PATH CONSTRUCTION

Iliyan Georgiev
Solid Angle

Pixel value

$$I_j = \int_{\mathcal{D}} f_j(\overline{\mathbf{x}}) d\overline{\mathbf{x}}$$

Pixel value

$$I_j = \int_{\mathcal{D}} f_j(\overline{\mathbf{x}}) d\overline{\mathbf{x}}$$

Pixel value

$$I_j = \int_{\mathcal{P}} f_j(\overline{\mathbf{x}}) d\overline{\mathbf{x}}$$

Pixel estimator

$$\langle I_j \rangle = \frac{1}{N} \sum_{i=1}^{N} \frac{f_j(\overline{\mathbf{x}}_i)}{p(\overline{\mathbf{x}}_i)}$$

Pixel value

$$I_j = \int_{\mathcal{P}} f_j(\overline{\mathbf{x}}) d\overline{\mathbf{x}}$$

Pixel estimator

$$\langle I_j
angle = rac{1}{N} \sum_{i=1}^N rac{f_j(\overline{\mathbf{x}}_i)}{p(\overline{\mathbf{x}}_i)}$$
 path contribution path pdf

Pixel value

$$I_j = \int_{\mathcal{P}} f_j(\overline{\mathbf{x}}) d\overline{\mathbf{x}}$$

Pixel estimator

$$\langle I_j \rangle = \frac{1}{N} \sum_{i=1}^{N} \frac{f_j(\overline{\mathbf{x}}_i)}{p(\overline{\mathbf{x}}_i)}$$

Pixel value

$$I_j = \int_{\mathcal{P}} f_j(\overline{\mathbf{x}}) d\overline{\mathbf{x}}$$

Pixel estimator

$$\langle I_j \rangle = \frac{1}{N} \sum_{i=1}^{N} \frac{f_j(\overline{\mathbf{x}}_i)}{p(\overline{\mathbf{x}}_i)}$$

$$f_j(\overline{\mathbf{x}}) = W_j(\mathbf{x}_0, \mathbf{x}_1) \left| \prod_i f_s(\mathbf{x}_i) G(\mathbf{x}_i, \mathbf{x}_{i+1}) T(\mathbf{x}_i, \mathbf{x}_{i+1}) \right| L_e(\mathbf{x}_k, \mathbf{x}_{k-1})$$

Pixel value

$$I_j = \int_{\mathcal{P}} f_j(\overline{\mathbf{x}}) d\overline{\mathbf{x}}$$

Pixel estimator

$$\langle I_j \rangle = \frac{1}{N} \sum_{i=1}^{N} \frac{f_j(\overline{\mathbf{x}}_i)}{p(\overline{\mathbf{x}}_i)}$$

$$f_j(\overline{\mathbf{x}}) = \begin{bmatrix} W_j(\mathbf{x}_0, \mathbf{x}_1) \\ \text{camera} \\ \text{response} \end{bmatrix} \begin{bmatrix} \prod_i f_{\mathrm{s}}(\mathbf{x}_i) G(\mathbf{x}_i, \mathbf{x}_{i+1}) T(\mathbf{x}_i, \mathbf{x}_{i+1}) \end{bmatrix} L_{\mathrm{e}}(\mathbf{x}_k, \mathbf{x}_{k-1})$$

Pixel value

$$I_j = \int_{\mathcal{P}} f_j(\overline{\mathbf{x}}) d\overline{\mathbf{x}}$$

Pixel estimator

$$\langle I_j \rangle = \frac{1}{N} \sum_{i=1}^{N} \frac{f_j(\overline{\mathbf{x}}_i)}{p(\overline{\mathbf{x}}_i)}$$

$$f_j(\overline{\mathbf{x}}) = W_j(\mathbf{x}_0, \mathbf{x}_1) \left[\prod_i f_{\mathbf{s}}(\mathbf{x}_i) G(\mathbf{x}_i, \mathbf{x}_{i+1}) T(\mathbf{x}_i, \mathbf{x}_{i+1}) \right] L_{\mathbf{e}}(\mathbf{x}_k, \mathbf{x}_{k-1})$$
 camera response

Pixel value

$$I_j = \int_{\mathcal{P}} f_j(\overline{\mathbf{x}}) d\overline{\mathbf{x}}$$

Pixel estimator

$$\langle I_j \rangle = \frac{1}{N} \sum_{i=1}^{N} \frac{f_j(\overline{\mathbf{x}}_i)}{p(\overline{\mathbf{x}}_i)}$$

$$f_j(\overline{\mathbf{x}}) = W_j(\mathbf{x}_0, \mathbf{x}_1) \left[\prod_i f_{\mathbf{s}}(\mathbf{x}_i) G(\mathbf{x}_i, \mathbf{x}_{i+1}) T(\mathbf{x}_i, \mathbf{x}_{i+1})\right] L_{\mathbf{e}}(\mathbf{x}_k, \mathbf{x}_{k-1})$$
 camera response phase geometry

Pixel value

$$I_j = \int_{\mathcal{P}} f_j(\overline{\mathbf{x}}) d\overline{\mathbf{x}}$$

Pixel estimator

$$\langle I_j \rangle = \frac{1}{N} \sum_{i=1}^{N} \frac{f_j(\overline{\mathbf{x}}_i)}{p(\overline{\mathbf{x}}_i)}$$

$$f_j(\overline{\mathbf{x}}) = W_j(\mathbf{x}_0, \mathbf{x}_1) \left[\prod_i f_{\mathbf{s}}(\mathbf{x}_i) G(\mathbf{x}_i, \mathbf{x}_{i+1}) T(\mathbf{x}_i, \mathbf{x}_{i+1}) \right] L_{\mathbf{e}}(\mathbf{x}_k, \mathbf{x}_{k-1})$$
 camera response phase geometry transmittance

Pixel value

$$I_j = \int_{\mathcal{P}} f_j(\overline{\mathbf{x}}) d\overline{\mathbf{x}}$$

Pixel estimator

$$\langle I_j \rangle = \frac{1}{N} \sum_{i=1}^{N} \frac{f_j(\overline{\mathbf{x}}_i)}{p(\overline{\mathbf{x}}_i)}$$

Path contribution

$$f_j(\overline{\mathbf{x}}) = W_j(\mathbf{x}_0, \mathbf{x}_1) \left[\prod_i f_{\mathbf{s}}(\mathbf{x}_i) G(\mathbf{x}_i, \mathbf{x}_{i+1}) T(\mathbf{x}_i, \mathbf{x}_{i+1}) \right] \underbrace{L_{\mathbf{e}}(\mathbf{x}_k, \mathbf{x}_{k-1})}_{\text{emitted radiance}} \right] \underbrace{L_{\mathbf{e}}(\mathbf{x}_k, \mathbf{x}_{k-1})}_{\text{emitted radiance}}$$

emitted radiance

Pixel value

$$I_j = \int_{\mathcal{P}} f_j(\overline{\mathbf{x}}) d\overline{\mathbf{x}}$$

Pixel estimator

$$\langle I_j \rangle = \frac{1}{N} \sum_{i=1}^{N} \frac{f_j(\overline{\mathbf{x}}_i)}{p(\overline{\mathbf{x}}_i)}$$

$$f_j(\overline{\mathbf{x}}) = W_j(\mathbf{x}_0, \mathbf{x}_1) \left[\prod_i f_{\mathbf{s}}(\mathbf{x}_i) G(\mathbf{x}_i, \mathbf{x}_{i+1}) T(\mathbf{x}_i, \mathbf{x}_{i+1}) \right] L_{\mathbf{e}}(\mathbf{x}_k, \mathbf{x}_{k-1})$$
camera
response

phase geometry transmittance radiance

Pixel value

$$I_j = \int_{\mathcal{P}} f_j(\overline{\mathbf{x}}) d\overline{\mathbf{x}}$$

Pixel estimator

$$\langle I_j \rangle = \frac{1}{N} \sum_{i=1}^{N} \frac{f_j(\overline{\mathbf{x}}_i)}{p(\overline{\mathbf{x}}_i)}$$

Path contribution

$$f_j(\overline{\mathbf{x}}) = \begin{bmatrix} W_j(\mathbf{x}_0, \mathbf{x}_1) & \begin{bmatrix} \prod_i f_{\mathrm{S}}(\mathbf{x}_i) G(\mathbf{x}_i, \mathbf{x}_{i+1}) T(\mathbf{x}_i, \mathbf{x}_{i+1}) \end{bmatrix} L_{\mathrm{e}}(\mathbf{x}_k, \mathbf{x}_{k-1}) \\ \text{camera} \\ \text{response} & \text{phase} & \text{geometry} & \text{transmittance} \end{bmatrix} L_{\mathrm{e}}(\mathbf{x}_k, \mathbf{x}_{k-1})$$

ideally proportional

$$p(\overline{\mathbf{x}}) \propto W_j(\mathbf{x}_0, \mathbf{x}_1) \left[\prod_i f_{\mathrm{s}}(\mathbf{x}_i) G(\mathbf{x}_i, \mathbf{x}_{i+1}) T(\mathbf{x}_i, \mathbf{x}_{i+1}) \right]$$

$$p(\overline{\mathbf{x}}) \propto W_j(\mathbf{x}_0, \mathbf{x}_1) \left[\prod_i f_s(\mathbf{x}_i) G(\mathbf{x}_i, \mathbf{x}_{i+1}) T(\mathbf{x}_i, \mathbf{x}_{i+1}) \right]$$

not importance sampled

$$L_{\mathrm{e}}(\mathbf{x}_k,\mathbf{x}_{k-1})$$

high variance when light sources are small

 $p(\overline{\mathbf{x}}) \propto W_j(\mathbf{x}_0, \mathbf{x}_1) \left[\prod_i f_s(\mathbf{x}_i) G(\mathbf{x}_i, \mathbf{x}_{i+1}) T(\mathbf{x}_i, \mathbf{x}_{i+1}) \right]$

not importance sampled $L_{
m e}(\mathbf{x}_k,\mathbf{x}_{k-1})$

EXPLICIT LIGHT SAMPLING

EXPLICIT LIGHT SAMPLING

EXPLICIT LIGHT SAMPLING

EXPLICIT: EQUIANGULAR

EXPLICIT: EQUIANGULAR

EXPLICIT: EQUIANGULAR

Transmittance sampling, 16 spp

Equiangular sampling, 16 spp

Equiangular sampling

Equiangular sampling

Transmittance sampling

UNIDIRECTIONAL + NEXT EVENT

Transmittance connections

Equiangular connections

Transmittance connections

Equiangular connections

UNIDIRECTIONAL + NEXT EVENT

UNIDIRECTIONAL + NEXT EVENT

TRADITIONAL: prescribes conditional pdfs, no explicit control over joint pdf

TRADITIONAL: prescribes conditional pdfs, no explicit control over joint pdf

JOINT SAMPLING: prescribe joint pdf, conditional pdfs derived from it

TRADITIONAL: prescribes conditional pdfs, no explicit control over joint pdf

JOINT SAMPLING: prescribe joint pdf, conditional pdfs derived from it

Transmittance

Equiangular

Joint sampling

Equiangular

Joint sampling

Transmittance connections

SINGULARITY

SINGULARITY

Combined MIS pixel estimator:

METROPOLIS LIGHT TRANSPORT

METROPOLIS LIGHT TRANSPORT

METROPOLIS LIGHT TRANSPORT

UNIDIRECTIONAL SAMPLING

Almost ideal on paper, rarely useful in practice

UNIDIRECTIONAL SAMPLING

Almost ideal on paper, rarely useful in practice

NEXT EVENT ESTIMATION

Improvement, but singularity in indirect lighting (reduced convergence rate)

UNIDIRECTIONAL SAMPLING

Almost ideal on paper, rarely useful in practice

NEXT EVENT ESTIMATION

Improvement, but singularity in indirect lighting (reduced convergence rate)

JOINT PATH SAMPLING

Substantial improvement in the presence of singularities

UNIDIRECTIONAL SAMPLING

Almost ideal on paper, rarely useful in practice

NEXT EVENT ESTIMATION

Improvement, but singularity in indirect lighting (reduced convergence rate)

JOINT PATH SAMPLING

Substantial improvement in the presence of singularities

- Avoids singularities, more robust thanks to mixing many sampling techniques
- Difficult to implement

UNIDIRECTIONAL SAMPLING

Almost ideal on paper, rarely useful in practice

NEXT EVENT ESTIMATION

Improvement, but singularity in indirect lighting (reduced convergence rate)

JOINT PATH SAMPLING

Substantial improvement in the presence of singularities

BIDIRECTIONAL PATH TRACING

- Avoids singularities, more robust thanks to mixing many sampling techniques
- Difficult to implement

METROPOLIS SAMPLING

- Apply on top, great for very difficult illumination
- ► (Difficult to implement)²