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Figure 1: The SOCCER scene (steady-state render on the right) features complex volumetric caustics due to multiple reflections and refrac-
tions off smooth dielectrics inside the medium. We are able to efficiently render the transient light transport (left sequence) by formulating a
progressive, transient form of photon beam density estimation which provably eliminates error while working within a finite memory budget.

Please refer to the supplemental video for the full sequence.

Abstract

In this work we introduce a novel algorithm for transient rendering in participating media. Our method is consistent, robust,
and is able to generate animations of time-resolved light transport featuring complex caustic light paths in media. We base
our method on the observation that the spatial continuity provides an increased coverage of the temporal domain, and gener-
alize photon beams to transient-state. We extend stead-state photon beam radiance estimates to include the temporal domain.
Then, we develop a progressive variant of our approach which provably converges to the correct solution using finite memory
by averaging independent realizations of the estimates with progressively reduced kernel bandwidths. We derive the optimal
convergence rates accounting for space and time kernels, and demonstrate our method against previous consistent transient

rendering methods for participating media.
CCS Concepts

eComputer Graphics — Three-dimensional graphics and realism; Raytracing; Transient rendering;

1. Introduction

The emergence of transient imaging has led to a vast number of
applications in graphics and vision [JMMG17], where the abil-
ity of sensing the world at extreme high temporal resolution al-
lows new applications such as imaging light in motion [VWJ*13],
appearance capture [NZV*11], geometry reconstruction [BHO04,
MHM*17], or vision through media [Bus05, WJS*18] and around
the corner [VWG* 12, AGJ17]. Sensing through media is one of the
key applications: The ability of demultiplexing light interactions in
the temporal domain is a very promising approach for important
practical domains such as non-invasive medical imaging, underwa-
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ter vision, or autonomous driving through fog. Accurately simu-
lating light transport could help enormously in these applications,
potentially serving as a benchmark, a forward model in optimiza-
tion, or as a training set for machine learning.

Transient rendering in media is, however, still challenging: The
increased dimensionality (time) increases variance dramatically in
Monte Carlo algorithms, potentially leading to impractical render-
ing times. This variance is especially harmful in media, where the
signal tends to be smooth due to the low-pass filtering behavior
of scattering, in both the spatial and temporal domains. One of
the major drawbacks of transient rendering is that it requires much
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higher sampling rates to fill up the extended temporal domain, spe-
cially when using 0D (photon) point samples, which are sparsely
distributed across both time and space. We make the observation
that 1D photon trajectories populate both space and time much
more densely; hence, a technique based on photon beams [JNSJ11]
should significantly reduce the rendering time when computing a
noise-free time-resolved render, and, given its density estimation
nature, it could naturally combine with the temporal domain den-
sity estimation proposed by Jarabo et al. [J]MM™*14].

We present a new method for transient-state rendering of par-
ticipating media, that leverages the good properties of density es-
timation for reconstructing smooth signals. Our work improves
Jarabo et al. [JMM™14] by extending progressive photon beams
(PPB) [JNT*11] to the transient domain, and combining it with
temporal density estimation for improved reconstruction in both the
spatial and temporal domains. Our technique is biased but consis-
tent, converging to the ground truth using finite memory by taking
advantage on the progressive [HOJ08, KZ11] nature of density es-
timation. We analyze the asymptotic convergence of our proposed
space-time density estimation, computing the optimal kernel reduc-
tion ratios for both domains. Finally, we demonstrate our method
on a variety of scenes with complex volumetric light transport, fea-
turing high-frequency occlusions, caustics, or glossy reflections,
and show its improved performance over naively extending PPB
to the transient domain.

This paper is an extension of our previous work on rendering
transient volumetric light transport [MJGJ17], where we proposed
a naive extension of photon beams to transient state. Here we in-
crease the applicability of the method, by proposing a progressive
version of the space-time density estimation, and rigorously ana-
lyze its convergence.

2. Related Work

Rendering participating media is a long-standing problem in com-
puter graphics, with a vast literature on the topic. Here we focus
on works related directly with the scope of the paper. For a wider
overview on the field, we refer to the recent survey by Novdk et
al. [NGHJ18].

Photon-based Light Transport. Photon mapping [Jen01] is one
of the most versatile and robust methods for rendering complex
global illumination, with several extensions for making it com-
patible with motion blur [CJ02], adapting the distribution of pho-
tons [SJ09, GRv*16], carefully selecting the radiance estimation
kernel [SJ09, KD13, JRJ11], combining it with unbiased tech-
niques [GKDS12, HPJ12], or making it progressive for ensur-
ing consistency within a limited memory budget [HOJ08, KZ11].
Hachisuka et al.’s [HIG*13] recent SIGGRAPH course provides
an in-depth overview.

Jensen and Christensen [JC98] were the first to extend photon
mapping to media, and Jarosz and colleagues [JZJ08] significantly
improved eits efficiency with the beam radiance estimate, which
replaces repeated point queries with one “beam” query finding all
photons along the entire camera ray. Jarosz et al. [JNSJ11] later
applied this idea to the photon tracing process by storing full pho-
ton trajectories (photon beams), leading to a dramatic increase in

photon density for the same photon tracing step. Their progressive
and hybrid counterparts [JNT*11, KGH*14] leveraged the bene-
fits of photon beams while providing consistent solutions using fi-
nite memory. Recently, Bitterli and Jarosz [BJ17] generalized 0D
photon points and 1D photon beams to even higher dimensions,
proposing the use of photon planes (2D), volumes (3D) and, in
theory, higher-dimensional geometries, leading to unbiased density
estimation. All these works are, however, restricted to steady-state
renders; we instead focus on simulating light transport in transient
state.

Transient rendering. Though the transport equations [Cha60,
Gla95] are time-resolved, most rendering algorithms focus on
steady-state light transport. Still, several works have been pro-
posed to deal with light transport in a time-resolved manner.
In particular, most previous work on transient rendering has fo-
cused on simulating surfaces transport: Klein et al. [KPM*16] ex-
tended Smiths’ transient radiosity [SSDOS8] for second bounce dif-
fuse illumination, while other work has used more general meth-
ods based on transient extensions of Monte Carlo (bidirectional)
path tracing [Jar12, IMM* 14, PBSC14, JA18] and photon map-
ping [MNJK13,0HX* 14]. Several works have also dealt with time-
resolved transport on the field of neutron transport [CPH53,BG70,
Wil71,DM79]. Closer to our work, Ament and colleages [ABW 14]
rendered transient light transport in refractive media using volu-
metric photon mapping, but they do not provide an efficient ap-
proach that guarantees consistency. Jarabo et al. [JMM™*14] pro-
posed a transient extension of the path integral, and introduced an
efficient technique for reconstructing the temporal signal based on
density estimation. They also proposed a set of techniques for sam-
pling media interactions uniformly in time. Their method is how-
ever limited to bidirectional path tracing and photon mapping, of-
ten failing to densely populate media in the temporal domain. Fi-
nally, Bitterli [Bit16b] and Marco et al. [Mar13,MJGJ17] proposed
a transient extension of the photon beams algorithm, but these ap-
proaches are not progressive, therefore not converging to the cor-
rect solution in the limit. Our work extends the latter, proposing a
progressive, consistent, and robust method for rendering transient
light transport. We leverage beams continuity and spatio-temporal
density estimation to mitigate variance in the temporal domain, and
derive the parameters for optimal convergence of the method.

3. Transient Radiative Transfer

The radiative transfer equation (RTE) [Cha60] models the behav-
ior of light traveling through a medium. While the original formu-
lation is time-resolved, its integral form used in traditional render-
ing ignores this temporal dependence, and computes the radiance L
reaching any point x from direction @ as

L(%,®) = T (x,x5) Ls (x5, ) + /0 s (%q) T (X, Xg) Lo(Xq, @) dg, (1)

where x; = X — d - ® is a point at distance d, us is the scattering
coefficient, and T;(x,x;) = exp(— f(;" ur(xq7)dd’) is the transmit-
tance describing the fraction of photons that make it between x and
x4 without undergoing extinction at any point X;/, determined by
the extinction coefficient p; (x4/). The outgoing radiance L, in di-
rection @ from a medium point x4 at distance ¢ is defined by the
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scattering integral:
Lo(xq@):Le(xq,aa)+[st(xq,ai,a)L(xq,ai)dai, @

where S is the spherical domain, and f; is the phase function.
Ly is defined analogously via the rendering equation [Kaj86], but
integrated over the hemispherical domain, and using the cosine-
weighted BSDF in place of the phase function.

Transient RTE Equations 1 and 2 assume that the speed of light
is infinite. However, if we want to solve the RTE at time scales
comparable to the speed of light we need to incorporate the dif-
ferent delays affecting light. In the following we review the main
practical considerations for accounting time into the integral form
of the RTE for its application in transient rendering. Light takes a
certain amount of time to propagate through space, and therefore
light transport from a point Xy towards a point X; does not occur
immediately. In the absence of scattering effects, transport between
two points Xg and x| occurs as

L(Xl7(_’37t) :L(X077(_67t7A[)7 (3)

where At is the time it takes the light to go from xg to x;. In turn,
At is defined by

) gy, @
C

X0

AZ(XO <—>X1) =

where mM(x) is the index of refraction at a medium point x and ¢
is the speed of light in vacuum. Note that in this case light does
not travel in a straight line, but by following the Eikonal equa-
tion [ABW14, GMASO5]. In a medium with a constant index of
refraction 1 (X) = N, then Az(x( <> X1) can be expressed as

AI(XOHXI):%HXI_XOH' 5)
The second form of delay occurs in the scattering events, and might
occur from different sources, including electromagnetic phase shift,
fluorescence and phosphorescence, or multiple scattering within
the surface (or particle) microgeometry. To account for these
sources of scattering delays, we introduce a temporal variable in
the phase function as fs(x,®;,®,t), where 7 is the instant of light
interacting with the particle before it is scattered. With those delays
in place, we reformulate the RTE (Equations 1 and 2) introducing

the temporal dependence as [Gla95]
L(x,®,1) = T-(x,Xp) Ls (Xp, ®,1 — Atp)
P
—0—/0 us(xq) Tr(X,Xq) Lo (X, ®,1 — Aty) dg, ©6)

t
Lo(xq,8,1) = / Le(xg, ®,1)dt’
— 00

t
+//fy(xq,(_b[,(]'),tft/)L(xq,E'oi,t)dt/d(]')[, D
SJ—o0

with Az, = At(x <> Xp) and Aty = Af(X <> X4) (Equation (4)).
Ly changes analogously. Note that we assume that the matter does
not change at time-scales comparable to the speed of light, and
therefore avoid any temporal dependence on ys and g . Introducing
temporal variation at such speeds would produce visible relativistic
effects [WKR99, IMV*15].
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(a) (b)

Figure 2: (a) A photon emitted from the light source will take a
time tp, = %(sl + 52+ 53) to get to Xp. (b) Radiance estimation
in the medium is done by intersecting every ray against the pho-
ton beam map, and performing density estimations at the ray-beam
intersections (red).

2D blur

(a) (b)

Figure 3: (a) Ray-beam intersection for density estimation using a
2D kernel (top) and 1D kernel (bottom). Time delays ty,,tr within
these spatial density estimations will depend on the ray-beam ori-
entation the blur region intersections sy, sy, the speed of light, and
the index of refraction of the media. (b) Radiance estimate of a sin-
gle beam at pixel ij using a 2D blur generates a temporal footprint
over a time interval [f,tJr] (top) while radiance estimate using a
1D blur occurs at a single time instant t (bottom).

4. Transient Photon Beams

Photon beams [JNSJ11] provide a two-pass numerical solution for
rendering participating media in steady state: In the first pass (Fig-
ure 2a), a series of random walk paths are traced from the light
sources. These paths represent packages of light (photons) travel-
ing through the medium. Every interaction of a photon within the
medium is stored on a map as a beam with a direction @, position
x; and power ®;,. In the second pass (Figure 2b), rays are traced
from the camera against the scene, and Equation (1) is approxi-
mated by summing up the contribution of all near photon beams R),
of the eye ray defined by r = (x,, —®r)

L(xr, Or) = Z Ly (xr, Or), )
bER),

where Ly, (x, ®;) is the contribution of photon beam b. Every pho-
ton beam b is considered to have certain radius R}, and radiance
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seen by a camera ray is computed by performing a density estima-
tion on every ray-beam intersection. For 1D and 2D kernels, this
radiance is computed as

D . efllrshe*,“zfr
Ly (xr,0c) = Kip (Rp) Py fs (O ) tts ———1—, )
sin 0y
W, =
Ly (xr, @) =Kop (Rp) Py f5(8p) s
g5 —s)(leos8s=1) _

M05m4, 1 (| cos B — 1)

10)

where the beam is defined by x;, + 5, ®;, and the ray is defined by
X + 50 (see setups in Figure 3a).

4.1. Our algorithm

To generalize photon beams to the transient domain, we need to
account for the duration of light paths. This requires considering
propagation and scattering delays along the camera and light sub-
paths, but also the effect of time in the density estimation connect-
ing these two subpaths.

Creating the photon map We compute the photon propagation as
a standard random walk through the scene, which can be modeled
using the subpath formulation defined by Jarabo et al. [JMM*14].
Let us define a light subpath X; = x¢...X;_ 1, with k vertices, where
Xg is the light source. This light path defines kK — 1 photon beams,

in which a beam b is defined by its origin at x;,, = X; and direction

— XX
i I =Xl
therefore of the contribution of the subpaths), we compute the flux
of each photon as:

o — JET)
b7 Mp(x;,1))

®p . Using Jarabo’s definition of the path integral (and

_ Le(xo = x1,7%0)T (%, 7)) (11

MTT_ p(xi, i)
with X; the subpath of X; up the vertex j, f the subpath contribution
function, T; = To...T; the sequence of time delays up to vertex j,
M the number of photon random walks sampled, L.(xo — X1,To)
the emission function, p(x;,7;) the probability density of sampling
vertex x; with time delay ;. The throughput, 7'(X;,7;), of subpath
(x;,7;) is defined as:

j—1
[T6&ixi)Vixixip1) |, (12)
i=0

-1
T(Xj,%;) = |:I—[| ]CS(Xivtj):|

with fi(x;,7;) the scattering event at vertex x; with delay t;, and
G(x;,x;1+1) and V(x;,%x;11) the geometry and visibility terms be-
tween vertices X; and X; 1, respectively. Finally, for transient state
we need to know the instant 7, at which the photon beam is created
(through emission or scattering), defined as:

j—1 j—1
= Y T+ Y Ar(xi,Xip 1) (13)
=0 i=0

=

Rendering For rendering, we adapt Equation (8) to account for the
temporal domain, as

L(Xha)ht) ~ Z Lb(xha)ﬁt)ﬂ (14)
bER,

with Ly, (x,,®r,t) the radiance estimation for beam b to ray ¢ at
instant ¢. In essence, Ly(x,, ®,¢) will return zero radiance if 7 is
out of the temporal footprint of the density estimation kernel. De-
pending on the dimensionality of the density estimation, Jarosz and
colleagues [JNSJ11] proposed three different estimators based on
3D, 2D and 1D kernels. Since the 3D kernel results impractical due
to costly 3D convolutions, we focus on 1D and 2D kernels (Equa-
tions (9) and (10)), and extend them to transient state, assuming
homogeneous media.

Kernel 2D We generalize Jarosz’s et al.’s 2D estimate L%D (Equa-
tion (10)) by introducing a temporal function W (z) as

L3° (xr, &r,1) =Kon (Rp) Py f5 (8, 1 uts

et (s =5 )(JeosBy|—1) _ ¢

—— Wap(r), (15
e 0% )y (| cos 0 — 1)

where [s;,s;7] are the limits of the ray-beam intersection (Fig-
ure 3a), 0, is the angle between ®, and ®, and K>p (R;,) is a canon-
ical 2D kernel with radius Rj,. The temporal function W,p(¢) mod-
els the temporal footprint of the 2D kernel as

1 ~ -+
qu(z)={’” ifr e (™,rm) (16)

0 otherwise

where t™ =t +tr+ 22 (s; +5, ) and 1T =1, +1, + 2 (sF +5),
and ¢ and #;, are the initial times of the camera ray and beam, re-
spectively. Note that due to transmittance, the photon energy varies
as it travels across the blur region. Evenly distributing the integrated
radiance L; across this interval introduces temporal bias, in addi-
tion to the inherent spatial bias introduced by density estimation.
However we observed this even distribution provides a good trade-
off between bias, variance, and computational overhead.

Kernel 1D In the 1D kernel defined for density estimation by
Jarosz et al. the spatial blur is performed over a line. Therefore,
the energy of the beam is just spread on the ray on a single point
at r(s,), from a single point of the beam b(sp) (see Figure 3a). In
consequence, ;- — sy and sl:)t — sp, which implies that — thrs
and the temporal function reduces to Wyp(r —tb) = 8(¢), with 8(¢)
the Dirac delta function. With that in place, we transform Jarosz et
al. 1D estimate to

e*,“rsh e*,“tsz

LIP (%, r,1) = Kin (Ry) @ (03,1t 8(t —1p),

a7

sin 0y

with K1p(Rp) a 1D kernel with radius R.

Implementation Since photon beams correspond to full photon
trajectories, they allow us to estimate radiance at any position X, +
5@, of the beam, and therefore at any arbitrary time #(x; + s®j).
As mentioned, one-dimensional radiance estimate corresponds to
a single time across the beam. In a traditional rendering process
where camera rays are traced through view-plane pixels against the
beams map, the temporal definition within a pixel will be propor-
tional to the amount of samples per pixel taken. Additionally, 2D
blur requires distributing every radiance estimate along a time in-
terval, which reduces variance in the time dimension of a pixel at
the expense of introducing additional temporal bias.

(© 2019 The Author(s)
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Finally, note that the temporal footprint of the density estimation
might be arbitrarily small, so the probability of finding a beam b
at an specific time might be very low. We alleviate this issue us-
ing path reuse via density estimation [JMM*14]. In particular, for
the non-progressive results we use histogram temporal density es-
timation. In this technique, the samples in the temporal domain are
reused across all frames by evaluating their contribution functions,
which correspond to the temporal window covered by each frame..
In Section 5 we introduce temporal kernel-based density estima-
tion, and combine it with the spatial density estimation of the beam.

5. Progressive Transient Photon Beams

By means of Equations (15) and (17) we have introduced temporal
dependence on the spatial density estimations that use 2D and 1D
kernels, respectively. These density estimations reduce variance at
the expense of introducing bias in the results, which means both
Equations (8) and (14) will not converge to the correct solution,
even with an infinite number of photons M. To avoid this, pro-
gressive density estimation aims to provide a biased, yet consistent
technique, that in the limit converges to the expected value (in other
words, the bias vanishes in the limit). The key idea is to average
several render passes with a finite number of photon random walks
M, progressively reducing the bias in each iteration while allowing
variance to slightly increase.

In order to fully leverage a progressive approach, we propose
to combine our time-resolved spatial density estimations (Section
4) with additional temporal density estimations. While our time-
resolved 2D spatial kernel implicitly performs a temporal blur over
the interval [t —,#7], it is coupled with the spatial blur. This does not
allow to choose its own initial kernel size for the temporal density
estimation, which is a desirable degree of freedom since the tempo-
ral resolution may not be proportional to the spatial one. In contrast,
our time-resolved 1D spatial kernel does not perform a temporal
blur, since the footprint is a single instant in time. As we show in
the remainder of this section, this allows us to perform additional
progressive temporal density estimations with an independent ini-
tial kernel size, while keeping the same two-dimensionality (1D
spatial and 1D temporal). In the following, we introduce our spatio-
temporal beam density estimation based on our time-resolved 1D
kernel, and then present our progressive approach.

Spatio-Temporal Beam Estimation Jarabo et al. [JMM™*14]
showed that progressive density estimations in the temporal domain
can in fact improve the convergence rate for transient rendering,
in particular when compared with the histogram method used in
Section 4 for rendering the temporal domain. To combine such ap-
proach with the (progressive) spatial density estimation in photon
beams [JNT*11], we reformulate the 1D kernel in Equation (17),
by convolving it with a 1D temporal kernel K7-(¢) so that

efl-‘rsh e*lJtSr

Ly (%r,@r,1) = Kip (Rp) @y /58,1 )ts Ky (1 —1p).

(18)

sin 9;,
Progressive Transient Photon Beams We generalize the compu-
tation of L(x,,®r,t) (Equation (14)) using an iterative estimator,
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Algorithm 1 Pseudo-code of our progressive spatio-temporal den-
sity estimation.
L,<+0
Rb +— Ry
T+ To
for i€ [0..N) do
r + traceRay()

B <+ beamsMap() (Egs. (6), (7), (11)-(13))
Ry Rp\/ S22 (Bq. (20), left)
T TVEE  (Bg. 0), right)
Lb +~—0
for b € Bdo
Ly, + Ly+ radiance(r, b, Ry, T) (Eq. (18))
end for
Lp < Ly +1L
end for
defined as

~ =~ L 1 ¢ ~
L(Xr,(or,l)NLn(Xr,(Dr,l):*Z Z Ly (Xr, @, 1) (19)
i—0beB,

with Zn the estimate of L after n iterations, and B; the set of photon
beams in iteration i. Note that the previous equation assumes that
the camera ray r is the same for all iterations. That is not necessarily
true (and in fact it is not) but for simplicity we express this way.

The error of the estimate L, is defined by its bias and variance,
which as shown in Appendix B is dependent on the bandwidth of
the spatial and temporal kernels. In particular, the variance of the
error increases linearly with the bandwidth of the kernels, while
bias is reduced at the same rate. Then, on each iteration we reduce
the bias by allowing the variance to increase at a controlled rate
of (i+1)/(i+ o), with o € [0,1] being a parameter that controls
how much the variance is allowed to increase at each iteration. To
achieve that reduction, on each iteration i + 1 we reduce the foot-
print of kernels Kip and K7 (R;|; and Ti) by

Rpjiv1 [i+o Pr T [(ita pr 20)
Rb|i i+1 ’ Ti i+1 ’

where Bg and B control the individual reduction ratio of each ker-
nel, with B = 1 — Pg. A pseudo code of the main steps of our
progressive approach can be found in Algorithm 1. In the follow-
ing, we analyze the convergence rate of the method, and compute
the optimal values for the parameters o, 37 and Bg.

Convergence analysis We analyze the convergence of the algo-
rithm as a function of the asymptotic mean squared error (AMSE)
defined as

AMSE(L,) = Var[L,] +E[en)?, 1)

where Var([Ly] is the variance of the estimate and E[g,] is the bias
at iteration n (see Appendix A). As shown in Appendix C, the vari-
ance converges with rate

Var[La] ~ 0(n~ )+ 0(n~%) = 0(n™%), 22)
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Cornell spheres Mirrors Pumpkin

Figure 4: Steady-state renders for the scenes CORNELL SPHERES
(Figure 5), MIRRORS (Figure 6), and PUMPKIN (Figure 7).

while the bias converges with rate

Elea] = 0(n'~%)#7 4 O(n!~*)27 2, 23)

Plugging Equation (22) and (23) into Equation (21), we can
model the AMSE as

AMSE(L,) = 0(n™%) + (o(n““)*zﬁT n 0(n1*°‘)257*2)2(.24)

Finally, by minimizing Equation (24) (see Appendix D) we ob-
tain the values for optimal asymptotic convergence B = 1/2 and
o = 2/3, which by substitution gives us the final asymptotic con-
vergence rate of our progressive transient photon beams

2

AMSE(L,) = O(n" 7). (25)

6. Results

In the following we illustrate the results of our proposed method
in five scenes: CORNELL SPHERES, MIRRORS, PUMPKIN, SOC-
CER [SZLG10], PUMPKIN, and JUICE. See Figures 1 (right), 4,
and 8 (left) for steady-state renders of the scenes. Results of Fig-
ures 5 and 6 were taken on a desktop PC with Intel i7 and 4GB
RAM using a transient 2D kernel (Equation 15). Figures 1, 7, and
8 were rendered on an Intel Xeon ES with 256GB RAM, using our
progressive spatio-temporal kernel density estimations (Section 5)
derived from the transient spatial 1D kernel (Equation 17). In each
iteration, we use a fixed radius for our spatio-temporal density esti-
mators (instead of using a nearest neighbor approach). Please refer
to the supplemental video for the full sequences of all the scenes.

Figure 5 shows a Cornell box filled with a scattering medium,
and demonstrates the effect of camera unwarping [VWJ*13] when
rendering. Camera unwarping is an intuitive way of visualizing how
light propagates locally on the scene without accounting for the
time light takes to reach the camera. The scene consists of a diffuse
Cornell box with a point light on the top, a glass refractive sphere
(top, IOR = 1.5) and a mirror sphere (bottom). While Figure 5b
shows the real propagation of light—including camera time—, Fig-
ure Sa depicts more intuitively how light comes out from the point
light, travels through the refractive sphere, and the generated caus-
tic bounces on the mirror sphere. Note how in the top sequence we
can clearly see how light is slowed down through the glass sphere
due to the higher index of refraction. We can also observe multiple
scattered light (particularly noticeable in frames t=4ns and t=6ns)
as a secondary wavefront.

Figure 6 compares visualizations of light propagation within the

Camera unwarped

Camera warped

t=15ns 1= 1 GG m—

Figure 5: Comparison of CORNELL SPHERES scene using camera-
unwarping (top), where we do not take into account the camera
time, and real propagation of light (bottom). In the bottom row the
shape of the wavefront is altered by the camera time, as if we were
scanning the scene from the viewpoint towards the furthest parts of
the scene. Camera unwarping on the other hand illustrates more
intuitively how light propagates locally.

MIRRORS scene using Heaviside and Dirac delta light emission.
The scene is composed by two colored mirrors and a glass sphere
with IOR = 1.5, and was rendered using the previously mentioned
camera unwarping. We can observe how delta emission generates
wavefronts that go through the ball and bounce in the mirrors, creat-
ing wavefront holes where constant emission creates medium shad-
ows. In the last frame of the top row Delta emission clearly depicts
the slowed down caustic through the glass ball respect to the main
wavefront.

Our progressive method combines time-resolved 1D spatial ker-
nels of photon beams and temporal density estimations, reducing
bias while providing consistent solutions in the limit with an opti-
mal convergence rate of O(n™ 3 ). In Figure 7 we analyze its conver-
gence with respect to progressive transient path tracing with tem-
poral KDE [JMM*14] (PTPT). In the middle graph we show the
temporal profile on a single pixel for both our algorithm and PTPT
after 4096 equal-time iterations, where both algorithms converge
to the reference solution taken with transient path tracing (no tem-
poral KDE) with 64 million samples. While PTPT presents faster
convergence (see Figure 7, right graph), our algorithm presents a
better behavior over time where variance increases due to the lack
of samples (center graph). Additionally, it requires much fewer it-
erations than PTPT to achieve a similar MSE (see log-log right

graph).

In Figure 1 we show a more complex scenario, with differ-
ent caustics rendered, with our progressive algorithm. It contains
a smooth dielectric figurine with different transmission albedos
placed within a participating medium with an isotropic phase func-
tion. Our method is capable of handling complex caustics transmit-
ted from light sources through the player, and then through the ball.
Our algorithm progressively reduces bias and variance to provide a
consistent solution.

Finally in Figure 8 we illustrate a setup combining different
media properties, and specular refractive and reflective materials.
The liquid has a very forward phase function, making the light first
travel through the direction of the stream (¢ = 4.6 ns), and then

(© 2019 The Author(s)
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Figure 6: Comparison between Dirac delta (top) and continuous emission (bottom). Dirac delta emission lets us see how a pulse of light
travels and scatters across the scene, depicting the light wavefronts bouncing on the mirrors and going through the glass ball. Continuous
emission shows how light is emitted until it reaches every point in the scene, as if we were taking a picture with a camera at very slow-motion.
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Figure 7: The PUMPKIN scene shows a jack o’lantern embedding a point light that creates hard shadows through the holes. The left
frames show a sequence of the time-resolved renders after 4096 iterations of our algorithm (10k beams / iteration), and temporal KDE on
a progressive transient path tracer (PTPT, 16spp / iteration) [JMM™ 14]. The middle plot compares the whole temporal footprint at the pink
marker. Reference solution (dark grey) was obtained with a transient path tracer (no KDE) using 64M samples per pixel. Right plot shows
MSE convergence with respect to the number of progressive iterations (in log-log scale), at 1 minute/iteration on each algorithm. As expected,
the convergence of our method ( O(n_%) ) is slower than PTPT (O(n™5)) ; however, as shown in the equal-time comparison, our algorithm
presents better temporal behavior with much less variance on later timings.

Steady state b8 i =4 2EV | t=6.1ns - B 3V | =6.6ns

Figure 8: We illustrate the potential of our method in the JUICE scene [Bitl6a], which presents a scene very difficult to render for path
tracing methods, but well-handled by photon-based methods. The scene is filled by a thin participating medium, while the glass contains
ruby grapefruit juice as measured by Narasimhan et al. [NGD*06]. The highly forward phase function of the juice, as well as the delta
interactions on the glass, ice cubes, and the mirror floor surface, generate complex caustic patterns which our method is able to simulate in
transient state. Bottom row has increased exposure respect to top row to show the radiance at later timings.

going through the liquid inside the glass (t = 5.1ns to r = 6.3ns).
The mirror surface makes the light to bounce back to the surround-
ing medium as a caustic through the water spills and ice cubes at
t = 5.1ns and r = 6.6ns. Note that these are not fully observable in
the steady-state render (left) due to the accumulated radiance from
the surrounding medium and the adjusted exposure of the image.

7. Conclusions

In this paper we have presented a robust progressive method for
efficiently rendering transient light transport with consistent re-

(© 2019 The Author(s)
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sults. We derived our method based on progressive photon beams
[INT*11], extending its density estimators to account for light
time-of-flight, and deriving a new progressive scheme. We then
compute the convergence of the method, and derive the parameters
for optimal asymptotic convergence. Our results demonstrate that
combining continuous photon trajectories in transient state and our
optimal spatio-temporal convergence rates allow to robustly com-
pute a noise-free solutions to the time-resolved RTE for complex
light paths. We believe that out work might be very useful for de-
veloping new techniques for transient imaging and reconstruction
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in media, as well as to obtain new insights on time-resolved light
transport.

As future work it would be interesting to analyze more thor-
oughly the optimal performance and kernels for variance reduction
and bias impact in transient state, under varying media characteris-
tics. In addition, extending our method to leverage recent advances
in media transport, such as transient-state adaptations of higher-
dimensional photon estimators [BJ17] as well as hybrid techniques
[KGH™*14], could improve performance of time-resolved rendering
for a general set of geometries and media characteristics.
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Appendix A: Error in Transient Progressive Photon Beams

Here we analyze the consistency of the transient progressive photon
beams algorithm described in Section 5. For our analysis on the
error of the estimate, we use the asymptotic mean squared error

(AMSE) defined as
AMSE(L,) = Var[L,] + E[ex)*, (26)

where Var[Ly] is the variance of the estimate and E[g,] is the bias
at iteration n. We model Var|[L,] as [KZ11]

n
Var[Ly] = %Var[‘l—‘ L)+ niZ Y Var[®ej], (27)
j=1

where W is the contribution of the eye ray, and €; is the bias for
iteration j. The first term is the standard variance of the Monte
Carlo estimate, which is unaffected by the kernel. The second term,
on the other hand, is the variance of the error, and is dependent on
density estimation. On the other hand, the estimated value of the
error (bias) E[L,] is defined as

E[L,] = L+ E[W]E[e,], (28)

where E[g,] is the bias of the estimator after n steps:
1 n
Elea] = - Y Elejl, 29)
j=1

with E[g;] the expected error at iteration j. In the following, we
first derive the variance and expected value of the error for a single
iteration. Then, we analyze the asymptotic behavior of the these
terms, and compute the values for optimal convergence for B, Pr
and .

Appendix B: Variance and Expected Value of the Error of the
Time-Resolved Beam Radiance Estimate

We first analyze the variance and expected value of the error (bias)
introduced by the radiance estimate at each iteration. Let us first
define the error in each iteration as:

€= zn(Xh Or, 1) — L(Xr, Or, 1)

M
= Y Kip(Ry)K7 (1 — 1;)®; — L(xr, @r,1). (30)
=

i=

Variance We first define the variance of the error Var|e] as (in the
following, we omit dependences for clarity):

M
Varle] = Var[) KipK7® —L] (31)

i=1

(Var[Kyp] +E[Kip]”) (Var[K7] + E[K7]%)
(Var[®] +E[®]*) — E[K,p]*E[K7]*E[®]*,

In order to compute the variance of the error Var[e] we need to
make a set of assumptions: First, we assume that the beams’ prob-
ability density is constant within the kernel K;p in the spatial do-
main [JNT*11], and within K7 in the temporal domain [JMM™ 14].
We denote these probabilities as pg, and p7 respectively. We also
assume that the distance between view ray and photon beam, time
t, and beams’ energy ®; are independent samples of the random
variables D, T and ®, respectively, which are mutually indepen-
dent. Finally, we assume that D and T have probability densities

PR, and p7.
With these assumptions, and taking into account that E[K|p] =

PR, and E[K7| = p, we can model the the variance introduced by
the temporal kernel Var[K7] as [JIMM* 14]

varlkr] = 2Z [ ke (w)” ay—pir. (32)

where we express K7 as a canonical kernel k7 with unit inte-
gral such that K7-(€) = k-(§/7)7T ~'. Analogously, Var[K;p] is
[INT*11]:

Var[Kp] = %’/ka(\lf)zdw—pzzeb- (33)

This allow us to express the variance of the error Var[g] as:

T

where Cip and Cy are kernel-dependent constants. The last term
can be neglected by assuming that the kernels cover small areas
in their respective domains, which effectively means that Cyp >
Pr, and C7 > p7. Equation (34) shows that for transient density
estimation, the variance Var[g] is inversely proportional to R;,7 .

Varle] ~ (Var[<1>] +E[c1>}2> (%’ch) (plcT), (34)

Bias Bias at each iteration j is defined as the expected value of the
error E[g;] as

E[Sj} E[leD KT(I)—L]
i=1

i=

E[Kp] E[K7]| E[®] - L.
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Using a second-order expansion of py and pg,, instead of the

zero-order used when modeling variance, we can express the ex-

pected value of K7 as [JMM™14]

E[K7]~ pr+T" /RkT(W)O(H‘VHz) dy = pr+T°CF,
(35)

while the expected value of K;p is [JNT*11]

ElKi] ~ pr, +Rs [ kin(WO(IVI)dv = pr, + RoClp.
(36)

where C%i- and Cl, are constants dependent on the higher-order
derivatives of the spatio-temporal light distribution. Using (35) and
(36), and L = pg, p7E[®] we finally compute E[g;] for iteration j
as

(PR, +RyCip) (pT + T>C)E[®] — pR, pTE[®]
E[®](pr, T°C + p7Ry Cip + T CHR,Clp). (37)

Q

Elg]

Appendix C: Convergence Analysis of Progressive Transient
Photon Beams

Based on the expressions for Var[e] and E[g ] defined above (Equa-
tions (34) and (37)), we can know derive the asymptotic behaviour
of Equation (21). For that, we will compute the variance Var[zn]
and bias E[g,] after n iterations.

Variance Assuming that the random variables ¥ and €; are inde-

pendent, we model the variance of the estimator Var[zn] in Equa-
tion (27) as [KZ11]:

Var[L,] = %Var[‘PL] +ni2 Z Var[¥e;] (38)

— lVar[\PL] + Var[‘I‘ Z Varle;] +

=

l n

—22 s,]+Var[1P] p ZEs,
Jj=1 j=

Following [KD13], we can approximate Var[e,] as a function of the
variance at the first iteration Var[e;] as:
Var|e ]

2o = on™%). (39)

Varle,] ~

Finally, by applying Var[e,] and asypmtotic simplifications, we can
formulate Var[L,] (39) as:
Var(ln] ~ LVar[¥L]+ E[W]*Varled]
n

Varle, |
(2 —o)n®

= on H+om M =0n"%). (40)

1
~ Var[WL] +

Bias The expected value of the error E[g,] is modeled in Equa-
tion (28) as a function of the averaged bias introduced at each iter-
ation Efe;] (37). Computing the kernels’ bandwidth 7; and Ry, ; at
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iteration j by expanding Equation (20) as a function of their initial
value by we get

Ti(j o B(et, /) ~P7, (41)
Ry, (j o B(a, ) P, (42)

Tj

where B(x,y) is the Beta function. Using (41) and (42) in Equa-
tion (37) we can express E[¢;] as a function of the initial kernel
bandwidths

Ele;] = E[®|pr,CFTEO(' )27
+E[®]prCipR, 10 %) e
TE[@|CECi, TER, 2@ (1 %) 72 BT +Br)  (43)

Finally, we use Y. ©(j*) = n O(n") to plug Equation (43) into
Equation (29) to get the asymptotic behavior of E[g,] in transient
progressive photon beams:

Eles] = O(n'~
which, by using the equality Bg, = 1 — B, becomes:

—oc)—2[37— +0(n1—a)2[37—2+0(n1—a)—2
(x)fzﬁT + O(nlfoc)ZBT72. (44)

(X)*QBT _,_O(nl*(x)*ZﬁRb+0(n1*06)*2(ﬁT+BRb)7
Ele,] = O(n'
= O(n17

Appendix D: Minimizing Asymptotic Mean Squared Error

Using the asymptotic expression for variance and bias in Equations
(40) and (44), we can express the AMSE (21) as

,oc)72B7— + O(nlftx)ZBT*2>2 .
(45)

AMSE(Ly) = O(n~ %) + <O(n1

which is a function of the parameters o and 7. Given that the
variance is independent of B, we first obtain the optimal value for
this parameter that yields the highest convergence rate of the bias
E[e,]. We differenciate Equation (44), apply asymptotic simplifica-
tions and equating to zero, we obtain the optimal value B = 1/2.
By plugging this value in Equation (45), we obtain:

AMSE(Ly) = O(n~ %)+ 0(n 2179, (46)

Finally, by finding the minimum again with respect to & we get
the optimal parameter o = 2/3, which results in the optimal con-
vergence rate of the AMSE for our transient progressive photon
beams as

AMSE(Ly) = 0(n™ ) +0(n 2"y =om™3). @)
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