
• This part of the course addresses the idea of “path guiding” – and how it can be used to reduce 

variance of Monte Carlo volumetric light transport simulation.

• We will also show that the theory of zero-variance random walks, originally developed in the neutron 

transport literature, can serve as a convenient theoretical framework for path guiding methods.
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• The intuitive idea of path guiding is straightforward: sample paths in such a way that they can 

preferably reach `important’ parts of the scene (e.g. reach the light sources, if we sample paths from 

the camera, as in path tracing).
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• In order to achieve that, we need to design appropriate probability distributions to be used in path 

sampling.

• The theory of zero-variance random walks provides such sampling distributions. 

• More precisely, the ZV theory provides a set of local sampling distributions that provably yield globally 

optimal sampling of the path space (in the sense that the resulting estimator will have zero variance)

• The idea that a random walk can be constructed in such a way that it always yields the correct answer 

with absolutely no variance has been around for almost as long as MC methods themselves.

• Despite the zero variance theory being old, Hoogenboom's recent 2008 NSE article (Zero-variance 

Monte Carlo Schemes Revisited) is very important: he corrects some misconceptions about the 

uniqueness of zero-variance walk construction that have lingered for several decades, and includes 

discussions about boundary crossing and track-length estimators as well.

• Booth’s 2012 article (Common misconceptions in Monte Carlo particle transport) further clarifies and 

generalizes some of the concepts of zero-variance schemes. He argues that Hoogenbooms’ conclusion 

concerning the uniqueness of the zero-variance construstions are not correct and that there are 

multiple ways in which a zero-variance walk can be constructed.
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• While the ZV theory provides a convenient framework, it is a mere theoretical construct that cannot be 

readily applied in practice, the reason being that it needs the radiance solution everywhere in the 

scene.

• But the radiance solution is unknown up front since that is what we are attempting to compute in the 

first place.

• While this vicious circle may sound hopeless, the ZV theory does provide a certain guideline for thinking 

about path guiding, an ideal to strive to.

• In practice, this is realized by replacing the radiance solution by some convenient approximation, which 

then yields an approximation of the ZV scheme.

• How can we obtain such an approximate solution?

• One option is to use statistical/Machine learning techniques to reconstruct the solution and the ZV-

based sampling distributions directly from the Monte Carlo samples used in the rendering itself (or in a 

separate pre-pass). Our work [Vorba et al. 2014, 2016] applies this idea to surface light transport.  Our 

recent work [Herholz et al.] generalizes the idea to volumetric transport.

• Another, very different approach to obtain the approximate solution, is to employ an analytical light 

transport solution in a canonical case that resembles the situation under consideration.

• In the specific case that I will be talking about, we use this idea in MC subsurface scattering and the 

appropriate canonical case here is a flat, semi-infinite medium (half-space).
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• Let me start by briefly showcasing our recent work on volumetric path guiding.
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• The motivation, and a starting point, is our work on path guiding on surfaces [Vorba et al. 2014].
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• In order to apply this idea to volumetric transport, all the various random decisions used when 

constructing a light transport path need to be appropriately importance sampled.

• This includes the selection of scattering distance along a ray, and the decision whether the scattering 

should occur in the volume or at the next surface interaction. These decisions are unique to volumetric 

light transport and do not appear in surface transport.

• Furthermore the decisions shared with surface transport include the choice of the scattering direction 

and random termination/splitting of the paths.
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• Without giving any further details, let’s have a look at some results.

• This is a homogeneous medium with scattering properties approximating these of a Caucasian skin.

• We use Monte Carlo path tracing to render the scene.
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• With standard path sampling, we can see that even after 30 minutes of rendering, the image shows a 

significant amount of noise.
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• Our volumetric path guiding based in the zero-variance sampling scheme yields a nearly clean image in 

the same time.
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• This slide shows that the different random sampling decisions complement each other and together 

they yield the desired variance reduction.
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• Here, we show the same technique applied to a very different scene – this time a natural history 

museum filled with thin haze and illuminated by light shafts.
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• Again, the standard sampling shows a significant amount of noise…
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• While the zero-variance-based path guiding provides a significant variance reduction.
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• Once again, we can see that the different random decisions add up to yield the final solution.
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• Let us now discuss path guiding based on an approximate solution obtained through an analytical 

solution in a canonical case.

• This work was done with Eugene d’Eon when I visited Weta Digital in 2013.

• It was presented as a talk at SIGGRAPH 2014 [Křivánek and d’Eon 2014].
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• Our primary application is subsurface scattering, notably in the human skin.
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• When one applies classic path tracing for calculating subsurface scattering in the skin, the path 

sampling procedures are unaware of the fact that we are interested in calculating the solution at the 

surface boundary – instead, they tend to wander around in the medium without making a relevant 

contribution to the image.
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• Our goal here is to inform the path sampling procedure that it should preferably guide the paths 

outside of the medium.
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• To solve this issue, we turn our attention to the neutron transport literature…
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• … where similar problems are encountered in the reactor shield design calculations.

• The neutron transport literature refers to this class of problems as “deep penetration problems”.

• By design, only a tiny fraction of the incident radiation is allowed to pass through a reactor shield.

• For example, in a blind MC simulation only one in a billion particles would make it through, which 

makes the classic MC simulation totally hopeless.



• One of the approaches to solve this issue is the so-called “path stretching”.

• The idea is to advance the particles toward the outside by artificially stretching the sampled distance 

whenever the particle in a MC simulation points toward the exterior, and to shrink it when the particle 

is directed to the interior. To compensate for this, one needs to adjust the weight of the particle, 

because its behavior no longer follows the laws of physics.

• Path stretching has originally been derived heuristically and relied on an ad-hoc parameter (the 

‘strength’ of the stretching). While it often worked great, it could actually deteriorate the result 

(increase variance) when the stretching parameter wasn’t set judiciously.



• This is where the theory of zero-variance random walks comes into play.

• Dwivedi [1981] was the first to apply the theory of zero-variance random walks to deep penetration 

problems.

• He has shown how the heuristic path stretching automatically follows from the theory, while giving a 

clear answer to the parameter setting.

• He was also the first to show that to robustly reduce variance, the path stretching needs to be 

combined with an appropriate angular sampling.

• While he conceived his work with reactor shield design problems in mind, we show that it can be 

adopted to subsurface light transport, and we propose some further improvements.



• We apply the technique in a unidirectional path tracer.

• The zero-variance-based random walk is used only for the part of the path under the surface.

• The rest of the path is not affected at all and follows the same rules as in a regular path tracer.



• Since we do not know what the path tracer will encounter after escaping from the surface, we assume, 

for the sake of constructing the zero-variance walk, white-sky illumination, uniform in the directional 

and spatial domains. 

• This is equivalent to saying that ‘escape’ from the medium is our only source of importance that guides 

the random walk.

• Note that this is not a necessary step: the general theory (‘Caseology’ on the next slide) permits 

knowing (in theory) the full directional radiance distribution inside some volume due to a particular 

light source(s) outside of it. In this much more complicated case, the approximate internal radiance 

solution would guide the subsurface sub-paths not only to try to escape the medium, but also tend to 

positions which permit angle selections that then leave the medium in a direction that tends to hit the 

light. However, this would be quite complex in practice so we decided not to pursue this option.



• In order to be able to build upon the zero-variance theory in constructing the random walk, we need an 

approximation of the radiance solution under the surface.

• Note that the Monte Carlo estimator that we construct is unbiased irrespective of the accuracy of this 

approximate solution; the accuracy only affects the variance reduction but not the unbiasedness of the 

resulting estimator.

• For this reason, we choose to approximate the true sub-surface distribution of radiance using a solution 

for a half-space with flat boundary.

• In this setting, the medium can be specified by the (optical) depth under the surface, x, and the 

direction cosine υ.

• The exact half-space solutions that we use can be derived in several ways, including what is known as 

Caseology, named after Kenneth Case who was on the theoretical division at Los Alamos building the 

first bombs. In 1960 Case studied in detail the spectrum of the transport operator in the plane-parallel 

case, and derived an expansion into the discrete asymptotic diffusion mode, and the continuous 

spectrum of singular eigenfunctions - so named because the angular distributions (the phi-functions on 

the slide) for the transient terms are singular. This study of the structure of exact solutions in transport 

is incredibly insightful and we are probably the first to exploit it directly in a rendering technique.

• Each eigenfunction of the spectrum has the same form: the spatial term that only depends on the 

depth under the surface is a simple exponential, with different eigenfunctions having different decay 

rates. The angular term then corresponds to integrating the spatial term along a line from a given depth 

in a given direction.



• Since the complete solution is rather complex – being given by an integral over the spectrum – Dwivedi

choose to only use the discrete (asymptotic) mode of the spectrum, disregarding its continuous part.

• This is a reasonable assumption because the spatial part of the discrete mode has a slower decay rate 

than the rest of the spectrum. Therefore, as one moves away from the boundary, this terms dominates 

all the other terms and asymptotically becomes the correct solution.
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• We follow Dwivedi and use only the discrete, asymptotic term as an approximation of the true solution 

under the surface for constructing the random walk.

• Given a particle at a state (x, u) under the surface, we want to randomly sample its next state (x’, u’).

• This is decomposed into sampling the next collision distance x’ along the line from x in the direction u, 

followed by sampling the new particle direction u’.

• When sampling the collision distance, the zero-variance theory tells us that we should do this with a 

pdf proportional to the product of the spatial part of the transport kernel (i.e. transmittance = 

exponential) and the solution (which we assume to be the Case’s discrete mode = exponential).

• This yields an extremely convenient result, where we sample from a simple exponential pdf, where the 

transport coefficient is modified from its true value using the equation shown on the slide.

• Note that this is exactly equivalent to the idea of path stretching: for directions toward the boundary 

the sampled distance will be stretched, whereas it will be shortened for directions away from the 

boundary.

• Note that the v
0

parameter is a constant here, because it only depends on the single scattering albedo 

of the medium.



• The work of Dwivedi was the first to point out that path stretching must be accompanied by a 

corresponding modification of the direction sampling in order to achieve a robust variance reduction.

• This follows naturally from the zero-variance theory: we need to sample the direction from the product 

of the angular part of the transport kernel (=phase function) and the angular part of the true solution.

• In our work, we assume isotropic media with a constant phase function, so we only need to sample 

from a pdf proportional to the angular part of the solution.

• This can be derived simply by integrating the spatial part of the solution (=exponential) along lines of 

different direction.

• Furthermore, in deriving the angular solution, Dwivedi assumes that the spatial solution extends 

beyond the boundary surface, so he does not need to treat the direction toward the boundary as a 

special case.

• This yields an extremely elegant solution for the angular part, which is independent of the depth under 

the surface, and can be easily normalized and used for sampling in a closed form.

• Note that because we only assumed 'escape' as our goal, the ‘guided’ direction selection only involves 

modifying the selection of the direction cosine u: the azimuthal angle selections at each step are 

chosen uniformly. This is one feature that would change if, say, you knew the source of light outside 

the medium came from a particular direction. In these cases, more advanced deterministic solutions in 

the interior of the medium would be required, and works of Jakob et al. [2014] (A Comprehensive 

Framework for Rendering Layered Materials) and d’Eon [2014] (A Dual-Beam 3D Searchlight BSSRDF) 

could potentially both be used to produce such importance functions for path guiding (for the plane-

parallel directional light source case, or the point source near a subsurface surface case).



• These plots show the resulting angular pdf (the horizontal axis corresponds to the direction cosine and 

the vertical axis is the pdf value).

• We can see that for low absorption (high albedo) the solution is mostly uniform, which corresponds to 

the well-known fact that the diffusive multiple scattering in low-absorption media leads to a solution 

that is mostly uniform in directions.

• For high absorption, we can see a pronounced peak of the distribution with strong preference to 

sampling directions toward the boundary.



• Before using the method in rendering, we have tested it in a simple simulator of light transport in a 

half-space.

• On this slide, we demonstrate the effect that the new method has on the trajectory of light paths under 

the surface.

• In the classical sampling the paths tend to wander quite far from the point of entry, while the new 

sampling scheme concentrates most of the sampling effort around the entry point. This effect is more 

pronounced for higher absorption levels (lower albedos) because in this regime, the diffusive multiple 

scattering has only low effect on the final result.



• The images on this slide correspond to rendering subsurface scattering on the flat, index-matched 

boundary of a semi-infinite medium under white-sky illumination. 

• These are exactly the assumptions used to build the zero-variance walk, so it is the best case for what 

we can achieve.

• We can observe substantial variance reduction for low absorption, i.e. higher albedos (0.95 roughly 

corresponds to human skin).

• There is little, if any, variance reduction for lower albedos. This is due to the fact that the assumed 

shape of the solution does not match the true shape (see slide 27).

• However, when we take the computation time into account, we obtain a substantial net improvement 

in efficiency even in those cases because the resulting sub-surface walks are much shorter on average.

• Note that in the case that there is no absorption (albedo = 1), the classical subsurface walk is already 

zero variance: you just keep sampling (with whatever sample weight you had as you entered) until 

finally you exit: with that same weight no matter where you went, so there is nothing to improve upon 

in that case (unless, as mentioned above, you knew more about where light sources might enter the 

medium).



• To use the method in rendering, we assume that the half-space is aligned with the surface normal at 

the point where the path enters under the surface.



• Despite the fact that the importance function driving the sampling assumes uniform 

hemispherical illumination, the modified path sampling lowers variance even when the 

illumination is nonuniform. 

• The images rendered with classical sampling use 100 samples/pixel while in our results we 

trace about 50% more samples/pixel in the same time. 

• While the speedup is a profitable side-effect, most of the variance reduction is due to the 

sampling pdfs closely approximating the zero-variance sampling scheme. 

• As on the previous slide, the subsurface medium has a single scattering albedo of 0.943 for all 

wavelengths and index-matched smooth boundaries. 

• The individual rows show results for different environment maps.



• The follow-up work of Meng et al. addresses the problems encountered when using the above method 

in media that significantly differ from a semi-infinite half-space, such as the ear shown on the slide.

• In addition to aligning the half-space with the point of entry (PoE), they consider aligning it with the 

normal of a point on the “the other side” of the medium (CP).

• Additionally, the consider the direction to a dominant light source (Il).

• Combining all these techniques yields a more robust solution.
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• The zero-variance-based guided subsurface scattering – as described so far – is, to our knowledge, used 

in most of the production renderer in VFX.

38



• How could the above ZV-based path guiding described so far be further improved?
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• There are a few reasons for which the Dwivedi sampling scheme still yields a substantial amount of 

variance, despite being derived from a zero-variance scheme.

• First, the assumed solution inside of the medium is a poor approximation when absorption is high.



• Second, the Dwivedi scheme assumes that the exponential importance solution extends all the way 

outside of the medium, when in fact, the importance is constant (equal to one) for any point outside of 

the medium (remember that ‘escape’ is our only source of importance and it does not matter to us 

where exactly we escape from the medium).



• We can see in these plots that there can be a significant discrepancy between the directional 

distributions assumed by Dwivedi and those obtained by a reference MC simulation, especially just 

below the surface. This is a consequence of both considering only the discrete asymptotic mode of the 

true solution and ignoring the boundary.



• In our work on improving the Dwivedi scheme, we build on the paper by Hoogenboom [2008] who

describes precisely how to construct a truly zero-variance walk for a half-space that considers the 

correct probability of escaping from the medium at any given step.

• To approach the zero variance ideal more closely, we employ a better approximation of the solution 

inside the half-space, based on matching the 1st and 2nd moments of the true solution.

• Another important aspect is that we explicitly take the boundary into account. This has a significant 

effect on the probability of escaping the medium and on the shape of the angular distribution.



• With this improved scheme, we are able to achieve a variance reduction of two orders of magnitude 

compared to classical sampling.

• So far, we have only tested the scheme in our synthetic half-space simulator. Application to rendering 

is an ongoing work.



• Much work remains to be done. 

• First, in our tests, we have assumed index-matched boundary. Changing the roughness or Fresnel ratio 

at the boundary does actually change the magnitude of the asymptotic term, but not its decay rate. 

Because the Dwivedi sampling discards the transient terms and renormalize, the magnitude of the 

asymptotic part goes away, and the Dwivedi scheme is then completely invariant to the boundary 

conditions. 

• However, in our improved approach, changing the boundary condition - and therefore the magnitude 

of the solution - has a huge effect. This is because in the improved method we strictly separate the 

solution approximation inside of the medium (an appropriately scaled exponential), and outside 

(constant, unit source of importance). So one can say that Dwivedi's invariance to boundary conditions 

is only a lucky 'artifact' of some major simplifications in his scheme.

• Another open issue is anisotropic scattering. As the phase function changes away from isotropic, more 

and more discrete asymptotic terms appear. You can pick the largest one and still apply Dwivedi’s

scheme with success (we've tried HG with g = 0.75 and still get a nice variance reduction).

• Of course, we still need to apply our improved scheme in rendering.

• And finally, we believe there is much space for exploring other applications of the zero-variance theory 

in rendering problems.
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