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We present a second-order gradient analysis of light transport in participat-
ing media and use this to develop an improved radiance caching algorithm
for volumetric light transport. We adaptively sample and interpolate radi-
ance from sparse points in the medium using a second-order Hessian-based
error metric to determine when interpolation is appropriate. We derive our
metric from each point’s incoming light field, computed by using a proxy
triangulation-based representation of the radiance reflected by the surround-
ing medium and geometry. We use this representation to efficiently compute
the first- and second-order derivatives of the radiance at the cache points
while accounting for occlusion changes. We also propose a self-contained
two-dimensional model for light transport in media and use it to validate
and analyze our approach, demonstrating that our method outperforms
previous radiance caching algorithms both in terms of accurate derivative
estimates and final radiance extrapolation. We generalize these findings
to practical three-dimensional scenarios, where we show improved results
while reducing computation time by up to 30% compared to previous work.
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1 INTRODUCTION
Accurately simulating the complex lighting effects produced by par-
ticipating media in the presence of arbitrary geometry remains a
challenging task. Monte Carlo-based methods like path tracing nu-
merically approximate the radiative transfer equation (RTE) [Chan-
drasekhar 1960] by stochastically sampling radiance in the medium.
These approaches can handle complex geometry and general scat-
tering properties, but since they lack memory and are largely blind
to the radiance signal, they perform many redundant computations
leading to high cost. A common strategy to increase efficiency is to
adaptively sample radiance based on its frequency content, limiting
the sampling density in regions where radiance barely changes,
and placing more samples in regions with higher frequency varia-
tion [Zwicker et al. 2015].

Based on this principle, volumetric radiance caching [Jarosz et al.
2008] computes and stores radiance at sparse cache points in the
medium, and uses these samples to reconstruct radiance at nearby
locations whenever possible. The method is based on first-order
translational derivatives of the radiance, which are used to i) deter-
mine how far away a cache point can be reused while controlling
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error, and ii) improve reconstruction quality by extrapolating the
cached radiance values along their gradients. Unfortunately, since
the gradient derivations ignore occlusion/visibility changes, the
method fails in scenes containing occluders where changes in visi-
bility are the dominant factor in local radiance behavior. Moreover,
the reconstruction and error metric both rely on the same gradient
estimates and ignore variations caused by higher-order derivatives.
These factors lead to suboptimal cache point distributions, which
fail to properly sample high-frequency features such as occlusions,
while simultaneously oversampling other regions of the scene. This
results in reduced efficiency and visible rendering artifacts.
Second-order illumination derivatives have proven to be a pow-

erful and principled tool for sparsely sampling and interpolating
surface irradiance [Jarosz et al. 2012; Schwarzhaupt et al. 2012], as
well as controlling error in density estimation techniques [Belcour
et al. 2014; Hachisuka et al. 2010; Kaplanyan and Dachsbacher 2013].
Inspired by these recent developments, we propose a new second-
order, occlusion-aware radiance caching method for participating
media which overcomes the limitations of current state-of-the-art
methods.
To this end, we introduce a novel approach to compute first-

and second-order occlusion-aware derivatives of both single and
multiple scattering, and generalize the Hessian-based metric of
Schwarzhaupt et al. [2012] for controlling the error introduced by
first-order extrapolation of media radiance. In addition, we extend
recent work on 2D radiometry, currently limited to surfaces [Jarosz
et al. 2012], and derive a 2D theory of light transport in partici-
pating media. We use this framework to illustrate and analyze the
limitations of the state of the art, as well as the benefits of our
proposed method. We demonstrate the generality of our approach
by deriving occlusion-aware derivatives of 3D media radiance and
applying our Hessian-based metric to 3D cache distributions, show-
ing that the benefits predicted by our 2D analysis hold equally in
3D. Our approach improves volumetric cache point distributions in
isotropic homogeneous media, providing a significantly more accu-
rate reconstruction of difficult high-frequency features, as Figure 1
shows.

2 RELATED WORK
We summarize here existing work on radiance caching methods as
well as other techniques that leverage illumination derivatives to
improveMonte Carlo rendering. For a general overview of scattering
and existing adaptive sampling and reconstruction techniques, we
refer the reader to other recent sources of information [Gutierrez
et al. 2008; Zwicker et al. 2015].

Radiance caching: Irradiance caching was originally proposed
by Ward et al. [1988] to accelerate indirect illumination in Lamber-
tian scenes. The method computes and caches indirect irradiance
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Fig. 1. Statues scene rendered with both single and multiple scattering. Radiance at surfaces is excluded for illustration purposes (please refer to the digital
version for accurate visualization). (a) PT1: Path tracing, 2k samples/pixel, 2h. PT2: Path tracing, 500k samples/pixel, 500h. [Jarosz et al. 2008]: Occlusion-
unaware, gradient-based error metric, ∼19k cache points, 16k samples/cache, 155 minutes. Ours: Occlusion-aware, Hessian-based metric, ∼19k cache points,
16k samples/cache, 154 minutes. (b) Cached point distribution as seen from above for both single and multiple scattering. Ignoring visibility derivatives fails at
representing high-frequency shadows from the windows (a, blue and yellow) due to poor cache distribution, as well as other rapid radiance changes (a, red) in
areas with good cache distribution, due to imprecise extrapolation during reconstruction. In contrast, our occlusion-aware Hessian-based method correctly
handles these higher-frequency features by improving the sample distribution, as well as the reconstruction. The occlusion-unaware approach (b, top-left)
concentrates the samples excessively near the surfaces, usually reaching the cache minimum radius (see top-right histograms), but ignoring occlusion changes
throughout the scene. Using occlusion-aware first- and second-order derivatives, our method predicts the error introduced by gradient extrapolation more
robustly, increasing cache density in regions where gradients change rapidly (b, bottom).

only at a sparse set of points in the scene, and extrapolates or inter-
polates these values whenever possible from cache points deemed to
be sufficiently close by. Since indirect illumination changes slowly
across Lambertian surfaces, the costly irradiance calculation can
often be reused over large parts of the image, substantially accel-
erating rendering. There has been a wealth of improvements to
irradiance caching, but we discuss only the most relevant follow-up
work and refer to Křivánek and Gautron [2009] for a more complete
survey.

Ward and Heckbert [1992] significantly improved reconstruction
by leveraging gradient information, and Křivánek et al. [2006] in-
corporated heuristics to improve error estimation (and therefore
quality) during adaptive caching. Křivánek and colleagues [2005;
2005] also extended irradiance caching to handle moderately glossy,
non-Lambertian surfaces. Herzog et al. [2009] used anisotropic cache
points based on the orientation of the illumination gradient. All
these methods only considered surface light transport.

Jarosz et al. [2008] proposed volumetric radiance caching, which
accelerates single and multiple scattering in participating media.
They proposed an error metric based on the first-order derivative
of the radiance, but their formulation ignored volumetric occlusion

changes. In follow-up work, Jarosz et al. [2008] derived occlusion-
aware gradients, but only of surface illumination in the presence of
absorbing and scattering media, ignoring gradients of the media ra-
diance itself. Both approaches are prone to suboptimal cache point
distributions and visible artifacts since they ignore higher order
derivatives or occlusion changes in media. Our work addresses both
of these issues. Ribardière et al. [2011] proposed using anisotropic
cache points and a second-order expansion for radiance reconstruc-
tion. Their approach, however, did not consider visibility changes
due to their point-to-point computation of derivatives.

Recently, Jarosz et al. [2012] and follow-up work [Schwarzhaupt
et al. 2012] made significant progress in heuristics-free error con-
trol for surface irradiance caching by formulating error in terms of
second-order derivatives. In particular, Schwarzhaupt et al. [2012]
proposed a novel radiometrically equivalent formulation of irra-
diance gradients and Hessians, which properly accounted for oc-
clusions. The authors used these for extrapolation and principled
error control, respectively. We extend these ideas and apply them
to light transport in participating media, deriving first- and second-
order occlusion-aware derivatives for improved reconstruction and
principled error control in volumetric radiance caching.
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Table 1. Notation for the optical properties of participating media, and their differences in 3D and 2D.

3D 2D

Quantity Symbol Expression Units Expression Units

Particle density ρ Particles per unit volume m−3 Particles per unit area m−2

Cross-section σ Area m2 Length m
Scattering coefficient µs Probability density per differential length m−1 Probability density per differential length m−1

Absorption coefficient µa Probability density per differential length m−1 Probability density per differential length m−1

Extinction coefficient µt µt = µa + µs m−1 µt = µa + µs m−1

Transmittance Tr Tr (x1, x2) = exp(−
∫ x2
x1

µt (x)dx) unitless Tr (x1, x2) = exp(−
∫ x2
x1

µt (x)dx) unitless
Phase Function f (x, ®ωi , ®ωo ) Angular scattering of light at a point sr−1 Angular scattering of light at a point rad−1

Differential domain: Arvo [1994] derived closed form expres-
sions for irradiance derivatives in polygonal environments, and
Holzschuch and Sillion [1998, 1995] derived second-order illumina-
tion derivatives for error control in the radiosity algorithm. Local
differentials have also proven useful for texture filtering [Igehy 1999;
Suykens and Willems 2001], photon density estimation [Jarosz et al.
2011a; Schjøth et al. 2007], and spectral rendering [Elek et al. 2014].
Ramamoorthi et al. [2007] analyzed gradients of various surface
lighting effects, including occlusions, and showed how these can be
used for adaptive sampling and interpolation in image space. Lehti-
nen et al. [2013] and follow-up work [Manzi et al. 2014], proposed
to compute image gradients instead of actual luminance values in
Metropolis light transport (MLT), and feed a Poisson solver with
these gradients to reconstruct the final image. Later work [Kettunen
et al. 2015; Manzi et al. 2015] extended the applicability of this gradi-
ent domain idea to simpler Monte Carlo path tracing methods, and
demonstrated how solving light transport in the gradient domain im-
proves over primal space, while remaining unbiased. Rousselle et al.
[2016] showed how such Poisson-based reconstruction approaches
can be directly formulated as control-variate estimators. Kaplanyan
and Dachsbacher [2013] leveraged second-order derivatives of irra-
diance to estimate optimal kernel bandwidth in progressive photon
mapping, focusing on surface light transport only.
Closely related to our work, Belcour et al. [2014] performed a

frequency analysis of light fields within participating media. They
summarize the local light field using covariance matrices, which
provides Hessians of fluence (up to sign) due to scattering and ab-
sorption. Their approach explicitly accounts for radiance changes
only in the plane perpendicular to ray propagation, needing to aver-
age the per-light-path information from many rays to compute the
3D fluence spectrum. To account for visibility changes, they also
require precomputing the covariance matrices in a finite neighbor-
hood, sacrificing locality and incurring the cost of scene voxelization.
In contrast, we provide a fully local method for computing first-
and second-order derivatives of media radiance, without requir-
ing voxelization, all while accounting for changes due to visibility,
scattering, and transmittance.
2D spaces: Simplification to lower-dimensional spaces is a re-

curring tool used in problem analysis. In image synthesis, reduction
to hypothetical 2D worlds has been used to obtain insights and illus-
trate the benefits of more complex 3D approaches [Heckbert 1992;
Orti et al. 1996]. More recent analyses of derivative and frequency

domains [Durand et al. 2005; Mehta et al. 2013; Ramamoorthi et al.
2007], as well as recent work on complex reflectance filtering [Yan
et al. 2014, 2016] reduce the complexity of their derivations by per-
forming them in 2D, before showing how the gained insights gener-
alize to 3D. Jarosz et al. [2012] introduced a 2D surface radiometry
and global illumination framework, and showed how this allows for
a more practical analysis of 2D versions of standard rendering algo-
rithms due to faster computation and simpler visualization. Other
fields such as acoustic rendering have recently benefited from 2D re-
duction to provide interactive simulations [Allen and Raghuvanshi
2015]. Two-dimensional simulations have also been proved useful
to synthesize higher-dimensional light transport, as in transient
rendering [Bitterli 2016b; Jarabo et al. 2014]. In this paper we follow
a similar methodology as Jarosz et al. [2012], providing a novel 2D
radiometry framework for participating media.

3 2D AND 3D LIGHT TRANSPORT IN PARTICIPATING
MEDIA

We describe here the main radiometric aspects of working in a two-
dimensional domain, compared to 3D. Similar to Jarosz et al. [2012],
we assume an intrinsic model where light is generated, scattered,
and absorbed within a plane, thus ensuring energy conservation.

The outgoing radiance at a point x in a medium is defined as the
angular integral of the incident radiance Li (x, ®ωi ), modulated by
the scattering phase function fs (x, ®ωi , ®ωo ):

L(x, ®ωo ) =
∫
Ω
fs (x, ®ωi , ®ωo )Li (x, ®ωi ) d ®ωi , (1)

where ®ωi and ®ωo are directions over the spherical domain Ω point-
ing into and out of the point x respectively. The incident radiance
Li = Lm + Ls is the sum of radiance arriving from the surrounding
medium (Lm ) and from surfaces (Ls ):

Lm (x, ®ωi ) =
∫ s

0
µs (y(t))Tr (x, y(t))L(y(t), ®ωi ) dt , (2)

Ls (x, ®ωi ) = Tr (x, ys )Lo (ys , ®ωi ), (3)

where y(t) = x − t ®ωi is a point in the medium, and ys is a point on
a surface at distance s with outgoing radiance Lo modeled by the
rendering equation [Kajiya 1986]. The transmittance Tr models the
attenuation due to scattering and absorption between two points,
and µs (x) = ρσs is the scattering coefficient at x, with ρ and σs the
density and scattering cross-section in the medium, respectively. We
detail our notation in Table 1, and highlight the main radiometric
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Fig. 2. Jarosz et al.’s [2008] point-to-point approach for computing first-order derivatives of single (a) and multiple (b) scattering ignores radiance that becomes
occluded/disoccluded (red) as x is translated. Schwarzhaupt et al. [2012] compute occlusion-aware derivatives (c) of diffuse surface irradiance by considering
the occlusion-free subdivision (orange) of surrounding geometry as seen from xs . We compute occlusion-aware first- and second-order derivatives (d,e) by
constructing such occlusion-free subdivisions (orange) of the scene, both at surface locations for single scattering (similar to Schwarzhaupt’s work), and also at
ray-marched media locations for multiple scattering. Red segments represent approximations of both single and multiple scattering occlusions. Starred points
⋆ in (e) represent black samples at surfaces that occlude radiance from media.

differences between self-contained 2D and 3D worlds, described
below.
Differences in 2D: When moving to a 2D world, the intrinsic

radiometric model implies that all radiance travels within a pla-
nar medium, scattering therefore over angle instead of solid angle.
This means that radiance falls off with the inverse distance instead
of inverse squared distance [Jarosz et al. 2012]; this will become
important in our analysis of first- and second-order derivatives.
The main changes when applying Equations (1–3) in 2D are:

• The integration domain Ω of Equation (3) becomes circular
instead of spherical.

• The phase functions in 2D must be normalized over the
circle, not the sphere, of incident directions.

• Lo (ys ) now indicates radiance from the closest curve (the
2D equivalent of a 3D surface).

In the next sections, we use this self-contained 2D world to better
depict and reason about the improvements of our new occlusion-
aware gradients and Hessians for media (Section 4), and our second-
order error metric (Section 5), before extending them to a more
practical three-dimensional world. Working in 2D also allows us
to avoid collapsing a 3D scene into a 2D image for visualization,
where information from many media points would contribute to a
single image pixel. This allows us to illustrate the performance of
our algorithm in a more intuitive way (Section 6) and to depict the
introduced errors more clearly.

3.1 Radiance Caching in Participating Media
Before deriving our second-order, occlusion-aware volumetric ra-
diance caching approach, we first summarize Jarosz et al.’s [2008]
original formulation. To determine the radiance at any point x′ in
the medium1, their algorithm first tries to approximate this value
by extrapolating (in the log domain) the cached radiance Lk from

1Throughout the text, x′ represents points where we approximate radiance by interpo-
lating the cache points, while x represents points where we compute radiance and its
derivatives explicitly.

nearby cache point locations xk along their respective gradients:

L(x′, ®ωo ) ≈ exp
[∑

k ∈C (lnLk + ∇ lnLk · ∆x′)w(xk , x′)∑
k ∈C w(xk , x′)

]
, (4)

with ∆x′ = (x′ − xk ). Here ∇ lnLk = ∇Lk/Lk is the log-space
translational gradient of cache point xk , andw(xk , x′) is a weighting
function that diminishes the influence of a cache point to zero as x′
approaches the cache point’s valid radius. The collection of nearby
cache pointsC consists of all cache points whose valid radii contain
x′. If no nearby cache points are found, then the algorithm computes
radiance using Monte Carlo sampling and inserts the value and its
gradient into the cache for future reuse.
Jarosz et al. [2008] proposed to compute the valid radii using a

metric based on the local log-space radiance gradient:

R = ε

∑
Lj∑

∥∇Lj ∥
, (5)

where ε is a global error tolerance parameter and Lj and ∇Lj are
the individual Monte Carlo samples of radiance and translational
gradient respectively. Unfortunately, this error metric is an ad-hoc
approximation of the error in the log-scale interpolation, which can
lead to difficulty predicting the error in the sample distribution and
suboptimal cache distributions.

Jarosz et al. maintain a separate cache for single/surface scattering
and multiple scattering. They compute single-scattering gradients
by Monte Carlo sampling the first translational derivative of Equa-
tions (1) and (3) in surface-area form. They trace out many rays in
the sphere of directions around point x to obtain a number of surface
hit points ys . Their gradient calculation, in essence, considers how
the radiance Ls from each of these hit points would change (due to
changes of transmittance and geometry terms, but not visibility) as
x translates, but the surface hit points ys remain fixed (see Figure 2a).
For multiple-scattering gradients, they Monte Carlo sample the first
derivative of Equations (1) and (2), where the whole set of sampled
paths is assumed to move rigidly (see Figure 2b), accounting for
translational derivatives at each scattering vertex.

This gradient formulation can efficiently compute the local change
in radiance of any single Monte Carlo sample, but—by operating
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respective middle images.

independently on each radiance sample—it is not able to capture
global effects such as visibility gradients. As a consequence, changes
in radiance that becomes occluded/unoccluded as the shaded point
is translated are not taken into account (see Figures 2a and 2b, red).
As an illustrative example, Figure 3 shows how ignoring occlusions
(purple line) leads to incorrect single- and multiple-scattering gradi-
ents in the penumbra region beneath the occluder.
In the remainder of this paper we describe our novel Hessian-

based radiance caching method for participating media that over-
comes the aforementioned limitations. In Section 4 we introduce our
approach for computing occlusion-aware first- and second-order
derivatives of media radiance. Then, in Section 5 we introduce our
Hessian-based error metric and extrapolation method for volumetric
radiance caching.

4 RADIOMETRIC DERIVATIVES IN MEDIA
Following the work of Schwarzhaupt et al. [2012] on global illumi-
nation on surfaces, we formulate the radiance at x as a piecewise
linear representation of the incoming radiance. Conceptually, we
build an approximated coarse representation of the scene as seen
from the media point x by triangulating adjacent stochastic angu-
lar samples ys (see Figures 2c and 2d). The interesting property of
this triangulation is that the geometry term for each triangle (seg-
ments in 2D) models the attenuation due to the solid angle; as a
consequence, changes in the geometry term (due to translation of
x) model changes in the observed radiance.

We extend Schwarzhaupt et al.’s [2012] formulation to handle
not only light transport from surfaces, but also from media. In the
case of surfaces, the sample points ys are located at the first sur-
face point as seen from x in direction # —yx (Figure 2d). For points in
a participating medium, however, radiance arrives from multiple
distances along each direction. We therefore consider a set of con-
centric triangulations at increasing distances ri , each representing
the outgoing radiance at that particular distance in the medium.
If occluding geometry exists closer than the distance ri , we place
a zero-radiance sample at the surface intersection (points marked
with ⋆ in Figure 2e).
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Fig. 4. Left and center: Visible and occluded cases for 2D surface-media
radiance for an angle γ . Red segment represent the piecewise-linear con-
struction as seen from x. Right: 3D interpretation, where occlusions are
represented by slanted triangles, and visibility changes are modeled as
changes in the 3D geometry term between the triangle points y ∈ △, and x.

Handling Occlusions and Transmittance: In essence, we are
approximating the integration along Ω, by transforming the scene
into a discrete set of virtual piecewise linear representations of the
geometry and media around x. As noted by Schwarzhaupt et al., this
representation implicitly encodes changes in visibility by means
of the geometry term. Our approach for media, however, requires
taking transmittance into account and using different geometry
terms (see Figure 2c), since surface-medium light transport only has
a cosine term at the source ys . We illustrate this with a 2D example
in Figure 4, left and center: Assuming a constant angle γ between
vectors #   —xy0 and #   —xy1, occlusions generate segments ℓ = y1 − y0 at
grazing angles, with derivatives proportional to the steepness of
the segment. When moving within the medium, the projected angle
of ℓ towards x is proportional to cosθy, and therefore the radiance
from ℓ increases with cosθy. This allows modeling the visibility
changes as a change on the 2D geometry term G = cosθy/∥ # —xy∥.
This principle holds also for 3D, as Figure 4, right, shows: Occlusions
are represented by slanted triangular faces, and visibility changes are
modeled as changes in the 3D geometry term between the triangle
points y ∈ △ and x. We leverage this equivalence to provide a unified
formulation for radiance derivatives, applicable both to 2D and 3D2.

Using the formulation presented before, we approximate L(x, ®ωo )
by discretizing the space into a set of concentric rings R as:

L(x, ®ωo ) ≈
∑
ri ∈R

1
pdf(ri )

∑
ℓj ∈Li

Lj (x, ®ωo ), (6)

where the last ring rs ∈ R has all its vertices on surfaces, Li is the
set of segments for ring ri , and pdf(ri ) is the probability of sampling
a particular distance when building the ring (for the surface ring, we
have pdf(rs ) = 1). Lj is the radiance contributed by each segment
ℓj ∈ Li , defined by the integral:

Lj (x, ®ωo ) =
∫
ℓj

f (x, ®ωi , ®ωo )G(x, y)Tr (x, y)L(y, ®ωi ) dy. (7)

By construction, the visibility between x and y is V (x, y) = 1, and
y is a point on a virtual surface; we thus need to account for the
foreshortening at y. This allows for a unified formulation of both
surface-to-medium and medium-to-medium radiance derivatives,
using the same geometry term in both cases. Note that we have
2For convenience, we formulate all the equations in terms of 2D media and geometry
subdivisions in segments ℓ, but all formulae are equally applicable in 3D by substituting
segments ℓ by triangles △.
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merged together the phase function fs (x, ®ωi , ®ωo ) and scattering
coefficient µs (x) as a directional scattering function f (x, ®ωi , ®ωo ) =
µs (x)fs (x, ®ωi , ®ωo ), to make the following derivations simpler.
Differentiating Equation (6) with respect to x provides approxi-

mations for the first and second order derivatives:

∇L(x, ®ωo ) ≈
∑
ri ∈R

∑
ℓj ∈Li

∇Lj (x, ®ωo )
pdf(ri )

, (8)

HL(x, ®ωo ) ≈
∑
ri ∈R

∑
ℓj ∈Li

HLj (x, ®ωo )
pdf(ri )

, (9)

which in turn require differentiating the radiance from each seg-
ment.
Unfortunately, we cannot compute Equation (7) and its deriva-

tives analytically in closed-form, while computing it numerically
would be prohibitively expensive. We instead introduce a set of
assumptions to build a closed-form approximation:

• For a sufficiently fine subdivision the angle γ tends to 0, so
®ωi can be regarded as constant for the whole segment, and
f (x, ®ωi , ®ωo ) = f (x, ®ωℓ , ®ωo ), with ®ωℓ a fixed direction from
x to a point in segment ℓ.

• For all y ∈ ℓ, we assume constant Tr (x, y) = Tr (x, yℓ), and
L(y, ®ωi ) = L(yℓ , ®ωi ). Following existing approaches for sur-
face irradiance, we choose yℓ as the furthest point in the seg-
ment ℓ, which will be the first to be occluded/unoccluded.

These assumptions allow us to significantly simplify the integral in
Equation (7) to:

Lj (x, ®ωo ) ≈ f (x, ®ωℓj , ®ωo )Tr (x, yℓj )L(yℓj , ®ωi )
∫
ℓj

G(x, y) dy

= f (x, ®ωℓj , ®ωo )Tr (x, yℓj )L(yℓj , ®ωi ) Fℓj (x), (10)

which now admits a closed-form solution in both 2D and 3D (see Ap-
pendices B and C). More importantly, this allows us to approximate
the derivatives of Lj in closed form as:

∇Lj ≈ LF∇f + ∇LF f , (11)
HLj ≈ LFHf + ∇LF∇

ᵀ f + ∇f ∇ᵀLF + HLF f , (12)

where

∇LF = Lr∇Fℓ + ∇Lr Fℓ , (13)
HLF = LrHFℓ + ∇Lr∇ᵀFℓ + ∇Fℓ∇

ᵀLr + HLr Fℓ , (14)
∇Lr = L∇Tr + ∇LTr , (15)
HLr = LHTr + ∇L∇ᵀTr + ∇Tr∇

ᵀL + HLTr . (16)

For brevity we have omitted function parameters, and we express
gradients and Hessians in terms of the scaled radiance LF = FℓLr ,
and the reduced radiance Lr = LTr . While Equations (10–16) are
general, we restrict our work to Lambertian surfaces and isotropic,
homogeneous media (in Section 7 we discuss how to extend it to
anisotropic and heterogeneous media). This means that both L and
f are constant, and therefore their derivatives cancel out as ∇L =
HL = ∇f = Hf = 0, removing directional dependences; this allows
us to simplify Equations (11) and (12) to:

∇Lj ≈ Lf (Tr∇Fℓ + ∇Tr Fℓ) , (17)

HLj ≈ Lf
(
TrHFℓ + ∇Tr∇ᵀFℓ + ∇Fℓ∇

ᵀTr + HTr Fℓ
)
. (18)

We refer to Appendices A, B and C for all the terms.
By construction, our formulation in Equation (6) and its deriva-

tives (Equations (8) and (9)) are biased but consistent estimators of
L(x, ®ωo ), ∇L(x, ®ωo ), and HL(x, ®ωo ), respectively. In addition the as-
sumptions imposed in Equation (10) introduce some additional bias
due to the piecewise assumption in the scattering f , transmittance
Tr , and radiance terms L. However, as shown in Figure 3 our formu-
lation converges accurately to the actual derivatives. Note that we
use this biased but consistent approximation only to compute first-
and second-order derivatives of media radiance (Equations (8) and
(9)), while computing actual radiance values (Equation (1)) using
the standard unbiased Monte Carlo estimator. In the following, we
describe how to use the derivatives in Equations (8) and (9) for in-
terpolating radiance from a set of cache points, and define an error
metric for such interpolation.

5 SECOND-ORDER ERROR CONTROL FOR MEDIA
RADIANCE EXTRAPOLATION

The error in radiance caching is controlled by a tolerance value
ε , and depends both on how radiance is extrapolated, and on the
radiance moments at cache point x. These moments define a valid
bounding region ℵ where a point x′ can be used for extrapolation.
We provide here the key ideas and resulting equations for the valid
regions in the context of 2D and 3D participating media and provide
detailed derivations in the supplementary material.
Existing work on radiance caching for participating media es-

timates the relative error using radiance gradients at x. However,
ignoring higher-order derivatives creates suboptimal cache distribu-
tions that often oversample regions near surfaces and light sources.
Given the radiance and the first n derivatives at a media point x, we
can approximate radiance at point x′ ∈ ℵ using an nth-order Taylor
expansion. Following previous work [Schwarzhaupt et al. 2012] we
truncate to order one, approximating L(x′, ®ωo ) as:

L(x′, ®ωo ) ≈ L(x, ®ωo ) + ∇L(x, ®ωo )∆x′ . (19)

Since we focus on isotropic media, we remove the directional depen-
dence in the following derivations to simplify notation. By using a
second order expansion of L(x) as our oracle, we can approximate
the relative error ϵ̂ ′(x′) of the extrapolation as:

ϵ̂ ′(x′) ≈

��∆ᵀ
x′HL(x)∆x′

��
2L(x)

, (20)

with HL(x) the Hessian matrix of L(x). This expression is similar
to the second-order error metric proposed by Jarosz et al. [2012]
and follow-up work by Schwarzhaupt et al. [2012], although these
works dealt with surfaces only.

By integrating Equation (20) in the neighborhood of x for a given
error threshold ε , we can express the valid region in two-dimensional
media as an ellipse with principal radii Rλi2D (see Equations (S.9)-
(S.12) in the supplemental for the complete derivation):

Rλi2D =
4

√
4L(x)ε
π |λi |

, (21)

where λi is the i-th eigenvalue of the radiance Hessian HL(x).
This formula is analogous to the relative error metric presented
by Schwarzhaupt and colleagues [2012] for surfaces, but here the
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Fig. 5. 2D single and multiple scattering gradients in similar setup to Figure 3, top. Compared against an occlusion-unaware reference solution [Jarosz et al.
2008], our method correctly captures both gradients orientation (color-coded angle), and magnitude. The graphs show the evolution of the gradient across the
dotted black line for both methods (purple, orange), and the reference solution (blue).

radii are computed by taking the principal components of the vol-
umetric radiance Hessian. Adding the third dimension, the valid
region for a cache point becomes a 3D ellipsoid, whose principal
radii are:

Rλi3D =
5

√
15L(x)ε
4π |λi |

. (22)

Our second-order error metric and its derived radius assume
knowledge of the radiance and its derivatives at x. In practice, these
are usually computed by Monte Carlo techniques, which lead to
other sources of error such as variance (inherent to Monte Carlo
sampling), or bias (due to inaccuracies computing the derivatives).
The presented metric describes the error introduced by extrapo-

lation from a single cache point in participating media. However, at
render time, we compute radiance at each shaded point by interpo-
lating from multiple cached points, as:

L(x′) ≈

∑
k ∈C [L(xk ) + ∇L(xk ) · ∆x′]w(xk , x′)∑

k ∈C w(xk , x′)
, (23)

with C the set of cache points whose radii include x′, and w(xk , x′)
the interpolation kernel. Following Jarosz et al. [2008], we use a cubic
interpolation kernelw(xk , x′) = 3d2−2d3 withd=1−∥x′− xk ∥ R−1k .
Since Equation (23) only interpolates from cache points which pre-
dict a maximum error ϵ̂ ′ < ε at x′, the error of the weighted sum
is equally upper-bounded by ε . Note that, as opposed to Jarosz
et al. [2008] (4), we interpolate in linear space, where the error is
more accurately predicted by our Hessian-based metric described
in Equation (20).

6 RESULTS
In the following we illustrate the accuracy and benefits of our
method. We start showing our results in a two-dimensional world,
and compare it against a 2D version of the current state-of-the-
art method [Jarosz et al. 2008]. We refer the reader to the supple-
mentary material for the additional expressions to compute two-
dimensional occlusion-unaware gradients. Then, we move to 3D,
to demonstrate that our results are also consistent in a more prac-
tical three-dimensional scenario. For comparison purposes, all 3D

insets show only single and multiple scattering in media, discarding
surface radiance. Unless it is explicitly mentioned, we use isotropic
points with the smallest principal axis of the Hessian. This is the
most costly scenario for our method in comparison to previous work,
since we cannot adapt to the signal as faithfully as with anisotropic
points, and therefore require more points.

Implementation: We compute both radiance and derivatives at
point x by stratified sampling uniformly in the sphere, with equal
solid angle strata (in the case of 2D, this stratification is in the circle,
using equal angle stratification). This reduces variance compared to
pure uniform sampling. More importantly, it allows to very simply
build the subdivision using the angular samples, by just connecting
samples from adjacent strata [Schwarzhaupt et al. 2012]. This strat-
ification is used for both media and surfaces, including area light
sources, while other direct light sources (such as directional or point
lights) must be handled separately. The accuracy of the subdivision
for computing the derivatives relies on a dense sampling of the
angular domain, and, as in any sampling problem, our sampling rate
limits the amount of radiance changes that we can recover. This
is especially important when capturing fine details such as small
light sources, which are not computed using next event estimation
(NEE), but could also be important in high-frequency fluctuations
of radiance in media. However, in practice our method presents
much better convergence than previous work [Jarosz et al. 2008]
with increasing number of angular samples, as shown in Figure 3.
Introducing a NEE-aware subdivision combined with the standard
angular one via multiple importance sampling could significantly
improve the performance of the derivative computation, although
we leave this to future work. We perform the subdivision within
the medium by uniformly ray-marching the medium at discrete
distances around x, and joining adjacent angular samples within
each marching step (see Figure 2e).
Unless stated otherwise, single scattering in all compared meth-

ods refers to radiance emitted or reflected (first bounce) by surfaces.
We limit multiple scattering to the second bounce for all methods.
We did this mainly to reduce excessive variance when computing ref-
erence derivatives with finite differences. Note that both occlusion-
unaware and occlusion-aware methods are equally applicable to
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Fig. 6. Radiance gradients at discrete locations in 2D computed with occlu-
sion unaware, and our occlusion awaremethods, compared against reference
gradients (bottom row) computed with path traced finite differences using
4M samples/gradient. Left column, top and middle, show single scatter-
ing gradients computed with 256 angular samples/gradient. Right column,
top and middle, show multiple scattering gradients computed with 65536
samples/gradient (256 angular × 256 ray samples).

higher number of media bounces, although they usually require a
high number of samples to obtain noiseless solutions.
Following previous methods [Jarosz et al. 2008], we first pre-

populate the cache by uniformly sampling a ray from the camera,
and ray-marching along the media, placing cache points in case they
do not fulfill our error metric (Section 5). At render time, we evaluate
Equation (23) at ray-marched points x′ in the medium, extrapolating
radiance from the surrounding valid cache points. If no valid cache
points are found for x′ then we compute its radiance and derivatives,
and add it to the cache. As in previous methods [Jarosz et al. 2008],
we separate single and multiple scattering caches, each in a different
octree for efficient cache query.
All results were computed on a desktop PC with an Intel Core

i7 3.4 GHz CPU and 16GB RAM. Note that all methods used for
rendering comparisons of the complex 3D scenes Whiteroom and
Staircase were accelerated with Embree ray-tracing kernels [Wald
et al. 2014], and therefore the performance with respect to the other
3D scenes is higher.

6.1 Results in 2D
To evaluate the error introduced by our occlusion-aware compu-
tations of derivatives in a clear, intuitive way, we rely on their
two-dimensional versions. In Figure 3 we showed the convergence
of gradient computation with the number of angular samples. Pre-
vious approaches not taking into account visibility changes fail
to estimate the gradient. In contrast, our derivative formulation
converges to the actual gradient, even in areas of penumbra for
both single and multiple scattering. The quality of our estimated
derivatives increases with the number of angular samples, since the

Scene diagram (top)
Reference (bottom)

[Jarosz et al. 2008]
13673 iso. points

Ours

13234 iso. points
Ours

9100 aniso. points

Fig. 7. Single scattering in a 2D setup with four line lights and four occlud-
ers. Point distributions (top row) show how a occlusion-unaware gradient
metric [Jarosz et al. 2008] fails to estimate the correct radiance changes in
complex shadows, while tending to concentrate cache points near reflect-
ing geometry. In contrast, our algorithm distributes points according to
occlusion-aware, second-order derivatives of radiance, capturing complex
light patterns more accurately. Leveraging curvature information in the
Hessians enables anisotropic cache points that further reduce the number
of required cache points while maintaining quality (see error maps).

approximations introduced by our assumptions vanish as the strata
size diminishes.
In Figure 5 we compare the evolution of single and multiple

scattering gradients across a penumbra region, computed with our
method and previous work. We illustrate them in polar coordinates
(magnitude and orientation) in a simple scene with a medium illumi-
nated by an area light on top, and a line acting as an occluder within
the medium. We compute reference gradients with path traced fi-
nite differences. Our approach manages to correctly compute both
gradients magnitude and orientation in the penumbra region. The
right graphs show a progression of gradients along the dotted line.
The graphs show that our method is able to match the ground-
truth, while the occlusion-unaware method both underestimates
the magnitude of the gradient and computes an incorrect direction.

Figure 6 shows a comparison of gradients (shown as a vector field)
with the occlusion-unaware method, our technique, and a ground-
truth solution computed with finite differences. Our method cor-
rectly captures complex radiance changes, including strong changes
near occluder boundaries, closely matching the ground-truth refer-
ence.
Our error metric takes into account second-order derivatives to

drive sample-point density in the scene. Since we use the estimated
occlusion-aware Hessians as an oracle of the error, this allows us to
place more cache points in areas with higher frequencies. Addition-
ally, our improved gradients allow for a more accurate extrapolation
within the valid region of the cache points. Figure 7 (top) shows a
scene with overlapping shadows, created by four lights and four
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Isotropic

(1725 points)

Anisotropic

(1388 points)
Eccentricity0 1

Fig. 8. 2D point distributions in a medium illuminated by a square-shaped
light, using our Hessian-based error metric with isotropic and anisotropic
points (left) using the same relative error threshold. Eccentricity of radi-
ance curvature (right) determines anisotropy of cache points (left, green),
stretching circular points to ellipses along the direction of lower change.

occluders (top-left diagram indicates the shaded region in green).
Previous work (second column) drives point density based on the
log-space gradient of radiance; in practice this tends to drastically
increase point density near light-reflecting geometry, failing to ef-
ficiently sample shadowed regions. This can only be mitigated by
radius-clamping heuristics (in this case based on the pixel size), thus
breaking the principled properties of the approach. In contrast, our
method (last two columns) does not rely on heuristics and manages
to correctly capture shadows by placing more points near shadow
boundaries.
By computing principal components of radiance Hessians, we

can use the radiance eccentricity (i.e. the eccentricity of the ellipse
defined by the Hessian of the radiance) to stretch media cache points
along the components with lower radiance variation, obtaining el-
liptic (2D) or ellipsoidal (3D) cache points. In Figure 7 (bottom) we
compare previous work with our isotropic and anisotropic cache
distributions. Even with a similar number of isotropic points (∼13k),
our improved derivatives manage to capture the overlapping shad-
ows much better; using our anisotropic technique, we manage to
reduce cache size by 32%, while keeping the same error threshold.
Figure 8 illustrates eccentricity across a 2D scene with a square
light emitter in the center. By keeping the same error threshold, our
anisotropic cache reduces the number of cache points by up to 20%.

6.2 Results in 3D
Here we further analyze occlusion-unaware gradients and our oc-
clusion-aware Hessians on four 3D scenes: Strips, Statues, Patio and
Cornell holes. Unless stated otherwise, all renders are taken using
16 samples per pixel, and performing uniform ray marching with a
step size of 0.1.
The Statues scene shown in Figure 1 combines both surface-to-

media single scattering, and media-to-media (two-bounce) multiple
scattering. The scene includes distant and local light sources (side
windows and ceiling, respectively). Occlusion-unaware single and
multiple scattering gradients lead to big splotches on the boundaries
of light beams coming through the windows. In the case of light
coming through the ceiling, while the point distribution captures
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Reference

[Jarosz et al. 2008] (35k points)

Fig. 9. Strips scene comparing single scattering for an increasing number of
cache points, and showing relative error with respect to the reference image.
While occlusion-unaware gradients method requires 35k cache points to
fairly capture occlusions, our occlusion-aware Hessians produce similar
results with just 3k points.

shadow contours fairly well, extrapolation fails since occlusion-
unaware gradients ignore light effects produced in the penumbra
region. Moreover, occlusion-unaware techniques concentrate most
cache points near light sources and reflecting surfaces (Figure 1,
middle), as seen previously in 2D. Since the gradients are large in
these areas, this results in very small valid radii for the cache points.
Histograms (Figure 1, right) show how for previous work nearly
8000 points (leftmost bin, top blue histogram) on single scattering
reach the minimum radius, which is close to a 40% of the total num-
ber of points. This implies that the performance of this approach
is highly dependent on the value of such minimum radius, which
undermines the principled basis of its error metric. In contrast our
method generates better point distributions, which correctly cap-
ture light gradients while avoiding additional heuristics to control
oversampling in certain regions.

The Strips scene (Figure 9) shows surface-to-medium single scat-
tering, for an increasing number of cache sizes. Surface radiance is
excluded for illustration purposes. The occlusion-unaware method
needs an order of magnitude more cache points to get comparable
results to ours (see progression insets). This implies that we have
to significantly drop the tolerance parameter to create sufficiently
fine point distributions in occluded regions. As we can observe in
Figure 9, top row, our method yields better sampling density and
extrapolation from the sampled points, achieving similar results
with an order of magnitude less points.

Computing derivatives of surface-to-medium form factor involves
operating with 3×3 matrices (see Appendix C). Including the cost
of scene subdivision, this introduces an overhead per cache point of
just 9%, compared to computing only point-to-point first derivatives
(see Table 2 for the Patio scene). Nevertheless, as we can see in
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[Jarosz et al. 2008]

(36k points, 124 min.)

[Jarosz et al. 2008] Ours (iso) Ours (aniso) Reference

Ours (32k isotropic 

points, 122 min)
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points, 81 min.)

Fig. 10. Patio scene with single scattering. Our method outperforms existing
occlusion-unaware techniques on an equal-time comparison. Moreover, our
anisotropic cache manages to significantly reduce total time under the same
error tolerance ε = 1.5e−4 than our isotropic cache, while still retaining
shadow details on window boundaries and near thin handrails as shown in
the insets.

Table 2. Computation data for the Patio scene. For the isotropic case, our
method yields better results in equal time. Using anisotropic points provides
a further 30% computation time reduction at the same low error threshold
due to the improved point distributions and larger valid regions.

Method Error tol.3 Cache gen. Time / point Total time

Jarosz et al. 2008 0.3 124 min / 36k pts 206 ms 136 min
Ours (isotropic) ε=1.5e−4 122 min / 32k pts 225 ms 135 min
Ours (anisotropic) ε=1.5e−4 81 min / 21k pts 225 ms 94 min

Figure 10, our method yields better equal-time results with isotropic
points. Moreover, our anisotropic approach stretching spherical
cache points along the principal components of radiance, allows to
reduce both the number of points and the total computation time
by 30% for the same error tolerance.
The Cornell Holes scene (Figure 11) shows how our method suc-

cessfully resolves difficult, high-frequency occlusions due to light
coming out of the box. Our method provides a built-in mechanism
to significantly reduce error in two ways: additional samples reduce
variance but also create finer subdivisions, thus improving accuracy
when detecting occlusions.

We also demonstrate the benefits our method in scenes of higher
complexity. In the Staircase scene (Figure 12) we show an equal-time
comparison with a render time of 90 minutes. Path tracing has not
3Note that Jarosz et al.’s metric (Equation (5)) is different from our Hessian-based
integrated error ε , thus tolerance values of both metrics have different meaning.
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Fig. 11. Cornell Holes scene showing complex high-frequency shadows
handled by our method, compared against equal-time path traced, and
occlusion-unaware gradients solutions.

fully converged to the reference solution in that time, and while
the point distributions of occlusion-unaware methods manage to
capture the main shadow boundaries, occlusion-unaware gradients
still create visible artifacts on the shadow patterns created by light
coming from different windows. Progressive photon beams [Jarosz
et al. 2011b] manages to capture high frequency changes, but fails
to densely sample the medium due to distant lighting. In equal time,
our method manages to get the closest match to the reference by
correctly capturing complex shadow configurations. In Figure 13 we
also illustrate convergence of our occlusion-aware gradients in the
same scene by analyzing the changes on a XZ-aligned slice of the
media crossing through the light shafts. We compare our gradients
against finite differences gradients on two orthogonal scanlines
that cross through the shadows, and demonstrate how our method
converges to the reference gradients by creating finer subdivisions
with higher number of angular samples.

Finally we perform comparisons up to equal-quality in theWhite-
room scene, which presents high scattering due to bright white
walls and furniture. In a sequence of insets with increasing render
time, we show how our method manages to recover high-frequency
shadows in much less time than other methods, which also fail to
capture thin shadows near window boundaries.

7 CONCLUSIONS
We have presented a new occlusion-aware method for efficiently
computing light transport in homogeneous isotropic media, includ-
ing both single and multiple scattering. At the core of our method
lies an efficient computation of radiance derivatives for both surface-
to-medium and medium-to-medium light transport. Our radiance
derivatives, including visibility changes for single and multiple scat-
tering, improve both the placement of cache points, as well as their
interpolation using a Taylor expansion.
We have additionally formalized light transport in participating

media in a self-contained 2D world; we hope that this framework
becomes a valuable contribution for the graphics community as a
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Path tracing (32h) Path tracing (90 min) [Jarosz 2008] (89 min) Ours (87 min)PPB (88 min)

Fig. 12. Staircase scene showing equal-time comparisons of path tracing, progressive photon beams (PPB), occlusion-unaware gradients [Jarosz et al. 2008],
and our second-order occlusion-aware solution. We include a fully converged solution for path tracing. Each cache in both our method and Jarosz et al. is
computed using 16k stratified angular samples, and rendered using 16 samples per pixel. The progressive photon beams solution was obtained using the
publicly available Tungsten rendering engine [Bitterli 2016a]. Note how the occlusion unaware method creates visible artifacts in the patterns created by the
shadows crossing from different windows, while our method correctly captures those details in equal time. Due to distant lighting, progressive photon beams
fails to densely sample the light shafts coming through the windows, resulting in visible variance after 400 iterations of 1M beams/iteration.
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Fig. 13. We demonstrate the convergence of our occlusion aware derivatives
in complex 3D scenarios like Staircase. We illustrate this using an XZ-aligned
slice of the media that captures the occlusion changes produced by the light
shafts through the windows. Right graphs show our computed gradients
across two orthogonal scan lines of the slice, where we can observe how our
method matches the reference derivatives computed with finite differences.
In the bottom graph we also illustrate convergence at the white dot respect
to the number of angular samples. Higher number of angular samples create
finer scene subdivisions and increase the precision of our derivatives, which
provide a very good estimation of the actual derivatives.

testbed for novel algorithms. Our results (2D and 3D) demonstrate
a significant improvement over the current state of the art, both in
equal-time and equal-error comparisons.

Limitations & Future Work. Our work shares some of the limita-
tions of traditional radiance caching algorithms, namely the assump-
tion of relatively low frequency transport with finite derivatives.
High-frequency illumination due to e.g. small light sources would
require a very fine-grained subdivision to accurately find shadow
boundaries. Other high-frequency effects such as caustics would

additionally require departing from the assumption of constant an-
gular radiance Lo in Equation (10), which would in turn require
computing its translational derivatives.

In our implementation we have assumed isotropic media, which
helps reduce the complexity and storage requirements of the cache
points. By using an angularly-resolved caching of radiance and its
derivatives (by using e.g. spherical harmonics [Jarosz et al. 2008;
Křivánek et al. 2005]) anisotropic phase functions could be added.
Incorporating heterogeneous media would break the assumption of
constant scattering term (i.e. ∇f , Hf , 0) given the variability of
µs and fs within the media. This would require us to use the full
radiance derivatives (Equations (11) and (12)), instead of the simpli-
fied Equations (17) and (18). Moreover, it would require changing
our derivatives of transmittance Tr ; given our marching procedure
for subdividing the media, a similar approach to Jarosz et al.’s [2008]
for single scattering could be used. Finally, high-frequency hetero-
geneity in the medium would require a very fine subdivision, which
would potentially make our approach impractical.

Our error metric assumes that the error is due to extrapolation
only, with perfect radiance samples and derivatives. However, both
are computed stochastically, which introduces variance (in the case
of radiance), and bias (on the derivatives). Developing new met-
rics taking into account these additional sources of error, as well
as accurately characterizing them, are interesting avenues of fu-
ture work. In this regard, analyzing other consistent approaches to
compute derivatives (e.g. using photon mapping [Kaplanyan and
Dachsbacher 2013]) might be helpful. Evaluating whether using our
biased estimator of radiance (Equation (6)) instead of our Monte
Carlo estimate of Equation (1) would be interesting too, making
our cache points more robust by reducing variance (at the price of
additional bias). Finally, it may be possible to use our first- and
second-order derivatives to accurately estimate the optimal kernel
in density estimation algorithms for participating media [Hachisuka
et al. 2013], as well as to guide sampling in media or to improve
quadrature-based ray-marching methods [Muñoz 2014].
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Fig. 14. We illustrate convergence to an equal-quality reference solution with our algorithm, Jarosz et al. method, and path tracing for theWhiteroom scene. In
3D scenes of higher complexity, our method presents much better convergence properties than previous ones, being able to reconstruct the shadow boundaries
near the window frames in much less time.
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APPENDICES
In the following we summarize 2D and 3D expressions of transla-
tional derivatives of transmittance and form factors needed for our
method. We box all relevant final expressions that to the best of our
knowledge are new to the literature. We define column vectors as
®v and row vectors as ®vᵀ. Expressions such as ®r1 ·®r2 denote dot (in-
ner) products, while expressions such as ®r1®r

ᵀ
2 , ∇(. . .)∇ᵀ(. . .), and

(. . .)(. . .)ᵀ denote vector outer products.

A HOMOGENEOUS TRANSMITTANCE DERIVATIVES
Homogeneous transmittance is modeled by the exponential decay
due to extinction,

Tr = e−µt ∥
#—yx∥ (24)

where ∥ # —xy∥ denotes distance between source y and shaded point x.
Its gradient and Hessian with respect to a translation of x are

∇Tr = −µt
# —yx
r
Tr , (25)

HTr = −µt (
J( # —yx)
r

−
1
r3

# —yx # —yxᵀ −
µt

r2
# —yx # —yxᵀ) Tr . (26)

B 2D SEGMENT-MEDIA FORM FACTOR DERIVATIVES
The form factor between a 2D segment ℓ and a media point x (Fig-
ure 15, left) is defined as the integrated curve-media geometry term
along all segment points. This is equivalent to the angular ratio
covered by ℓ as seen from x

Fℓ(x) =
1
2π

∫ y1

y0

cosθy
∥x − y∥

dℓ(y) =
1
2π

arccos
(

# —xy0
r0

·

# —xy1
r1

)
.

where ri = ∥ # —xyi ∥. The form factor gradient and Hessian become

∇Fℓ(x) = −
1
2π

∇ cosθ ′
√
1 − cos2 θ ′

(27)

HFℓ(x) = −
1
2π

(
J(∇ cosθ ′)
√
1 − cos2 θ ′

+
cosθ ′

(1 − cos2 θ ′)3/2
∇ cosθ ′∇ᵀ cosθ ′

)
(28)

where J is the Jacobian operator, and:

∇ cosθ ′ =
cosθ ′

r20

# —xy0 +
cosθ ′

r21

# —xy1 (29)

−
( # —xy0 + # —xy1)

r0r1
, (30)

J(∇ cosθ ′) = −J
(

# —xy0
r0r1

)
− J

(
# —xy1
r0r1

)
+ J

(
cosθ ′

r20

# —xy0

)
+ J

(
cosθ ′

r21

# —xy1

)
, (31)

J
(

# —xyi
r0r1

)
=

J( # —xyi )
r0r1

+

# —xyi # —xyᵀ0
r30r1

+

# —xyi # —xyᵀ1
r0r31

, (32)

J

(
cosθ ′

r2i

# —xyi

)
=

cosθ ′

r2i
J( # —xyi ) +

# —xyi
r2i

∇ᵀ cosθ ′

+
2 cosθ ′

r4i

# —xyi # —xyᵀi . (33)

C 3D TRIANGLE-MEDIA FORM FACTOR DERIVATIVES
The form factor between a 3D triangular face △ and a media point
x (see Figure 15, right) is defined as the integrated surface-media
geometry term along all points in the triangle. Analogous to 2D,
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Fig. 15. Setups for segment-to-media (2D, left) and triangle-to-media (3D,
right) form factors.

this has analytical solution equal to the ratio of solid angle covered
by the triangle as seen from x,

F△(x) =
1
4π

∫
y∈△

cosθy
∥x − y∥2

d△(y) =
Ω

4π
. (34)

Solid angle Ω of a triangle can be computed as [Van Oosterom and
Strackee 1983],

Ω = 2 arctan
|A|

B
(35)

with

A = ®r1 ·(®r2 × ®r3) (36)
B = r1r2r3 + (®r1 ·®r2) r3 + (®r2 ·®r3) r1 + (®r1 ·®r3) r2 (37)

where ®ri = #   —xyi , and ri = ∥®ri ∥ (see Figure 15, right). Note that the
numerator A requires an absolute value to ensure positive vector
order (i.e. triangle winding) with respect to x. Also, when obtaining
negative arctangent values, π must be added to the obtained solid
angle.

The gradient of the form factor with respect to a translation of x
becomes

∇F△(x) =
1
2π

∇ arctan
|A|

B
(38)

=
1
2π

B∇|A| − |A|∇B

|A|2 + B2
, (39)

and its Hessian yields

HF△(x) =
1
2π

(
∇(|A|)∇ᵀB − ∇B∇ᵀ(|A|)

|A|2 + B2

+
BJ(∇(|A|)) − |A|J(∇B)

|A|2 + B2

−
(B∇(|A|)−|A|∇B)

(
∇(|A|2) + ∇(B2)

)ᵀ(
|A|2 + B2

)2 )
. (40)

Note that for computing the terms ∇(|A|) and J(∇|A|), we can
apply the derivatives of the absolute value of a vector function:

∇(|A|) =
A

|A|
∇A, (41)

J(∇|A|) =
AJ(∇A) + ∇A∇ᵀA

|A|
−
A2(∇A∇ᵀA)

|A|3
. (42)

The gradient of A becomes

∇A = J (®r2 × ®r3)®r1 + J (®r1) (®r2 × ®r3) . (43)

By the Jacobi identity we have that

J (®r2 × ®r3) = ®r2 × J(®r3) − ®r3 × J(®r2) (44)

where any vector-matrix cross product #—v × J(•) can be expressed
by means of the matrix multiplication form

#—v × J(•) = ⟨ #—v ⟩J(•) (45)

#—v = ©­«
v(1)
v(2)
v(3)

ª®¬, ⟨ #—v ⟩ = ©­«
0 −v(3) v(2)

v(3) 0 −v(1)
−v(2) v(1) 0

ª®¬. (46)

Since J(®r1)=J(®r2)=J(®r3)=−I3, we have that

∇A = (⟨®r2⟩J(®r3) − ⟨®r3⟩J(®r2)) ®r1 − (®r2 × ®r3)

= ⟨®r3 − ®r2⟩®r1 − (®r2 × ®r3) . (47)

Note that ⟨®r3 −®r2⟩ = ⟨y3 − y2⟩ and therefore does not depend on
x, and ⟨ #—v ⟩ᵀ = ⟨− #—v ⟩ (see Equation (46)). As a result, the Jacobian
of ∇A becomes a zero matrix

J (∇A) = J(®r1)⟨®r3 − ®r2⟩ᵀ − J (®r2 × ®r3)

= ⟨®r3 − ®r2⟩ − ⟨®r3 − ®r2⟩

= 0. (48)

The gradient of B becomes

∇B = ∇(r1r2r3) + ∇ ((®r1 ·®r2) r3)
+ ∇ ((®r2 ·®r3) r1) + ∇ ((®r1 ·®r3) r2) (49)

where

∇(r1r2r3) = r2r3∇r1 + r1r3∇r2 + r1r2∇r3 (50)

∇
( (
®ri ·®rj

)
rk

)
=

(
®ri ·®rj

)
∇rk − rk (®ri + ®rj ) (51)

∇r = −
®r
r
. (52)

Jacobian of ∇B yields

J(∇B) = J(∇(r1r2r3)) + J (∇ ((®r1 ·®r2) r3))
+ J (∇ ((®r2 ·®r3) r1)) + J (∇ ((®r1 ·®r3) r2)) (53)

where

J(∇(r1r2r3)) = r2r3J(∇r1) + r1(∇r3∇ᵀr2 + ∇r2∇ᵀr3)
+ r1r3J(∇r2) + r2(∇r3∇ᵀr1 + ∇r1∇ᵀr3)
+ r1r2J(∇r3) + r3(∇r2∇ᵀr1 + ∇r1∇ᵀr2) (54)

J
(
∇

( (
®ri ·®rj

)
rk

) )
=

(
®ri ·®rj

)
J(∇rk ) + 2rk I3

− ∇rk (®ri + ®rj )ᵀ − (®ri + ®rj )∇ᵀrk (55)

J(∇r) =
I3
r
−
®r ®rᵀ

r3
. (56)
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