
DISTANCE SAMPLING
Free path Sampling

How far will photon travel before  
interacting with the medium?
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DISTANCE SAMPLING

ANALOG methods

‣ Adhere to physical process

‣ Produce free-path samples 

‣ Energy of particles unchanged 

 2— DISTANCE SAMPLING

NON-ANALOG methods

‣ Deviate from physical process

‣ Produce arbitrary distance samples

‣ Particles (photons) are weighted

Free-path sample Weighted distance sample
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FREE-PATH SAMPLING

 3— DISTANCE SAMPLING

How to sample the flight distance to the next interaction?

T (t) = e�
R t
0 µt(s)ds = P (X > t)

P (X  t) = F (t)

Random variable representing flight distance

CDF

Partition of unity

Recipe for generating samples

Losses expre
ssed in diff

erential form
:

dL(x,!)

dz
= �µt(x)L(x

,!)

Radiance gat
hered along 

a ray:

L(x,!) =

Z z

0

T (x,y)Lo(y,!)d
y

T (t) = e�
R t
0
µt(s)ds

Transmittance
:

T (t) = e�
R t
0 µt(s)ds = P (X > t)

F (t) = 1� T (t)F (t) = 1� T (t)
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FREE-PATH SAMPLING

 4— DISTANCE SAMPLING

p(t) =
dF (t)

dt
=

d

dt

⇣
1� e�⌧(t)

⌘
= µt(t)e

�⌧(t)p(t) =
dF (t)

dt
=

d

dt

⇣
1� e�⌧(t)

⌘
= µt(t)e

�⌧(t)p(t) =
dF (t)

dt
=

d

dt

⇣
1� e�⌧(t)

⌘
= µt(t)e

�⌧(t)

Probability density function (PDF)

p(t) =
dF (t)

dt
=

d

dt

⇣
1� e�⌧(t)

⌘
= µt(t)e

�⌧(t)

Inverted cumulative distr. function (CDF-1)
Approaches for finding t: 
1) ANALYTIC (closed-form CDF-1) 
2) SEMI-ANALYTIC (regular tracking) 
3) APPROXIMATE (ray marching)

⇠ = 1� e�⌧(t)

⌧(t) = ln(1� ⇠)
Z t

0
µt(s)ds = ln(1� ⇠)

Solve for t
⇠ = 1� e�⌧(t)

⌧(t) = � ln(1� ⇠)
Z t

0
µt(s)ds = � ln(1� ⇠)

⇠ = 1� e�⌧(t)

⌧(t) = � ln(1� ⇠)
Z t

0
µt(s)ds = � ln(1� ⇠)

F (t) = 1� T (t)F (t) = 1� T (t) = 1� e�⌧(t)F (t) = 1� T (t)

Cumulative distribution function (CDF)
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t = � ln(1� ⇠)

µt

Expression for tInverted CDF

F�1(⇠)

ANALYTIC APPROACH

 5— DISTANCE SAMPLING

Some simple volumes permit closed-form solutions

Example: homogeneous medium (                  )

Opt. thickness

µt(x) = µt

Inverted cumulative distr. function (CDF-1)

Z t

0
µt(s)ds = tµt

⇠ = 1� e�⌧(t)

⌧(t) = � ln(1� ⇠)
Z t

0
µt(s)ds = � ln(1� ⇠)



MONTE CARLO METHODS FOR PHYSICALLY BASED VOLUME RENDERING

ANALYTIC APPROACH

 6— DISTANCE SAMPLING

Inverted cumulative distr. function (CDF-1)
⇠ = 1� e�⌧(t)

⌧(t) = � ln(1� ⇠)
Z t

0
µt(s)ds = � ln(1� ⇠)

Start

Sampled  
collision

Homogeneous volume

Sampling in homoge
neous vol: 

1) Draw a random number  

2) Set 

3) Set
t = �

ln(1� ⇠)

µt

p(t) = µte
�tµt

t = �
ln(1� ⇠)

µt
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REGULAR TRACKING (SEMI-ANALYTIC)

 7— DISTANCE SAMPLING

For piecewise-simple (e.g. piecewise-constant), summation replaces integration
⇠ = 1� e�⌧(t)

⌧(t) = � ln(1� ⇠)
Z t

0
µt(s)ds = � ln(1� ⇠)

kX

i=1

µt,i �i = � ln(1� ⇠)

Regular tracking: 

1) Draw a random number  

2) While LHS < RHS  
   move to the next intersection  

3) Find the exact location  

   in the last segment analytically

t = �
ln(1� ⇠)

µt

(Hierarchical) voxel grid

Start
Sampled  
collision  
LHS=RHS

LHS > RHS

�1
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REGULAR TRACKING (SEMI-ANALYTIC)

 8— DISTANCE SAMPLING

For piecewise-simple (e.g. piecewise-constant), summation replaces integration
⇠ = 1� e�⌧(t)

⌧(t) = � ln(1� ⇠)
Z t

0
µt(s)ds = � ln(1� ⇠)

kX

i=1

µt,i �i = � ln(1� ⇠)

Pebble-bed reactor

Images courtesy of Rintala et al. [2015] 

Regular tracking: 

1) Draw a random number  

2) While LHS < RHS  
   move to the next intersection  

3) Find the exact location  

   in the last segment analytically

t = �
ln(1� ⇠)

µt

Finding the intersections can be expensive…



MONTE CARLO METHODS FOR PHYSICALLY BASED VOLUME RENDERING  9— DISTANCE SAMPLING

Find the collision distance approximately
⇠ = 1� e�⌧(t)

⌧(t) = � ln(1� ⇠)
Z t

0
µt(s)ds = � ln(1� ⇠)

kX

i=1

µt,i �i = � ln(1� ⇠)

(Hierarchical) voxel grid

Start
Sampled  
collision  
LHS=RHS

LHS > RHS

�1

Constant step

RAY MARCHING

Ray marching: 

1) Draw a random number  

2) While LHS < RHS  
   make a (fixed-size) step 

3) Find the exact location  

   in the last segment analytically

t = �
ln(1� ⇠)

µt
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Find the collision distance approximately
⇠ = 1� e�⌧(t)

⌧(t) = � ln(1� ⇠)
Z t

0
µt(s)ds = � ln(1� ⇠)

kX

i=1

µt,i �i = � ln(1� ⇠)

General volume

Sampled  
collision  
LHS=RHS

LHS > RHSConstant step

RAY MARCHING

Start
�1

Ray marching: 

1) Draw a random number  

2) While LHS < RHS  
   make a (fixed-size) step 

3) Find the exact location  

   in the last segment analytically

t = �
ln(1� ⇠)

µt
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Find the collision distance approximately
⇠ = 1� e�⌧(t)

⌧(t) = � ln(1� ⇠)
Z t

0
µt(s)ds = � ln(1� ⇠)

kX

i=1

µt,i �i = � ln(1� ⇠)

General volume

Ignored thin 
features = bias

LHS > RHSConstant step

RAY MARCHING

Sampled  
collision  
LHS=RHS

Start
�1

Ray marching: 

1) Draw a random number  

2) While LHS < RHS  
   make a (fixed-size) step 

3) Find the exact location  

   in the last segment analytically

t = �
ln(1� ⇠)

µt
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FREE-PATH SAMPLING 

 12— DISTANCE SAMPLING

‣ Efficient & simple,  
limited to few volumes 

‣ Iterative, inefficient if 
free paths cross many 
boundaries

‣ Iterative, inaccurate (or 
inefficient) for media 
with high frequencies

‣ Simple volumes 
(e.g. homogeneous)

‣ Piecewise-simple 
volumes

‣ Any volume  

‣ Unbiased ‣ Unbiased ‣ Biased

ANALYTIC CDF-1 REGULAR TRACKING RAY MARCHING

Common approach: sample optical thickness, find corresponding distance



NULL-COLLISION ALGORITHMS



NULL-COLLISION ALGORITHMS



NULL-COLLISION ALGORITHMS
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TRANSMITTANCE estimation:

‣ Delta tracking

‣ (Residual) ratio tracking

‣ Next-flight delta/ratio tracking

FREE-PATH sampling:

‣ Delta tracking (a.k.a Woodcock tracking) 

‣ Weighted delta tracking

‣ Decomposition tracking

‣ Spectral tracking  

NULL-COLLISION ALGORITHMS

 16— DISTANCE SAMPLING

Discussed 
by Jo later

Discussed together w/  
other transmittance estimators

Origins in neutron transport and plasma physics, unbiased sampling

Applied in rendering since 2008 [Raab et al. 2008]

http://doi.org/10.1007/978-3-540-74496-2_35


DELTA TRACKING
WEIGHTED (DELTA) TRACKING
DECOMPOSITION TRACKING
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DELTA TRACKING

 18— DISTANCE SAMPLING

a.k.a. Woodcock tracking, pseudo scattering, hole tracking, null-collision method,…

PHYSICALLY-BASED interpretation

‣ Correctness motivated by intuitive  
physical arguments:  
Butcher and Messel [1958, 1960],  
Zerby et al. [1961], Bertini [1963], 
Woodcock et al. [1965], Skullerud [1968],
…

MATHEMATICAL formalisms

‣ Proofs: Miller [1967], Coleman [1968]

‣ Integral formulation: Galtier et al. [2013]

https://doi.org/10.1103/PhysRev.112.2096
https://doi.org/10.1016/0029-5582(60)90162-0
https://doi.org/10.2172/4836227
https://doi.org/10.2172/4692927
https://www.yiningkarlli.com/projects/specdecomptracking/references/Woodcock1965.pdf
https://doi.org/10.1088/0022-3727/1/11/423
https://www.osti.gov/servlets/purl/4500721
https://doi.org/10.13182/NSE68-1
http://doi.org/10.1016/j.jqsrt.2015.10.016
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PHYSICAL INTERPRETATION

 19— DISTANCE SAMPLING

Add FICTITIOUS MATTER to homogenize heterogeneous extinction

‣ albedo

‣ phase function

↵(x) = 1

fp(!, !̄) = �(! � !̄)

Fictitious particle

Incident  
light

Outgoing 
light

Presence of fictitious matter 
does not impact light transport
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PHYSICAL INTERPRETATION

 20— DISTANCE SAMPLING

HOMOGENIZATION

Volume 
bounds

Real 
particle
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Volume 
bounds

PHYSICAL INTERPRETATION

 21— DISTANCE SAMPLING

HOMOGENIZATION

Fictitious 
particle

Real 
particle
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Volume 
bounds

PHYSICAL INTERPRETATION

 22— DISTANCE SAMPLING

HOMOGENIZATION

Fictitious 
particle

Real 
particle
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Volume 
bounds

PHYSICAL INTERPRETATION

 23— DISTANCE SAMPLING

HOMOGENIZATION

Fictitious 
particle

Real 
particle
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Volume 
bounds

PHYSICAL INTERPRETATION

 24— DISTANCE SAMPLING

HOMOGENIZATION

Fictitious 
particle

Real 
particle
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Volume 
bounds

PHYSICAL INTERPRETATION

 25— DISTANCE SAMPLING

HOMOGENIZATION

Fictitious 
particle

Real 
particle
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Volume 
bounds

PHYSICAL INTERPRETATION

 26— DISTANCE SAMPLING

HOMOGENIZATION

Fictitious 
particle

Real 
particle
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Volume 
bounds

PHYSICAL INTERPRETATION

 27— DISTANCE SAMPLING

HOMOGENIZATION

Fictitious 
particle

Real 
particle
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Volume 
bounds

PHYSICAL INTERPRETATION

 28— DISTANCE SAMPLING

HOMOGENIZATION

Fictitious 
particle

Real 
particle
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Volume 
bounds

PHYSICAL INTERPRETATION

 29— DISTANCE SAMPLING

HOMOGENIZATION

Fictitious 
particle

Real 
particle
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Volume 
bounds

PHYSICAL INTERPRETATION

 30— DISTANCE SAMPLING

HOMOGENIZATION

Fictitious 
particle

Real 
particle
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PHYSICAL INTERPRETATION

 31— DISTANCE SAMPLING

HOMOGENIZATION

Volume 
bounds

Real 
particle
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STOCHASTIC SAMPLING

 32— DISTANCE SAMPLING

Volume 
bounds

Real 
medium
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STOCHASTIC SAMPLING

 33— DISTANCE SAMPLING

Volume 
bounds

Real 
medium

Majorant µ̄ = µt(x) + µn(x)µ̄ = µt(x) + µn(x)

Fictitious 
medium

µ̄ = µt(x) + µn(x)
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STOCHASTIC SAMPLING

 34— DISTANCE SAMPLING

Distance
Ex

ti
nc

ti
on

Tentative 
collision

µt(x)

Pn(x) =
µn(x)

µ̄

� ln(1� ⇠)

µ̄

µ̄ = µt(x) + µn(x)Majorant
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STOCHASTIC SAMPLING

 35— DISTANCE SAMPLING

Distance
Ex

ti
nc

ti
on

Tentative 
collision

µ̄ = µt(x) + µn(x)

µt(x)

Majorant

Pn(x) =
µn(x)

µ̄
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STOCHASTIC SAMPLING

 36— DISTANCE SAMPLING

Distance
Ex

ti
nc

ti
on

Tentative 
collision

µ̄ = µt(x) + µn(x)

µt(x)

Majorant

Pn(x) =
µn(x)

µ̄
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STOCHASTIC SAMPLING

 37— DISTANCE SAMPLING

Distance
Ex

ti
nc

ti
on

Real 
collision

µ̄ = µt(x) + µn(x)

µt(x)

Majorant

Sampled free path

Pn(x) =
µn(x)

µ̄
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IMPACT OF MAJORANT

 38— DISTANCE SAMPLING

Distance
Ex

ti
nc

ti
on

Sampled free path

µ̄ = µt(x) + µn(x)

µt(x)

Majorant
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IMPACT OF MAJORANT

 39— DISTANCE SAMPLING

Distance
Ex

ti
nc

ti
on

µ̄ = µt(x) + µn(x)

µt(x)

Majorant

Tight majorant = GOOD 
(few rejected collisions)

Sampled free path
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IMPACT OF MAJORANT

 40— DISTANCE SAMPLING

Distance

µ̄ = µt(x) + µn(x)

µt(x)

Majorant

Loose majorant = BAD 
(many expensive rejected collisions)

Sampled free path
Ex

ti
nc

ti
on
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DELTA TRACKING

 41— DISTANCE SAMPLING

PHYSICALLY-BASED interpretation

‣ Correctness motivated by intuitive  
arguments:  
Butcher and Messel [1958, 1960],  
Zerby et al. [1961], Bertini [1963], 
Woodcock et al. [1965], Skullerud [1968],
…

MATHEMATICAL formalism

‣ Integral formulation: Galtier et al. [2013]

https://doi.org/10.1103/PhysRev.112.2096
https://doi.org/10.1016/0029-5582(60)90162-0
https://doi.org/10.2172/4836227
https://doi.org/10.2172/4692927
https://www.yiningkarlli.com/projects/specdecomptracking/references/Woodcock1965.pdf
https://doi.org/10.1088/0022-3727/1/11/423
http://doi.org/10.1016/j.jqsrt.2015.10.016


DELTA TRACKING
WEIGHTED (DELTA) TRACKING
DECOMPOSITION TRACKING
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MATHEMATICAL FORMALIZATION

 43— DISTANCE SAMPLING

CHANGE OF RADIANCE due to null collisions

�µn(x)L(x,!) + µn(x)

Z

S2

�(! � !̄)L(x, !̄) d!̄ = 0

Losses

Cancel each other

Gains (“in-scattering”) 

�µn(x)L(x,!) + µn(x)

Z

S2

�(! � !̄)L(x, !̄) d!̄ = 0

based on Galtier et al. [2013]

http://doi.org/10.1016/j.jqsrt.2015.10.016
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MATHEMATICAL FORMALIZATION

 44— DISTANCE SAMPLING

�µn(x)L(x,!) + µn(x)

Z

S2

�(! � !̄)L(x, !̄) d!̄ = 0

CHANGE OF RADIANCE due to null collisions

INTEGRAL RTE with null collisions

Transmittance through the combined 
(real+fictitious) medium

based on Galtier et al. [2013]

Null-collided  
radiance

http://doi.org/10.1016/j.jqsrt.2015.10.016
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MATHEMATICAL FORMALIZATION

 45— DISTANCE SAMPLING based on Galtier et al. [2013]

INTEGRAL RTE with null collisions

http://doi.org/10.1016/j.jqsrt.2015.10.016
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MATHEMATICAL FORMALIZATION

 46— DISTANCE SAMPLING based on Galtier et al. [2013]

RTE ESTIMATOR with null collisions

hL(x,!)i = Tµ̄(y)

p(y)

hf(x)iP =

(
f(x)
P (x) if accept

0 otherwise.

if accepted
otherwise

Probabilistic evaluation  
using Russian roulette

http://doi.org/10.1016/j.jqsrt.2015.10.016
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MATHEMATICAL FORMALIZATION

 47— DISTANCE SAMPLING based on Galtier et al. [2013]

RTE ESTIMATOR with null collisions

hL(x,!)i = Tµ̄(y)

p(y)

⌦
µ
↵
Pa

⌦
µ
↵
Pa

⌦
µ
↵
Pa

⌦
µ
↵
Ps

⌦
µ
↵
Pa

⌦
µ
↵
Pn

Probabilistic evaluation  
using Russian roulette

hf(x)iP =

(
f(x)
P (x) if accept

0 otherwise.

if accepted
otherwise

http://doi.org/10.1016/j.jqsrt.2015.10.016
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MATHEMATICAL FORMALIZATION

 48— DISTANCE SAMPLING

RTE ESTIMATOR with null collisions

…see EG STAR or 
Galtier et al. [2013]  

for complete derivation

Represents an entire family of  
(weighted) trackers that all solve RTE! 

Delta tracking is just one specific instance.

hL(x,!)i = Tµ̄(y)

p(y)

⌦
µ
↵
Pa

⌦
µ
↵
Pa

⌦
µ
↵
Pa

⌦
µ
↵
Ps

⌦
µ
↵
Pa

⌦
µ
↵
Pn
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PDF based on 
transmittance
p(y) = µ̄ Tµ̄(y)

WEIGHTED (DELTA) TRACKING

 49— DISTANCE SAMPLING

Degrees of freedom: p(y)DISTANCE SAMPLING

*some parameters dropped for brevity

RTE ESTIMATOR with null collisions

hL(x,!)i = Tµ̄(y)

p(y)

⌦
µ
↵
Pa

⌦
µ
↵
Pa

⌦
µ
↵
Pa

⌦
µ
↵
Ps

⌦
µ
↵
Pa

⌦
µ
↵
Pn
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Equiangular PDF

p(y) / 1/d2

p(y) / 1/d2

WEIGHTED (DELTA) TRACKING

 50— DISTANCE SAMPLING

Degrees of freedom: p(y)DISTANCE SAMPLING

*some parameters dropped for brevity

RTE ESTIMATOR with null collisions

hL(x,!)i = Tµ̄(y)

p(y)

⌦
µ
↵
Pa

⌦
µ
↵
Pa

⌦
µ
↵
Pa

⌦
µ
↵
Ps

⌦
µ
↵
Pa

⌦
µ
↵
Pn
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Arbitrary PDF

WEIGHTED (DELTA) TRACKING

 51— DISTANCE SAMPLING

Degrees of freedom: p(y)DISTANCE SAMPLING

*some parameters dropped for brevity

RTE ESTIMATOR with null collisions

hL(x,!)i = Tµ̄(y)

p(y)

⌦
µ
↵
Pa

⌦
µ
↵
Pa

⌦
µ
↵
Pa

⌦
µ
↵
Ps

⌦
µ
↵
Pa

⌦
µ
↵
Pn
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WEIGHTED (DELTA) TRACKING

 52— DISTANCE SAMPLING

Degrees of freedom:
Pa Ps, Pn,INTERACTION PROBABILITIES

p(y)DISTANCE SAMPLING

Pa =
µa

µ̄
Ps =

µs

µ̄
Pn =

µn

µ̄

Delta tracking

*some parameters dropped for brevity

RTE ESTIMATOR with null collisions

hL(x,!)i = Tµ̄(y)

p(y)

⌦
µ
↵
Pa

⌦
µ
↵
Pa

⌦
µ
↵
Pa

⌦
µ
↵
Ps

⌦
µ
↵
Pa

⌦
µ
↵
Pn
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Delta tracking

WEIGHTED (DELTA) TRACKING

 53— DISTANCE SAMPLING

Degrees of freedom:
Pa Ps, Pn,INTERACTION PROBABILITIES

p(y)DISTANCE SAMPLING

Pa =
µa

µ̄
Ps =

µs

µ̄
Pn =

µn

µ̄

µ̄ = µt(x) + µn(x)

µt(x)

Non-bounding

µt+|µn| µt+|µn| µt+|µn|

Weighted tracking that handles

*some parameters dropped for brevity

RTE ESTIMATOR with null collisions

hL(x,!)i = Tµ̄(y)

p(y)

⌦
µ
↵
Pa

⌦
µ
↵
Pa

⌦
µ
↵
Pa

⌦
µ
↵
Ps

⌦
µ
↵
Pa

⌦
µ
↵
Pn
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WEIGHTED (DELTA) TRACKING

 54— DISTANCE SAMPLING

Degrees of freedom:
Pa Ps, Pn,INTERACTION PROBABILITIES

p(y)DISTANCE SAMPLING

Pa =
µa

µ̄
Ps =

µs

µ̄
Pn =

µn

µ̄µs+|µn| µs+|µn|

*some parameters dropped for brevity

Disabled absorption/emission sampling

0

RTE ESTIMATOR with null collisions

hL(x,!)i = Tµ̄(y)

p(y)

⌦
µ
↵
Pa

⌦
µ
↵
Pa

⌦
µ
↵
Pa

⌦
µ
↵
Ps

⌦
µ
↵
Pa

⌦
µ
↵
Pn
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WEIGHT due to multiple null collisions:

*some parameters dropped for brevity

y1

Tµ̄

p

µn

Pn

k�1Y

i=1

Tµ̄(yi)

p(yi)
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RTE ESTIMATOR with null collisions
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⌦
µ
↵
Pa

⌦
µ
↵
Pa

⌦
µ
↵
Pa

⌦
µ
↵
Ps

⌦
µ
↵
Pa

⌦
µ
↵
Pn



MONTE CARLO METHODS FOR PHYSICALLY BASED VOLUME RENDERING

WEIGHTED (DELTA) TRACKING

 56— DISTANCE SAMPLING

‣ Integral framework for null-collision algorithms  
[Galtier et al. 2013]

‣ Handling of non-bounding “majorants”  
[Cramer 1978, Galtier et al. 2013, Eymet et al. 2013, Novák et al. 2014,  
Szirmay-Kalos et al. 2017, Kutz et al. 2017, Szirmay-Kalos et al. 2018]

‣ Improved transmittance estimation  
[Cramer 1978, Novák et al. 2014—Ratio tracking]

‣ Sample splitting  
[Eymet et al. 2013], [Szirmay-Kalos et al. 2017—Single vs. Double particle model]

‣ Spectral tracking  
[Kutz et al. 2017]

http://doi.org/10.1016/j.jqsrt.2015.10.016
https://doi.org/10.13182/NSE78-A27154
http://doi.org/10.1016/j.jqsrt.2015.10.016
https://doi.org/10.1016/j.jqsrt.2013.06.004
https://doi.org/10.1145/2661229.2661292
https://doi.org/10.1111/cgf.13102
https://doi.org/10.1145/3072959.3073665
http://cg.iit.bme.hu/~szirmay/woodcockscatter33.pdf
https://doi.org/10.13182/NSE78-A27154
https://doi.org/10.1145/2661229.2661292
https://doi.org/10.1016/j.jqsrt.2013.06.004
https://doi.org/10.1111/cgf.13102
https://doi.org/10.1145/3072959.3073665
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SUMMARY

‣ Non-analog tracker

‣ Distance distribution differs from free-path distribution, but… 
distribution of WEIGHTED distance samples is IDENTICAL to free-path distribution

‣ Allows handling non-bounding “majorants”

‣ Enables reducing variance by adjusting:

‣ distance sampling of tentative collisions

‣ collision probabilities



DELTA TRACKING
WEIGHTED (DELTA) TRACKING
DECOMPOSITION TRACKING
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OVERLAPPING VOLUMES

 62— DISTANCE SAMPLING

Take the SHORTER  
from the two  

samples
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OVERLAPPING VOLUMES

 63— DISTANCE SAMPLING



MONTE CARLO METHODS FOR PHYSICALLY BASED VOLUME RENDERING
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Accelerate free-path sampling by reducing expensive extinction evaluations

‣ [Kutz et al. 2017]

https://doi.org/10.1145/3072959.3073665
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HETEROGENEOUS  
component

HOMOGENEOUS  
component

(Piecewise-)
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Avoided work!
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Decomposition tracking: 

1) Decompose into control and residual 

2) Sample control component 

Repeat 

   3) Sample tentative free path  

      in residual component 

   4) If beyond control sample  

      5) Return control sample 

   6) Probabilistically classify collisi
on 

Until collision classified as real 

7) Return residual sample
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0.0 0.2 0.4 0.6 0.8 1.0
⇥107

0.0 0.2 0.4 0.6 0.8 1.0
⇥107

Decomposition tracking 
42% reduction in lookups

Delta tracking

Kutz et al. [2017] 
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HOMOGENEOUS and RESIDUAL HETEROGENEOUS components

‣ Reduces evaluations of spatially varying collision coefficients

‣ Requires a space-partitioning data structure (e.g. octree) to be practical

‣ Can be combine with weighted tracking to handle arbitrary decompositions
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‣ Equiangular sampling  
[Kulla and Fajardo 2012]

‣ Joint-importance sampling  
[Georgiev et al. 2013]

‣ Tabulation approaches  
[Kulla and Fajardo 2012, Novák et al. 2012, Georgiev et al. 2013, Novák et al. 2014] 

Discussed by 
Iliyan later

…END OF THIS PART

https://doi.org/10.1111/j.1467-8659.2012.03148.x
https://doi.org/10.1145/2508363.2508411
https://doi.org/10.1111/j.1467-8659.2012.03148.x
https://doi.org/10.1145/2185520.2185556
https://doi.org/10.1145/2508363.2508411
https://doi.org/10.1145/2661229.2661292

