4 illustrates the geometric construction.

Since the sliced parallelotope estimator samples the distance
along the camera ray numerically, it has a different kind of noise
pattern compared to the sliced parallelepiped estimator (see Fig. 5).

4.5. Sliced Photon Balls/VPLs

The main limitation of the sliced photon parallelepiped and sliced
photon parallelotope (44) estimators is that they need 3 bounces and
4 bounces respectively, so they cannot handle single scattering. We
can create an unbiased single scattering estimator by setting ξ′a =
{cosθ1,φ1, t1,s1}. The Jacobian matrix for the change-of-variable
then becomes:

Jg′
cos θ1,φ1,t1,s1

=


| | | |

∂g
∂cos θ1

∂g
∂φ1

ω1 −ψ1

| | | |
0 0 1

vp
1

1
vc

1

 , (45)

and the estimator becomes:

Ia =
f 1,1
ω fω (ω∗

1 ) ft (t⋆1 ) ft (s⋆1)∣∣∣Jg
cos θ1,φ1,t1,s1

∣∣∣ , (46)

where ω
∗
1 , t

∗
1 ,s

∗
1 are the solutions for g′(ξ′) = 0.

For the camera-unwarped case, the Jacobian for the sliced photon
ball can be written as

∣∣∣Jg′
cos θ1,φ1,t1,s1

∣∣∣= 1
v t∗1

2
ω
∗
1 ·ψ1. A steady-state

photon ball is equivalent to placing a point light (a VPL) at a path
vertex. Slicing it with the temporal wavefront then creates a sphere,
which we need to intersect with the camera ray due to the analytic

Sliced Parallelepiped Sliced ParallelotopeScene Schematic

Figure 5: This searchlight scene (left) contains an infinite homo-
geneous medium illuminated by a collimated beam source aiming
downwards. We compare 4-bounce-only transport simulated using
sliced parallelepipeds (left half) and sliced parallelotopes (right
half), using a delta time gate. Both estimators use 2M photons and
are unbiased, but variance in sliced parallelepipeds produces struc-
tured artifacts due to analytic evaluation along camera rays, while
sliced parallelotopes produce high frequency noise due to indepen-
dent numerical distance sampling along camera rays.

integration of s1 (see Fig. 6 left). The Jacobian can be interpreted
as the dot product between the camera ray direction ψ1 and the
surface normal ω

∗
1 of this spherical wavefront, scaled to account

for standard inverse-squared falloff t∗1
2 from the point light and the

speed of light 1
v .

If we consider the camera-warped case, the sliced photon ball is a
generalization of Pediredla et al.’s ellipsoidal connections [PVG19]
to participating media. Geometrically, the temporal wavefront be-
comes an ellipsoid (see Fig. 6 right) with foci at x1 and y1, and the
length of its major axis is v(τ(x′1)− τ(y′1)). The resulting Jacobian

can be expressed as
∣∣∣Jg′

cos θ1,φ1,t1,s1

∣∣∣= 1
v t∗1

2
(ω∗

1 +ψ1) ·ψ1, which is
a dot product between the camera ray direction and a scaled normal
of the ellipsoid at the path connection.

x1

x0

x1

∗

∗1

∗2

s∗1
t∗1

t∗1
t∗1

s∗1

s∗2
1

Figure 6: A delta-sliced photon ball produces a sphere (left) if
camera-unwarped and an ellipsoid (right) when camera-warped.

4.6. Combining estimators using MIS

We can also combine different estimators using MIS in a similar
manner as steady-state photon primitives [DJBJ19].
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When evaluating each estimator, we need to first find the roots
of the equation g′(ξ′a). Each root corresponds to a complete light-
path. For estimators that use delta kernels, these estimators are
all expressed in a path space of the same dimensionality with the
same path contribution function, allowing us to view them as path
sampling strategies.

To combine multiple estimators we use score-based MIS [Jen18].
At each hitpoint, we re-evaluate the score using the other estima-
tor(s), which requires computing the Jacobians of those estimators
for the paths corresponding to the hitpoint. Since each estimator
shares the same path contribution in our formulation, the differences
between them are only in the their different Jacobians, which MIS
reinterprets as being part of the pdf. This allows us to MIS any
unbiased estimator expressed in our framework.

Fig. 7 demonstrates this in a delta time-gated scenario where
MISing the sliced photon ball and the sliced photon parallelepiped
provides substantial variance reduction compared to either estimator
in isolation.

Figure 7: In the same searchlight scene as in Fig. 5, here we
visualize the third bounce and compare the performance of sliced
parallelepipeds, sliced balls, and their MIS combination for a delta
time gate. Left: rendered with a time budget of 10s. Right: rendered
with a time budget of 3m. MIS is able to reduce variance by alle-
viating the singularities, which show up as bright lines for sliced
parallelepipeds and bright circles for sliced balls.

5. Implementation

Interactive CPU-GPU renderer. We first implemented a collection
of our new sliced estimators in a hybrid CPU-GPU renderer based on
the one released by Bitterli and Jarosz [BJ17]. This is implemented
in Javascript + WebGL and allows interactive exploration in a web
browser. We provide the full implementation of this interactive demo
within the supplemental material.

The renderer simulates the searchlight problem (see schematic in
Fig. 5), in a scene containing a collimated beam source in an infinite
homogeneous medium.

On the CPU, we first trace photons through the medium starting
at the beam source, generate un-sliced (steady-state) primitives
along the photon paths, and send the un-sliced primitives to the
GPU to rasterize. We construct the un-sliced primitives because
this implementation aims to produce transient animations, and the
un-sliced primitives can be reused for all transient frames.

In a fragment shader on the GPU, we evaluate whether the time
delay of the path corresponding to each fragment falls within the

time gate window, and calculates the path contribution. For the
camera-warped sliced ball primitive, we draw a full-screen quad
since the ellipsoid-shaped temporal wavefront will always encom-
pass all camera rays. The results, visualized in Fig. 8, confirm that
sliced photon primitives can potentially improve the quality for
time-gated volumetric rendering.

Offline ray tracing renderer. Motivated by the promising results
from the hybrid renderer, we then implemented some of our sliced
estimators in Bitterli’s open-source Tungsten renderer [Bit18]. We
choose to use sliced photon balls to handle 1-2 scattering events,
and combine sliced photon balls with sliced photon parallelepiped
using MIS to handle 3+ scattering. We also uses sliced photon balls
to deal with surface-to-medium transport.

We first trace photon subpaths from the light source, computing
the time delay for each vertex along the way. Then we iterate over all
bounces, generate corresponding photon primitives and store them
in a BVH. Instead of storing un-sliced primitives as in the hybrid
CPU-GPU renderer, here we first sample a specific time in the time
gate and store the corresponding delta-sliced photon primitive. This
simplifies our intersection code, and improves the performance of
our renderer since the delta-sliced primitives usually have a much
smaller bounding box than their steady-state counterparts. When
the emission function Le or the surface BSDF ρs is a Dirac delta
function (e.g. collimated beam light sources and smooth dielectric
surfaces), we fall back to using photon beams.

Long and short primitives. As in the work by Bitterli et al. [BJ17],
whenever we include a distance as one of the analytic dimensions,
we can choose to evaluate the corresponding transmittance in the
style of a “long” or a “short” primitive [KGH*14]. A long primitive
will have infinite extent and requires evaluating the exponential trans-
mittance (3) along the path segment. A short primitive is bounded
by using a binary track-length estimator of the transmittance along
the path segment: returning 1 up to the sampled free-flight distance,
and 0 beyond. For estimators that analytically integrate more than
one distance term, this choice is possible at each one.

In the previous sections, the mathematical formulations used the
long primitives but the illustrations correspond to the short ones
since it is harder to convey geometry on unbounded primitives. In
our implementations, we also use the short primitives since they are
easier to put into an acceleration structure.

6. Results

We evaluate our offline renderer implementation in Fig. 9 by compar-
ing the MIS combination of our sliced parallelepiped and sliced ball
estimators against progressive transient photon beams [MGJ*19]
in three scenes: SUBSURFACE SCATTERING, CORNELL BOX and
VOLUMETRIC CAUSTIC, using the camera-unwarped setting. All
the scenes use a Dirac delta as both the time gate function and the
emission pulse function. We implement both methods in the same
renderer, and render each frame at equal time using 8 cores of Intel
Xeon E5-2640V3 on a Linux cluster. For the progressive transient
photon beams, we use the spatio-temporal variant with parame-
ters α = 2/3, β = 1/2, and shoot 10K photons in each progressive
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Figure 8: Comparison of various sliced estimators in the searchlight scene from Fig. 5 using a box time gate. For each estimator we show a
split with 512 (left) and 300k (right) photon paths and include the render time for the latter (the render time for the former is roughly equal for
all estimators since it is dominated by overhead). For the same number of traced paths, our estimators (first 3 columns) outperform transient
photon beams [MGJ*19] (4th column) while providing a variety of strengths and weaknesses.

iteration. For paths that cannot be handled by either the sliced par-
allelepiped or the sliced ball estimator (such as caustics), we fall
back to using progressive transient photon beams. Please refer to
the supplement materials for time-gated animations of these scenes.

The SUBSURFACE SCATTERING scene in Fig. 9 (top) is inspired
by the searchlight problem from Habel et al. [HCJ13]. We shine
a beam of light at a semi-infinite highly-scattering medium at an
incident angle of 30°. (Parameters: σs = 1, σa = (0.01,0.1,1.0),
g = 0.) The comparison row shows the evolution of light transport
at three different times. Our MIS estimator dramatically reduces
variance of the multiple scattering compared to progressive transient
photon beams, by a factor of roughly 20–40.

The CORNELL BOX scene in Fig. 9 (middle) shows photons from
a collimated beam source hitting a diffuse box underneath and grad-
ually revealing the geometry in the scene. Our MIS estimator still
shows strengths in handling multiple bounces even with surfaces
and occluders. The variance reduction—while still on the order of
2–4×—is less dramatic than in the simpler SUBSURFACE SCAT-
TERING scene. Our method robustly improves variance only for the
categories of transport where we can combine multiple estimators
with MIS. Visible singularities remain around surfaces since we only
have one estimator that handles surface-to-media transport. This
suggests that using MIS to combine sliced beams and sliced balls
may be beneficial in such scenarios.

The VOLUMETRIC CAUSTIC scene in Fig. 9 (bottom) compares
the two methods in a setting with complex volumetric caustics.
Some of the photons leaving the point light source travel through a
glass ball (IOR = 1.5), delaying the temporal wavefront of refracted
light. Our MIS estimator still excels at simulating the multiple
scattering, especially at later times in the sequence. We have to fall
back to progressive transient photon beams for simulating specular
paths like the refractive caustic wavefront, so these paths remain

blurry. These paths are also noisier in our result since, in the same
render time, we are not able to trace as many specular paths for
transient beams due to the comparatively more expensive sliced
parallelepipeds and sliced balls we use for multiple scattering.
Using different photon counts for specular and non-specular paths
may balance their sources of error better.

Finally, the temporal wavefronts are much sharper in our results
compared to those from progressive transient photon beams, as
shown in the four renders on the left in CORNELL BOX and VOL-
UMETRIC CAUSTIC. This is because our estimator can produce an
unbiased estimate when using a delta time gate with a delta light
pulse, while the progressive transient photon beams method needs
more iteration steps to reduce its temporal bias.

7. Conclusions, Limitations & Future Work

We have presented a novel path integral framework and a general
recipe for deriving novel unbiased estimators for time-of-flight ren-
dering. Our formulation is also general enough to express many
existing techniques, providing a new perspective of previous work.
We instantiated this recipe to derive and implement several novel es-
timators, each taking the same basic form with a differing Jacobian
term. Each estimator has different strengths, weaknesses, and ap-
plicable sceniaros, and we showed how to combine complementary
estimators using MIS to reduce variance.

While we have demonstrated the potential for this theory, there
are still limitations and also exciting directions for future work.

Our theory supports both camera warping and unwarping, and
while we’ve shown working examples of both, our support for cam-
era warping is less efficient. Camera warping is more challeng-
ing because the shape of the photon primitives can become view-
dependent. This raises interesting questions of how to efficiently
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Figure 9: For each scene, we show the steady-state render on the left and two rows of time-of-flight renders on the right. Each top row is
rendered using only progressive transient photon beams, while each bottom row additionally uses our MIS estimator. Each column in a row
corresponds to a different time. The time-of-flight renders include only volumetric transport for clarity. For the Subsurface Scattering scene,
each image took 1.5 minutes to render; for the other 2 scenes, each image took 10 minutes. For the Cornell Box scene, the steady-state render
and the two renders on the left have their exposure set to -2EV to avoid overexposing.
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render sliced primitives, or build effective acceleration structures
for ray tracing. Here, different use cases (e.g. rendering a single
time-gated image vs. a full transient animation vs. an interactive
application allowing dynamic camera or scene manipulation) would
likely lead to different design decisions both in how to represent
these sliced primitives, and which primitives are most effective.
We have only explored a tiny slice of this design space in our in-
teractive rasterization-based GPU implementation and CPU path
tracing-based implementation, but more work is needed.

For now, we only support MIS between unbiased estimators, and
thus our method performs relatively poorly for paths that cannot
currently be MISed (Fig. 10). Since we have shown how to cast
some prior biased transient estimators into our framework, it should
be theoretically possible to MIS between biased and unbiased tran-
sient primitives to increase robustness, as has been previously done
for steady-state rendering by VCM/UPS/UPBP [GKDS12; HPJ12;
KGH*14]. This would be particularly helpful for surface-to-media
transport where we currently only have one unbiased estimator (the
sliced photon ball). Enabling MIS with biased strategies here could
dramatically reduced singularities that currently occur near surfaces.

Our framework allows estimators to be combined using MIS, and
we have found this to dramatically reduce variance/singularities
in the Jacobians. While the MIS is theoretically straightforward,
the shear number of possible estimators at our disposal does make
it challenging to (correctly) implement them by hand. Since the
unbiased estimators have the same expected value, each one can
serve as a validation baseline for the others. This does help debug
each individual strategy, but most strategies are only applicable to
certain types of light paths (e.g. 2+ transport for a sliced photon
plane), which complicates such validations and the logic needed to
determine which MIS weights are even needed. A more automated
way to implement such estimators could dramatically reduce com-
mon errors. Domain-specific programming languages have shown
promise for similar problems [ALLD17].

Depending on characteristics of the imaging setup, other physical
light transport effects might need to be considered. One natural
extension is to support polarization and fluorescence effects [JA18]
as the phase is closely related to the travel time of light. Heteroge-
neous media is also ubiquitous, but our implementations currently
do not support it. Besides the medium coefficients, the index of
refraction could varying spatially, which affects the speed of light
within the medium. It would be interesting to see if our estimators
could be adapted to such scenarios by building off the refractive
RTE [ABW14; PCS*20].

References
[ABW14] AMENT, M., BERGMANN, C., and WEISKOPF, D. “Refractive

radiative transfer equation”. ACM Transactions on Graphics 33.2 (Apr.
2014). ISSN: 0730-0301. DOI: 10/gbf323 11.

[ALLD17] ANDERSON, L., LI, T.-M., LEHTINEN, J., and DURAND, F.
“Aether: an embedded domain specific sampling language for Monte Carlo
rendering”. ACM Transactions on Graphics (Proceedings of SIGGRAPH)
36.4 (July 2017). ISSN: 0730-0301. DOI: 10/ggfg5n 11.

[Bit18] BITTERLI, B. Tungsten Renderer. 2018. URL: https : / /
github.com/tunabrain/tungsten/ 8.

Var = 1.00× Var = 1.00×

Var = 0.23× Var = 0.87×

Var = 16.6× Var = 2.24×

Sl
ic

ed
 

pa
ra

lle
le

pi
pe

d
M

IS
 sl

ic
ed

(p
ar

al
le

le
pi

pe
d,

 b
al

l)
Pr

og
re

ss
iv

e 
tra

ns
ie

nt
ph

ot
on

 b
ea

m

Full light transportNon-MISable excluded

Figure 10: In the left column we show only the light transport for
which we can MIS two of our estimators, while the right column
includes full light transport. When available, MIS greatly reduces
variance, but these improvements are diluted by the singularities in
non-MISable paths when computing full light transport. All images
take 5 minutes using the CORNELL BOX scene described in Sec. 6.

[BJ17] BITTERLI, B. and JAROSZ, W. “Beyond points and beams: higher-
dimensional photon samples for volumetric light transport”. ACM Trans-
actions on Graphics (Proceedings of SIGGRAPH) 36.4 (July 2017). ISSN:
0730-0301. DOI: 10/gfznbr 2, 8.

[DJBJ19] DENG, X., JIAO, S., BITTERLI, B., and JAROSZ, W. “Photon
surfaces for robust, unbiased volumetric density estimation”. ACM Trans-
actions on Graphics (Proceedings of SIGGRAPH) 38.4 (July 2019). DOI:
10/gf6rx9 1–3, 7.
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