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Figure 1: A side by side comparison of real translucent materials (right) next to their silicone replicas (left) fabricated using our method.

Abstract

We present a method for practical physical reproduction and design
of homogeneous materials with desired subsurface scattering. Our
process uses a collection of different pigments that can be suspended
in a clear base material. Our goal is to determine pigment concentra-
tions that best reproduce the appearance and subsurface scattering of
a given target material. In order to achieve this task we first fabricate
a collection of material samples composed of known mixtures of
the available pigments with the base material. We then acquire their
reflectance profiles using a custom-built measurement device. We
use the same device to measure the reflectance profile of a target
material. Based on the database of mappings from pigment concen-
trations to reflectance profiles, we use an optimization process to
compute the concentration of pigments to best replicate the target
material appearance. We demonstrate the practicality of our method
by reproducing a variety of different translucent materials. We also
present a tool that allows the user to explore the range of achievable
appearances for a given set of pigments.
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1 Introduction

Most of the materials in our manmade environment are colored
by dyes, pigments, or other colorants suspended in a scattering
medium. Paints, plastics, papers, textiles, stained glass, ceramic
glazes, candy—nearly all surfaces that are not metallic or completely
transparent fall under this description. Many natural materials are
also well approximated as colored scattering media—skin, leaves,
flowers, foods—in which the colorants are naturally occurring. Be-
cause of the ubiquity of colored scattering materials, the technology
of predicting and controlling their color is very mature, as epito-
mized by systems that automatically mix paints to match a given
sample.

But color is not the only attribute of a colored scattering medium;
pigmented media are, by their very nature, translucent. Some mate-
rials are so dense (wall paint, for instance) that the translucency can
be ignored at macroscopic scales, but for others it is subtly (“opaque”
plastic, skin) or obviously (translucent plastics, stained glass) part
of the appearance. Translucency is a more complex phenomenon
than diffuse color, and currently the appearance of such materials is
normally controlled by trial and error.

The goal of this paper is to create the fundamental technology of
controlling translucency as precisely as color can already be con-
trolled, including accurately predicting the appearance of translucent
materials, automatically matching existing real or virtual materials,
and synthetically adjusting mixtures with feedback about translucent
appearance. Over the last dozen years, the field of computer graphics
has developed an increasingly mature understanding of how to simu-
late [Jensen et al. 2001; d’Eon and Irving 2011], measure [Hawkins
et al. 2005; Dorsey et al. 2008; Weyrich et al. 2009a], and manipu-
late [Xu et al. 2007; Song et al. 2009] the appearance of translucent
objects in rendered scenes, and we believe this technology is becom-
ing mature enough to be applied to the more demanding application
of manipulating materials in the real world.

The resulting methods are directly useful in design applications in-
volving pigmented translucent materials, such as industrial design
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of consumer products where appearance is important, or design of
dental materials, prostheses, or animatronics that should match a
given person’s body—appearance in all these examples is currently
matched manually by trial and error. Together with the ability to
accurately render translucent materials, this will make translucent
materials an integral part of realistic product pre-visualization, let-
ting the user see on screen the exact appearance the manufactured
product will have.

In addition, as multi-material 3D printers become sufficiently capa-
ble, the same fundamental technology of controlling the appearance
of scattering materials can ultimately enable 3D printing of nearly
arbitrary materials with precise control over appearance. Our work
complements existing work on spatial mixtures of 3D printed ma-
terials [Dong et al. 2010; Hasan et al. 2010] by examining how
to control the properties of individual materials. Printers that can
control both material properties and spatial arrangement precisely
will enable physical appearance prototyping as well as the direct
manufacture of products whose appearance is important.

In this research we have developed a system to generate a pigment
mixture to match the subsurface scattering of a homogeneous target
material. Our system is analogous to computerized paint matching
systems that measure the spectral reflectance of a target material
and then reproduce it by combining pigments in a scattering or clear
base material. We use a similar concept, but instead of treating the
material as having only diffuse surface reflection, we model it as
a volume with corresponding subsurface scattering effects. This
approach extends our system beyond just color matching to cover
translucent materials with significant subsurface scattering in a way
that can be easily integrated into existing systems. Figure 1 shows
a sample of different materials that can be reproduced using our
system. Our methods are applicable to any process where pigments
are used to control the appearance of a material.

Our process for matching subsurface scattering of a given target ma-
terial has the following steps. First, we manufacture a collection of
samples with different concentrations of pigments mixed into a base
material. We use a custom-built measurement system (Section 5) to
acquire multi-spectral reflection profiles for each material sample.
This allows us to establish a mapping from pigment concentrations
to reflection profiles that capture subsurface scattering properties.
Using the same measurement device we acquire multi-spectral re-
flection profiles for a given target material. We design an iterative
optimization procedure that computes the pigment concentrations
required to reproduce the target material accurately (Section 6). We
demonstrate the whole process by reproducing a number of organic
and inorganic materials (Sections 9 and 10). In addition, we describe
a tool that enables interactive exploration of the range of translucent
appearances that is achievable with a given set of pigments.

2 Related Work

Computerized Color Matching Systems. Many commercial
systems for color matching have been developed, and they have been
successfully used in many industries (e.g., house paint, automotive,
etc.). They typically use a spectrophotometer to determine material
reflection as a function of wavelength. Then they either determine
the closest material that is already in the database or they determine
the combination of base pigments to obtain the best match. The most
common systems include Sher-ColorTM by Sherwin-Williams [Sher-
man and Simone 1989] and ChromaVision R� by DuPont [Kelly
1987]. While some of these systems try to match sheen as well, the
translucency of a material is never considered.

BSSRDF Models and Measurement. The first practical model
for representing subsurface scattering, in computer graphics, was

developed by Jensen et al. [2001]. They also used an image-based
measurement system to estimate model parameters for a number of
different materials. Hawkins et al. [2005] developed a method to
estimate the scattering phase function of smoke. Donner et al. [2009]
proposed a homogeneous BSSRDF model that accounts for both
single and multiple scattering. However, their model is based on
simulations only and no extensive validation based on measurements
has been performed. Similarly, d’Eon and Irving [2011] introduced
a BSSRDF model that accurately decouples single and multiple scat-
tering. Their model works well for highly absorbing materials and
very thin layers. Munoz et al. [2011] estimate an approximation of
the reflectance characteristics of translucent materials, using a single
photograph as input. Weyrich et al. [2006] used a contact-based
measurement device to estimate subsurface scattering parameters of
human skin. We use an improved version of this device to estimate
multiple scattering in arbitrary materials. Narasimhan et al. [2006]
developed a method to estimate scattering parameters by diluting
low concentrations of a material in a clear solvent. They did not
address the problem of computing mixtures to match other materials.
Although our method is limited to moderately to highly scattering
materials, it is practical and efficient and it applies to solids as well
as liquids.

Editing. There has been some recent work on authoring and edit-
ing the appearance of translucent materials [Xu et al. 2007; Song
et al. 2009]. All of this work has however focused on editing and pre-
scribing the subsurface scattering appearance in simulation, where
inaccuracies in the BSSRDF model can be completely ignored, and
not for physical fabrication.

Appearance Fabrication. Computer graphics researchers have
recently addressed the problem of using optimization methods to
derive materials with desired appearance properties [Fuchs et al.
2008; Weyrich et al. 2009b; Matusik et al. 2009; Hullin et al. 2011].
In particular, two recent methods have addressed computational
design and fabrication of materials with desired subsurface scatter-
ing [Hasan et al. 2010; Dong et al. 2010]. These approaches express
the output as a material composed of discrete voxels or layers with
known subsurface scattering properties. However, the materials for
the layers/voxels are fixed. These methods can approximate materi-
als with heterogeneous subsurface scattering as well. However, they
also have some disadvantages, in particular, materials with homoge-
neous subsurface scattering cannot be accurately reproduced since
these methods rely on either voxel dithering or layering of discrete
materials. Our proposed approach explores an orthogonal research
direction that can be naturally combined with the layered-material
methods. Instead of manufacturing a compound multi-layer material
as in previous approaches, we fabricate materials using continuous
pigment mixtures within a single homogeneous layer. Therefore, by
default all our materials have homogeneous subsurface scattering
properties.

3 Method Overview

At a high level, the goal of our system is to provide a recipe of how
to mix pigments with a base material (clear silicone in our system)
in order to reproduce a measured target material. Our process can be
divided into five main stages (illustrated in Figure 2): database and
target measurement, pigment parameter estimation, concentration
estimation, and, finally, fabrication.

In a pre-process we fabricate and measure various mixtures of the
available pigments with base material (Database Measurement).
This collection of measurements becomes our appearance database
which we then use to estimate a global set of pigment parameters for
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Figure 2: Overview of our system.

predicting the subsurface scattering appearance of a silicone mixture
(Pigment Parameter Estimation).

To create a silicone replica, we first measure the diffuse reflectance
and translucency of a target material (Target Measurement). We then
perform an optimization that will estimate pigment concentrations
for the target (Mixture Optimization), assuming global pigment
parameters (Pigment Parameter Estimation). This process is refined
by an iterative local pigment parameter estimation step, with the goal
of enabling better results in regions of the domain where the forward
model, and consequently the global set of pigment parameters, is no
longer a good approximation.

In Section 4 we describe our chosen forward appearance model,
which balances our needs for both accuracy and performance. We
use a single, custom-built measurement device, which we describe
in Section 5, to perform both the database and target measurements.
In Section 6, we describe both the pigment parameter estimation
(Section 6.3) and mixture optimization stages (Section 6.4) used for
computing a pigment concentration recipe that will match a mea-
sured target appearance. In Section 7 we describe an improvement to
this method (Local Pigment Parameter Estimation) which accounts
for inaccuracies in the forward model approximation. With this sys-
tem in place, we enable users not only to replicate target materials,
but also to edit and pre-visualize (Section 8) the appearance of a
desired material before fabrication. The output of the appearance
matching and appearance editing process is a recipe, which we fab-
ricate by mixing pigments with silicone (Section 9). We compare
the fabricated results of our system against a set of target translucent
materials in Section 10.

4 The Forward Appearance Model

Before we can fabricate a replica, we need a computational model
to predict the appearance of scattering materials which we can later
invert to derive the scattering parameters necessary for fabrication.
According to the theory of scattering media, a homogeneous material
can be described by a phase function and two parameters, the absorp-
tion coefficient sa and the scattering coefficient ss, or equivalently
by the extinction coefficient st = sa +ss and albedo a = ss/st . If
any two of these parameters are known the other two can be com-
puted. In highly scattering materials, the flow of light can be well
modeled with a diffusion equation, which leads to approximate ana-
lytical models that are useful to describe translucent materials. In
such materials, one can replace the scattering coefficient with the
reduced scattering coefficient s 0

s, and then treat the phase function
as isotropic (see Jensen and Buhler [2002] and references therein

for details). In this paper we will always use the reduced parameters
s 0

s, s 0
t , and a 0 but will omit the customary primes for notational

convenience.

Scattering Profile. From the many available diffusion models,
we chose quantized diffusion [d’Eon and Irving 2011] to analytically
express the subsurface reflectance profile since it remains relatively
accurate even in the case of moderately absorbing materials. For the
purposes of our task, the chosen diffusion model simply returns an
analytic reflectance profile between two surface points x and y:

dLl
r (x)

dFl
i (y)

= RQD
d (al,sl

t ,d;r), (1)

as a function of their distance r = kx� yk, thickness d, and the
reduced albedo a and reduced extinction coefficient st per wave-
length band l . This also depends on h . In this paper we always use
a measured silicone index of refraction value of 1.41. The internal
details of the diffusion model are largely unimportant for the rest of
our pipeline, hence Rd can be treated as a black box.

Diffuse Reflectance. We also require a computational model for
the diffuse reflectance r . We evaluated the accuracy of various
analytical and numerical models for diffuse reflectance, but found
that none matched Monte Carlo simulations well enough (see the
supplemental document for our detailed analysis). We therefore
created a dense tabulation of diffuse reflectance values from brute
force Monte Carlo [Wang et al. 1995] simulations:

r(a,st ,d) = 2p

Z •

0

RMC
d (a,st ,d;r)

p
r dr. (2)

For our tabulation we parametrize r according to reduced albedo
(a) and optical thickness (st d, where d is the measured thickness
of the sample) and store the values in a 2D table for lookup and
interpolation.

Please note that our reflectance term assumes that the multiple scat-
tering process (including internal reflection) is isotropic, and that r
is the reflectance for incoming light inside the surface to outgoing
light inside the surface.

5 Measurement Setup

Using our fabrication process, we would like to reproduce a wide
range of organic and inorganic materials that exhibit subsurface
scattering. To allow measuring of target materials, that cannot be
diluted or modified in other ways, we use a non-invasive contact-
based measurement device inspired by, but extended from, the design
proposed by Weyrich et al. [2006]. We use this device to measure
both the database silicone samples as well as the target materials we
want to replicate.

Our setup incorporates a single housing to perform two distinct
types of measurements. The first type of measurement is used to
extract the diffuse reflectance, r̄l, of the target material, and the
second type is used to measure the bulk scattering profile, R̄l

d , of
the target material. In Figure 3 we illustrate a cross-section view
of our enclosed device, which we fabricated using an 3D printer.
The device has a height of 11 cm and a diameter of 25 cm. The
sample is placed at the bottom of the measurement device, in contact
with the base opening circle (A), and we place a monochromatic
QImaging Retiga-2000R camera into the circular opening (B) at the
top of the device. This non-invasive method only requires that a
small circular patch of the target material is fairly flat and can be
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Figure 3: Top: An illustration of the setup used to measure the
appearance of a target sample. The measurement device performs
a diffuse reflectance measurement and as well as a bulk scatter-
ing profile measurement without any moving parts. Bottom Left:
An example greyscale HDR image of a diffusion profile measure-
ment. Bottom Right: An example greyscale HDR image of a diffuse
reflectance measurement.

brought in contact with our measurement device for a few seconds or
minutes, depending on how dark the material is. All measurements
are performed for five distinct wavelength-bands (indexed by l )
using two identical sets of five color LEDs, one for reflectance and
one for profiles. This allows us to capture reflectance and profile
measurements in sequence without having to move the sample or
reconfigure the measurement device.

The camera used for our measurements was an actively cooled,
monochromatic QImaging Retiga-2000R which captures 12-bit
RAW images. After extensive testing we found that these RAW
files have a linear radiance response and variations due to vignetting
are negligible for the regions we measure. To create HDR images
we sum up the unclipped pixels from each image and divide by the
total exposure time. This approach effectively applies low weights
to photographs with low exposure times, which is desirable since
extremely low exposure photographs are prone to noise. For these
measurements, an absolute radiance value is not required.

Diffuse Reflectance. The diffuse reflectance measurement is per-
formed using an array of five fiber optic cables located in the top
right edge of the device (C), aiming towards the center of the sample
(A) as seen in Figure 3. The other ends of these fiber optic cables
are mounted to an LED holder with five color LEDs. We place a
5 mm diameter opal glass diffuser at the outgoing end of the fiber
optic cable to ensure a constant angular intensity distribution on the
sample. Figure 3 shows a greyscale HDR diffuse reflectance capture
(bottom-right) with one LED turned on.

In reality, we cannot easily observe r̄l directly. Instead, we ob-
serve values of reflected radiance, L̄l

s , off the sample. However, we
design the geometric configuration so that we can derive r̄l from
our observed measurement under some reasonable assumptions. In
particular, if we assume that the material is a homogeneous medium
with a smooth Fresnel boundary and that single scattering is neg-
ligible, we have the following general expression for the observed

radiance:

L̄l
s (~wo) = 2p

Z •

0

Z

W
L̄l

i (~wi) (~wi ·~n)
Sl

d (r,~wi,~wo)

p
r d~wi dr, (3)

where ~wi and ~wo are the incident and outgoing directions
respectively, ~

n is the surface normal, and S̄l
d (r,~wi,~wo) =

Ft(~wo) R̄l
d (r) Ft(~wi) is the BSSRDF with Fresnel reshaping.

In our case, we observe the sample from directly above, ~wo = 0�,
and we illuminate the sample from a single direction ~wi at 45� to
normal incidence (to avoid imaging direct specular reflection of
the light). We measure the per-wavelength-band radiance of the
sample, L̄l

s (0�), by averaging an approximately 1 cm2 square patch
centered at (A). Assuming that the incident direction is constant at
contributing regions, the observed radiance therefore simplifies to:

L̄l
s (0

�)⇡
Il
i
t2 cos(45�)Ft(0�)Ft(45�)2p

Z •

0

R̄l
d (r)
p

r dr. (4)

Where Il
i is the intensity of the light source, located at distance

t. To estimate the intensity we also perform a one-time measure-
ment, L̄l

c (0�), for a grey diffuse calibration target placed at (A). By
assuming that the calibration target is perfectly Lambertian we have:

Il
i =

t2L̄l
c (0�)

r̄l
c (0�,45�)cos(45�)

, (5)

where rl
c (0�,45�) is the reported reflectance of the diffuse calibra-

tion target. Though we allocate a small warmup time for stability
within a measurement, we cannot assume that the intensity of the
LEDs will be consistent across measurements over multiple days.
To correct for fluctuations in LED intensity, we additionally use four
small reflectance standard patches (D) which are always visible in
our measurements. We then scale Il

i by the average radiance ratio
of these four patches in the material sample measurement and the
calibration target measurement.

By combining Equations (4) and (5) and rearranging terms we obtain
a simple expression for use as our model reflectance r (Equation 2):

r̄l = 2p

Z •

0

R̄l
d (r)
p

r dr ⇡ r̄l
c (0�,45�)

Ft(0�)Ft(45�)
L̄l

s (0�)
L̄l

c (0�)
. (6)

Bulk Scattering Profile. Our contact measurement device also
contains a second set of five LEDs and fiber optic cables originating
from the left side (E).1 These are in contact with the material sample
and illuminate it at a location (F) which is not directly visible by
the camera. The horizontal distance between the center of the 1 mm
diameter fiber optic cable end and the first measurable location on
the sample is 0.9 mm.

Light from the fiber optic cables propagates through the scattering
material and into the field of view of the camera. We show an
example greyscale HDR capture with one LED turned on in Figure 3
(bottom-left). We capture five such HDR images, one for each
LED. We extract the horizontal scanline, vertically aligned with the
currently active light source, and use this as the bulk, per-wavelength-
band, diffusion profile measurement, R̄l

d . The measured profile has

1We measured the spectral distributions of all LEDs using a Photo Re-
search SpectraScan PR 730 spectrometer to ensure there is negligible vari-
ability between corresponding LEDs across the two sets.
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an inherent arbitrary scale factor, due to the uknown intensity of the
LEDs. Additionally by assuming that for our profile measurements
the Fresnel transmission terms are not spatially varying, then the
Fresnel terms can also be folded into this scale factor. We will later
on show how knowledge of this unknown factor is not necessary for
our purposes.

6 Mapping Measurements to Pigments

Once a target material is measured, our goal is to reproduce the
material by mixing one or more pigments into the base material.
To compute a recipe, or a vector containing a concentration for
each available pigment, our system must be able to predict the
appearance (both the reflectance and the scattering profile) that will
result from any given set of concentrations. This mapping from
recipe to appearance is then inverted in an optimization process to
determine the best recipe for matching the appearance of a target
material.

Our key task is to derive a mapping from concentrations cp for
p = 1, ...,np to the observed appearance characteristics rl and Rl

d
for l = 1, . . . ,nl . We build this model from a number of example
materials that are fabricated and measured ahead of time, forming
what we call a database of appearance measurements (Section 6.1).
Our approach leverages the approximate forward model from the
previous section to intelligently interpolate among the database
samples and to provide starting points for nonlinear optimization of
pigment concentrations.

Given the measurements of R̄l
d and r̄l for any particular material,

the parameters of that material (a,st ) can be estimated by fitting to
the forward model, seeking a match in the (relative) diffusion profile
and the (absolute) total reflectance:

(al, sl
t ) = argmin

a,st

F(Rd(a,st ,d), r(a,st ,d), R̄l
d , r̄l) (7)

F(Rd , r, R0
d , r 0) =


E(Rd ,R0

d)+
�
r �r 0�2

�

where E is a profile difference measure we will describe in Sec-
tion 6.2.

In principle, this fitting approach could be used to determine the
material parameters of each of the training examples, from which
the properties of each individual pigment could be derived. The pa-
rameters of a target material could then be determined in a second fit
and used to find the pigment concentrations required. However, the
diffusion approximation is not accurate enough to directly achieve a
visual match using this simple approach, i.e. the model parameters
are not linearly related with pigment concentrations. In the follow-
ing subsections we describe our approach for finding a set of global
pigment parameters, linearly related to pigment concentrations, that
best predicts appearance.

6.1 Measurement Database Selection

The first step in estimating the pigment parameters is designing the
input set, which we call the Measurement Database. Our goal is to
use the methodology and machinery described in Section 5 to acquire
the per-wavelength-band diffuse reflectance measurement, r̄l, the
per-wavelength-band bulk scattering profile, R̄l

d , for a set of samples
with known pigment concentrations, and then estimate al and sl

t
for each pigment and for the base silicone using the methods of the
previous section.

The main challenge, when the input set of pigments contains highly
absorbing entries, is the design of database samples that will not

violate the assumptions of diffusion theory which will be used to
estimate their parameters. The two main assumptions for diffusion
theory to hold are sl

a ⌧ sl
t and that the multiple anisotropic scatter-

ing in the material can be well approximated using an approximately
equivalent isotropic material with reduced scattering parameters.

We use a total of 6 pigments. With the exception of white and yellow
pigments, the remaining (red, green, blue, and black) pigments are
highly absorbing. We created for each pigment a set of database
entries, which we call a dilution set. Each such dilution set consists
of fabricated silicone samples with varying concentrations of that
pigment, always mixed with white pigment at a concentration of
0.05%. For each dilution set, we used the minimum amount of
pigment such that both the color and the profile differentiate enough
from the appearance of white pigment at 0.05% concentration. The
maximum concentration was chosen such that the smallest measur-
able profile is at least 3mm long. We also include a dilution set with
varying concentrations of only white pigment. This ensures that the
scattering parameters of white pigment can be distinguished from the
parameters of the base material. The physical size of our database
samples is 10⇥10⇥ (2–4) cm, achieving a minimum optical thick-
ness of about 10 along their minimum dimension. A set of plots
showing the concentrations used for our dilution sets, along with the
forward model fits, can be found in our supplemental document.

6.2 Fitting the forward model to a single material

The simplest fitting operation is to fit the forward model to the
measured appearance data R̄l

d and r̄l for a single wavelength band
of a single material.

Initial Guess. To find a starting point for the optimization, we use
our diffuse reflectance lookup table to find a such that r(a,st ,d) =
r̄l initially assuming that the sample is semi-infinite (d = •). To ob-
tain an initial guess for st , we perform an asymptotic simplification
of the quantized diffusion model, valid for r � 1/st :

Rd(a,st ,d;r)⇡ k
e�r

p
sa/D

r
, (8)

where D is the diffusion coefficient and k is a constant. As shown in
Figure 4, this asymptotic approximation states that, for large enough
r, we can expect a plot of log(rRd(r)) against r to be a straight line
with slope �

p
sa/D. Hence, by fitting a line to log(rR̄l

d ), we obtainp
sa/D, from which we compute st using the currently estimated

value of a . We repeat these two steps (a and st estimation), but for
the following iterations we no longer assume a semi-infinite sample
but instead we use the measured thickness of the sample, d. This
process usually converges after 3–5 iterations.

Non-linear Optimization. Starting from these estimated values
for st and a , we use the Levenberg-Marquardt algorithm to com-
pute the minimum of (7). To compute the difference between two
scattering profiles we use the metric:

E(Rd ,R0
d) =

1
r1 � r0

Z r1

r0

h
(Rd(r)/µ)

1
3�
�
R0

d(r)/µ 0� 1
3
i2

dr (9)

where we divide the profiles by their mean values (µ and µ 0) to
account for the unknown intensity of the light source in the diffusion
profile measurement. The interval [r0,r1] is a range of distances over
which the model is expected to fit well. This range is determined by
shrinking the interval until a line fits within a given tolerance, and
can be manually overridden to avoid any glitches in the measured
profiles. An example from our measurements highlighting this range
is shown in Figure 4.
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As a final step in the single-material fitting process, we summarize
the residual error of each database sample using a confidence:

zl
m = min

 
µl

d

dl
m �dl

75% +µl
d
,1

!
, (10)

where dl
m is the residual (the minimum value of (7)) in wavelength

band l for the mth sample, dl
75% is the 75th percentile residual over

the whole database for this wavelength band, and µl
d is the median

error for this wavelength band over the entire database. We use this
confidence later as a weight in fitting pigment parameters.

This process of fitting to a single profile produces material param-
eters that correspond to the observed appearance, but because the
model is only approximate, the best-fit parameters may not be close
to the true parameters of the material. This is particularly prob-
lematic in the case of anisotropically-scattering materials for which
the forward model is less accurate. To obtain more meaningful re-
sults we subsequently fit larger collections of samples at once, as
described in the next section.

6.3 Global Pigment Parameter Estimation

Once we have separately estimated the parameters of all the database
samples (each of which consists of a known mixture of one or more
pigments with the base material), we have material parameters for
each sample, which describe that sample’s appearance. However
these pigment parameters are not linearly related to pigment concen-
trations as radiative transport theory predicts (see Figure 5). As a
result, interpolating between the independently fit parameters can
lead to poor prediction results.

To get more reliable predictions, we instead use the results of inde-
pendent fitting to initialize a larger fitting problem that finds material
parameters for each pigment that are globally consistent with all
samples in the database, under the radiative transport theory assump-
tion of a linear relationship between pigment concentrations and the
parameters of the mixture. This linear relationship can be succinctly
expressed using a matrix S, which contains the properties of all
samples in all wavelength bands:

S =

2

64
s1
...

snp

3

75 (11)

where

sp =
⇥
s1

s,p s1
t,p · · · snl

s,p snl
t,p
⇤

(12)
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Figure 4: A log plot of a measured bulk scattering profile as a
function of distance. Only the grey highlighted region is used for
fitting with the diffusion model.
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are the material parameters of the pth pigment, and a matrix C, which
contains the known concentrations of all pigments in all database
samples; entry cmp is the concentration of pigment p in sample m.
The np ⇥ 2nl matrix S has a row for each pigment (including the
base material) and a column for each parameter in each wavelength
band. The nm ⇥ np matrix C has a row for each material in the
database and a column for each pigment. With these definitions, the
matrix M =CS contains the material parameters of every material
in the database.

To find globally consistent material parameters for the pigments, we
fit the same objective function (7) independentaly for each wave-
length band, except summed over all materials:

sl
global=argmin

Sl

nm

Â
m=1

F(Rd(al
m ,sl

t,m,d), r(al
m ,sl

t,m,d), R̄l
d , r̄l)

(13)

where

sl
s,m =

np

Â
p=1

cmpsl
s,p, sl

t,m =
np

Â
p=1

cmpsl
t,p, and al

m =
sl

s,m

sl
t,m

.

To ensure convergence to the global minimum, in this initial phase
we estimate the properties of the pigments one at a time, using the
one- and two-pigment dilution sets described in Section 6.1. We
begin with the white dilution set, optimizing (13), summing only
over the materials in that set, for the properties of the base material
and the white pigment. For each color dilution set, we then similarly
optimize for the properties of the color pigment, holding the white
and base materials fixed. We initialize these optimizations by fitting
a line to the scattering parameters (from the previous step) of all
entries in a dilution set.

6.4 Mixture Optimization

Once we have parameters for each of the available pigments, we can
compute a recipe to match a target material using the same tools.
Given the measured diffuse reflectance r̄l and scattering profile R̄l

d
for the target material, we first use the fitting process of Section 6.2 to
estimate the 2nl -vector of scattering parameters Ŝ = [ŝs

1 · · · ŝt
nl ]T

for the target mixture. Then we solve the linear system c

T
i S = Ŝ to

get a p-vector of pigment concentrations ci = [ĉ1 · · · ĉnp ]
T . Using

ci as an initial guess, we optimize the predicted appearance to the
target:

c = argmin
c1,...,cnp

nl

Â
l=1

F(Rd(al, sl
t , d), r(al,sl

t ,d), R̂l
d , r̂l ) (14)
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where al and sl
t are defined by

sl
s =

np

Â
p=1

cpsl
s,p , sl

t =
np

Â
p=1

cpsl
t,p.

The resulting vector c is the recipe to replicate the appearance of the
target material using the given pigment set.

7 Local Pigment Parameter Estimation

The mapping of measurements to pigment concentrations as it is
described until now assumes that the forward model can globally fit
the entire database with a single set of pigment parameters. However,
even though our forward model is relatively accurate, we cannot
expect it to work well over the entire parameter range when using a
single global set of pigment parameters. In particular, the forward
model will be less accurate for low optical thickness, low albedo, or
anisotropically scattering materials. This is the case, for instance,
for Silicone Mixture 2 shown in Figure 9 which by design is within
the gamut of our pigments, but is not replicated accurately.

To overcome inaccuracies in the forward model, we introduce a local
refinement strategy to find a set of pigment parameters that locally
fits the samples in the database that are most similar to the target. To
accomplish this, we apply a higher weight on the neighbors, with
respect to the pigment concentration, when estimating the “effective”
pigment scattering parameters for finding the recipe.

This can be performed in an iterative procedure which interleaves
the Parameter Estimation and Mixture Optimization stages with the
difference that row weights are used in the Parameter Estimation
stage to bias the error to be lower for neighboring mixtures already
in the database. In practice, we found that the dot product of the
normalized pigment concentration vectors between the currently
predicted pigment concentrations and a database entry (excluding
base silicone concentration) provides consistent results.

The procedure for the local pigment parameter estimation paral-
lels the global optimization in Section 6.3; however, the objective
function (13) is replaced by:

sl
local(c) = argmin

S̃l

nm

Â
m=1

(15)

h
(wl(c,cm)+kreg)F(Rd(ãl

m , s̃l
t,m,d),r(ãl

m , s̃l
t,m,d), R̄

l
d , r̄

l )
i
,

where the material parameters ã and s̃t are the local ones (derived
from the optimization variable S̃l ). The kreg parameter regularizes
the problem so that even when some pigments are not used by the
nearby samples, their parameters stay close to the global parameters.
The regularization parameter kreg is set just high enough (around
10�4 relative to a unit maximum) to stabilize the optimization, while
still low enough not to affect the quality of the local fit.

The weights wl are set to

wl (c,cm) = zl
mDmixture(c,cm) (16)

where

Dmixture(c1,c2) = normalize(c1) ·normalize(c2). (17)

These weights cause the pigment estimation stage to find pigments
parameters that fit well to database materials similar in composition
to the target mixture, resulting in better prediction of appearance
for the optimized recipe. After a new recipe has been found, we
update the weights, and we repeatedly solve re-weighted systems
until convergence or for a maximum of 5 iterations.
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Figure 6: Top: Screenshot from the color selection phase of our
editor. The variations along the CIELab primaries are shown above
and below the current pigment recipe. Bottom: A screenshot from
the translucency selection phase. The user can navigate along the
T ,S,R coordinate system. The blacked out images show directions in
translucency that are limited by our pigments’ gamut.

8 Appearance Editing

In addition to matching the appearance of measured targets, we also
developed an authoring tool which allows the user to pre-visualize
recipes before fabrication and edit the desired color and translucency,
while staying within the gamut imposed by the minimum and maxi-
mum possible pigment concentrations. Our approach provides an
intuitive editing workflow by decoupling edits to the color and the
translucency of a desired material.

Overview. Our editing process starts with an initial recipe and
sample thickness provided by the user. We then provide intuitive
browsing control to fine tune the color followed by translucency.
We took inspiration for our system from the “variations” control
interface in Adobe Photoshop. Screenshots from our editor are
shown in Figure 6.

For editing color, our interface displays the diffuse reflectance color
of the current recipe and six color-variations, estimated by moving
in both the positive and negative directions of the three CIELab
primaries. When the user selects a variation, the current recipe gets
updated and the process repeats until the user has reached the desired
color.

For editing translucency, our interface renders a synthetically fabri-
cated recipe under step edge illumination to visualize the reflectance
profile (similar to the captured photographs in Figure 9). We again
show the current recipe and translucency-variations which can be se-
lected to modify the shape of the diffusion profile without affecting
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the overall diffuse reflectance.

We detail the steps necessary to accomplish this below.

8.1 Color Reproduction

To display the CIELab color predictions of a recipe, we require a
mapping, (L,a,b) = PLab(c,d), to convert pigment concentrations
c to CIELab color values, given the depth d of the sample. We
use globally linear estimates of pigment scattering parameters from
our database, and then linearly mix these parameters according to
c to get the resulting scattering and absorption coefficients of this
mixture. These coefficients are then converted to a 5D reflectance
vector using the interpolation method described in Section 6. We
then convert our 5D spectral color values to spectral reflectance
distributions by training a set of “eigen-spectral reflectance functions”
from spectral reflectance measurements of our database [Park et al.
2007]. Once we have an approximate spectral distribution for the
color, we convert to CIEXYZ and subsequently to CIELab and
sRGB. The CIELab is used for computing the variation distances
and sRGB for displaying the predicted reflectance values to the user.

8.2 Color Editing

Our goal is to find variations of our recipes with a given distance
in CIELab. For this, we first compute the partial derivatives J

c!Lab
of PLab(c) with respect to pigment concentrations c, using finite dif-
ferences. This matrix represents the predicted color change with re-
spect to pigment concentration changes. In order to find the pigment
concentration changes that allows movement along the CIELab pri-
maries, we first perform a singular value decomposition on J

c!Lab:
[U,S,V ] = svd(J

c!Lab) and compute the pseudo inverse of J
c!Lab

as VLab =V S�1UT .

Each column of the resulting 6⇥3 matrix VLab is now the derivative
of the pigment vector with respect to the CIELab primaries. The
difference in pigment concentrations, D

c

, to achieve a desired change
in CIELab, DLab, is given by D

c

=VLabDLab.

8.3 Translucency Editing

Given the scattering and absorption coefficients for each wavelength
band, we render a column image using the diffusion model described
in Section 6. Each pixel representing the radiance of our 5 wave-
length bands is transformed into CIELab using the process described
in Section 8.1.

For navigating the translucency space without affecting the color,
we reuse a part of the 6⇥6 matrix V from the singular value decom-
position of the color derivatives matrix J

c!Lab. We split V into two
submatrices [VcVt ] =V , where Vc are the first 3 columns of V and Vt
the remaining 3 columns. While the pigment vectors in Vc affect the
color of the final recipe, the pigment vectors in Vt do not and can be
used to influence just the translucency.

Unfortunately, the pigment vectors in Vt do not correspond to mean-
ingful directions. One intuitive direction for controlling translucency
is increasing the average reduced extinction coefficient hsl

t i, over
all wavelength bands, by scaling the current pigment concentrations
with the desired s = hsl

t i. For a semi-infinite slab, this directly
corresponds to scaling all profiles by s, but for finite-slabs this can
inadvertently affect the diffuse reflectance color. We can find the
closest direction T in the space defined by Vt by solving the linear
system VtT =C. Now, given T , we find the orthonormal directions
S and R that should not change color, nor the average reduced extinc-
tion coefficient hsl

t i. These vectors T , S, and R are used to define
the variations in translucency that are presented to the user.

When editing translucency, it is often impossible to move in some
directions, most often the S and R directions, because of the con-
straints on how much pigment can be used. For steps that exceed the
limits, we black out that direction to indicate to the user that they
have reached the edge of the gamut.

9 Fabrication

Fabricating the generated recipes with a high degree of precision is
critical to the correct evaluation of our method. The main challenges
in fabrication are: ensuring that the correct amount of each pigment
is added, avoiding air and other impurities, and finally ensuring that
there is at least one side on the sample which appears near-specular.
In this section we provide a brief description of the materials and
machinery used for fabrication and then we describe the hierarchi-
cal dilution process we employ for improving the concentration
accuracy, reducing waste and streamlining the fabrication process.

Silicone and Pigments. We use SortaClear40 Translucent, Ad-
dition Cure silicone rubber by Smooth-On. This silicone rubber
cures at room temperature with a shrinkage of less than 0.01 %. The
two-component silicone rubber requires a catalyst, mixed in with a
ratio 1:10, to activate the curing process. The curing is roughly 24
hours. The silicone is completely cured after 7 days.

For manipulating the appearance of the silicone we use silicone
pigments which are used for coloring silicone rubber. The pigment
colors we use are: White (Pantone White C), Yellow (RAL 1018),
Red (Pantone Red C), Green (Pantone 3292), Blue (Pantone 2757C),
Black (Pantone Black C). These pigments are mainly absorbing
except for White, Yellow and Red, for which scattering is significant.

Hierarchical Dilution. For fabricating the generated recipes as
faithful as possible, we employ a hierarchical dilution scheme.

For each pigment we initially produce 1kg master batches of 5%
pigment concentration. This is the maximum ratio of pigment that
still allows the silicone to cure. To achieve a target concentration,
we then dilute some quantity of this master batch, in an iterative
fashion, with base silicone. We start with some of the 5% mixture
and repeatedly mix the current dilution with an equal amount of base
silicone to halve the pigment concentration. Once the concentration
is roughly twice the target concentration for our recipe, we mix with
the exact ratio of base silicone needed to achieve the desired target
concentration.

This dilution tree structure is automatically generated by a simple
script using a bottom-up approach. Intermediate dilutions that are
needed by many target recipes are merged and created only once.
We ignore concentrations of pigments with absolute concentration
less than 10�8 of the total sample weight, or less than 3 µg for a
typical 300g sample. Our process also accounts for catalyst that will
be added at the very end for curing the final samples.

We use a digital balance with accuracy of ±0.05g when mixing
dilutions. To ensure high accuracy, we always use a minimum of
10g of both dilution and base silicon when mixing. Though limiting
the minimum weight increases the number of steps, we obtain a
relative accuracy lower bound of 1% at each dilution step. This
relative error is reduced with each dilution step by the mixing ratio.

Mix Preparation Process. During the fabrication process, pre-
serving homogeneity is very important. Once all ingredients are
added, we stir the mixture for several minutes until it is homoge-
neous. Since this process accumulates air, the mixture is placed in
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Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 Sample 7 Sample 8 Sample 9 Sample 10Sample 11Sample 12Sample 13Sample 14
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Figure 7: Synthetic target and replica comparisons for the global method. For each sample, on the left we render the target under a shadow
edge illumination scenario and on the right the replica. Both renderings use a QD fit to ground-truth path traced results.
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Figure 8: Synthetic target and replica comparisons when using a simpler optimization that fits on parameters directly. Fitting on parameters
directly does not perform as well as using our appearance distance term (cf. Figure 7).

a vacuum chamber for about 10 minutes to further improve homo-
geneity. We then pour the mixture into a mold, constructed using
acrylic plates. We use acrylic plates so the sample has smooth, near-
specular surfaces for better compliance with our model assumptions
and more angularly uniform reflectance for our 45o/0o measurement
setup, due to the lack of micro-surface roughness. Finally when the
samples cure, they are measured using the method described in
Section 5.

10 Results

We validated our forward model, measurement setup, and optimiza-
tion procedures first in simulation and also by fabricating physical
replicas using silicone. We describe these here in turn.

10.1 Reproduction of Simulated Examples

To ensure that our method can properly measure and replicate real-
world translucent materials, we first validated our entire pipeline in
simulation by fitting on synthetic images generated using brute-force
volumetric path tracing with the Mitsuba renderer [Jakob 2010]. We
designed an analogous database of measurements and tested our
method on synthetic targets. We created 6 synthetic pigments with
prescribed RGB material parameters and isotropic phase functions.
The database samples and targets are created by linearly blending
the pigment parameters according to their concentrations. For our
synthetic tests, we recreate the geometry of our physical setup:
the camera and light sources are placed at the same positions and
orientations, all the database samples had a thickness of 30 scene
units and our diffusion profile light source was modeled as a disk
light touching the sample.

Our path traced measurements (which mimic our real measurements)
omit the beginning of the profile, so to enable rendered validations
in a realistic shadow edge configuration (which requires access to
the entire profile) we performed an unconstrained fit of our forward
model to these path traced measurements. Given the fitted profiles
we use the same method as in Section 8 to render the shadow edge
illumination seen in Figure 7.2 The differences between the targets
and the replicas in this synthetic test are barely noticeable. In fact,
over this set of 14 synthetic targets the average relative reflectance

2We confirm in our supplemental material that these fitted profiles are
indistinguishable from the 1D Monte Carlo profiles.

error was 0.10% and the mean relative reduced mean free path error
was 6.44%. This confirms that our measurement and optimization
procedures are able to accurate replicate unknown translucent mate-
rials.

In Figure 8 we perform a similar synthetic evaluation, but using
a simpler optimization strategy and error metric to demonstrate
that our more involved approach is necessary to obtain accurate
results. The only difference compared to Figure 7 is that the replicas
are obtained by minimizing the MSE between the estimated/mea-
sured parameters for the target (reduced scattering coefficient and
absorption coefficient) and the linearly blended global parameters of
pigments of the tested recipe. This can be modeled as a simple linear
system, similar to our initialization step in the Mixture Optimization
section. The results show that, fitting on parameters directly does
not perform as well as using our appearance distance term. This is
due to two reasons: a) the material parameters recovered by a single
target measurement are highly under-constrained; and b) our appear-
ance distance term can leverage “appearance metamerism” (several
recipes and pigment parameters can lead to indistinguishable translu-
cent appearance) to tolerate ill conditioning in the mapping from
optical properties to appearance.

10.2 Reproduction of Real-World Examples

In addition to validating on synthetic measurements, we also demon-
strate the quality of our pipeline on real-world examples. We mea-
sured and replicated several homogeneous real-world materials such
as strawberry yogurt drink, fabric softener, full-fat milk, low-fat
milk, soap, and white chocolate. We computed the corresponding
mixing recipes using our iterative optimization procedure and fabri-
cated the samples in various shapes. Each replica has the same shape
and thickness, d, as its corresponding target. The computation time
for estimating a recipe is about 2 minutes with the global method and
30 minutes for the local method. The local method training database
also includes the replicas fabricated using the global method.

For our real-world examples, we capture photographs of the original
targets and the replicas using a Nikon D800 camera. We construct
HDR images from RAW images with 6 different exposure times.
The RAW LDR images are processed with DCRAW and white
balanced using a white reference card. We recover and account
for the camera response curve using the technique of Mitsunaga
and Nayar [1999]. This results in white balanced linear sRGB
images which are then converted to HDRs using the aforementioned
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Silicone Mixture 1 Strawberry Yogurt Drink White Chocolate Pink Soap Mocca Yogurt Drink Blue Fabric Softener Full-Fat Milk Low-Fat Milk Silicone Mixture 2

Global Target Local Global Target Local Global Target Local Global Target Local Global Target Local Global Target Local Global Target Local Global Target Local Global Target Local

Figure 9: Measured target and fabricated replica HDR pairs for a variety of materials. The mixing recipes for the fabricated replicas of each
target were generated using the global method (left) and the local method(right) . All samples are partially illuminated with an illuminant with
a color temperature of 4700K. A horizontal blocker is placed between the samples and the light source to better emphasize their translucency.

method. At the very end, we tonemap the HDR image to an 8-bit
sRGB image by applying the sRGB gamma curve. We compare the
target material against the fabricated replicas under two different
illumination configurations.

In Figure 1 we showcase side-by-side visual comparisons of various
liquid and solid translucent targets next to their replicas, in their
natural form under top and side illumination.

Figure 9 shows side-by-side shadow edge comparisons with an
illuminant that approximates a color temperature of 4700K. For
each triplet, the target is in the middle, and we show the results
of the global and local methods to the left and right of the target
respectively. Visually, even our global method is able to match both
the translucency and reflectance of many of these materials quite
well. For the global method, the appearance distance (defined in
Equation (7)) averaged over all 9 targets is 0.00644, with a standard
deviation of 0.01142. Our local refinement usually performs better,
and sometimes significantly better, than predicting the appearance of
the replicas using the global parameters (Table 1). In fact, the mean
distance after local refinement decreases to 0.00276, with a standard
deviation of 0.00213. The improvement is especially noticeable for
the dark Silicone Mixture 2 seen in Figure 9, and some improvement
is also visible for the Blue Fabric Softener and Strawberry Yogurt
Drink samples.

We provide plots of the simulated, predicted, and measured diffuse
reflectance and scattering profiles for our targets in the supplemental
material. In general, we observed a good prediction for materials
with high reflectance and optical thickness. With a decrease of the
reflectance and optical thickness, we notice an increase in matching
error. This is not surprising, since diffusion theory is not a very good
approximation for very dark materials with low optical thickness.

To isolate the performance of our optimization, we tested our
pipeline with materials that are in theory exactly reproducible by
our system. To ensure that our target material is within the gamut of
reproducible materials, we fabricated target samples out of silicone
mixed with pigments that are available to our fabrication process.
We then measured these samples and used the diffuse reflectance
and scattering profiles as input to our optimization process (these

Table 1: Global estimate of reduced scattering and absorption
coefficients for pigments and base silicone used in our fabrication
process. Units are in 1/mm.

Reduced Scattering Coefficient (ss) Absorption Coefficient (sa)

blue cyan green orange red blue cyan green orange red

White 848.9 847.6 783.6 669.4 718.3 0.0 0.0 0.0 0.0 0.0
Yellow 92.6 74.0 78.8 64.0 55.8 30.1 1.8 0.5 0.2 0.1

Red 0.0 0.4 0.3 620.3 96.7 515.4 839.8 999.6 163.9 9.2
Green 7.1 0.0 10.0 0.1 0.0 19.5 9.4 15.8 164.0 264.4

Blue 92.3 9.1 0.0 0.1 0.2 41.6 90.2 181.1 1080.9 1045.9
Black 25.3 21.8 22.9 25.9 26.6 321.6 331.4 330.1 323.7 325.4

Base 0.078 0.053 0.061 0.054 0.021 0.002 0.002 0.001 0.001 0.001

samples are not included in our measurement database). Table 2
shows the ground truth pigment concentrations of two samples and
the estimated concentrations using our optimization process. In Fig-
ure 10, we compare the profiles of the original measured sample, the
predicted appearance, and the measured fabricated replica. Note that
the appearance of the replica closely matches the target, even though
the pigment concentrations are different. This is an example of an
“appearance metamer” where we cannot perceive the appearance
difference between two different recipes. Such a replica would never
be created when using a simpler parameter optimization as shown in
Figure 8.

11 Discussion & Future Work

We have presented a method to physically replicate homogeneous
translucent materials by mixing pigments into a substrate. By using
local fits to a diffusion model, we intelligently interpolate between
measurements of known materials to predict the appearance that
will result from novel mixtures. The method only considers homo-
geneous materials, and its accuracy drops off for highly forward
scattering and highly absorbing materials, with low optical thickness,
where diffusion theory is less accurate. We believe that there is room
for improvement on the reproduction accuracy of our method.

In Figure 11, left, we provide spectral reflectance measurements
for a set of target materials that are outside of the gamut of our
method. The three target reflectance measurements exhibit a signifi-
gant positive gradient in the region between 540 and 580 nm. On the
plot on the right we can see that the spectral reflectance values of
our pigments do not exhibit a signifigantly positive gradient in that
region, indicating that these targets are outside of the gamut of our
pigments.

There are various avenues for improving the reflectance gamut of
our pigments. One such option would be to add additional pigments
with useful spectral features that are not present in our current set.
Currently our system computes the reflectance error of the true
spectral distribution function of our targets, another option would be

Table 2: Concentration percentages prediction generated using our
local method for the 9 targets used. The last 2 rows show the actual
concentration of the fabricated silicone mixtures used as targets.

white yellow red green blue black

silicone mixture 1 0.20590% 0.20897% 0.00345% 0.00140% 0.00735% 0.00000%
blue fabric softener 0.16384% 0.00000% 0.00037% 0.00170% 0.01407% 0.00000%

low-fat milk 0.13572% 0.01291% 0.00000% 0.00012% 0.00000% 0.00000%
red soap 0.41249% 0.19489% 0.01169% 0.00247% 0.00000% 0.00000%

strawberry yogurt drink 0.25791% 0.06423% 0.00467% 0.00000% 0.00062% 0.00000%
white chocolate 0.32361% 0.24976% 0.00261% 0.00284% 0.00000% 0.00000%

full-fat milk 0.35230% 0.02702% 0.00000% 0.00000% 0.00000% 0.00012%
mocca yogurt drink 0.21805% 0.37069% 0.00953% 0.00543% 0.00124% 0.00000%

silicone mixture 2 0.00000% 0.19234% 0.00142% 0.00000% 0.00547% 0.00702%

silicone mixture 1 (actual) 0.20000% 0.20000% 0.00300% 0.00000% 0.00750% 0.00000%
silicone mixture 2 (actual) 0.00000% 0.20000% 0.00300% 0.00000% 0.00750% 0.00000%
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Figure 10: We evaluate the appearance prediction ability of our system, using the local method, by comparing the target measurements (a)
with the model prediction (b) and finally the fabricated replica measurements (c). The first row shows comparisons of our system’s prediction
ability for Silicone Mixture 1, whereas the second row shows comparisons for Silicone Mixture 2. Both target samples are in gamut and their
recipes can be found in Table 2. Note that even though Silicone Sample 2 has low optical thickness and reflectance values, the fabricated
replica is a good match.

to minimize the perceptual error. To improve the measurement gamut
of our method, we could (with minimal changes to our method) use
a spectrally homogeneous illuminant and a multi-spectral camera
instead of a greyscale camera combined with a discrete set of LEDs.

There are many other directions for continued development of our
method. Improved transport models and/or better interpolation with
larger databases can extend the gamut towards darker and less op-
tically dense materials, ultimately to cover the whole range from
crystal clear to opaque. The use of perceptual metrics (beginning
with better color difference measures) for appearance matches will
be important to achieving consistent results under a range of illumi-
nation conditions.

By itself, the ability to control the appearance of homogeneous mate-
rials has implications for many industries where pigmented materials
are used, including plastics, food, prosthetics, and even dentistry,
where the critical matching of appearance between natural teeth
and artificial resins is still done painstakingly by eye. Translucent
appearance matching is also important for fabricating more complex
materials. Previous work on fabricating translucent appearance has
been limited to spatial combinations of fixed materials, and our new
method, with its ability to continuously tune material parameters,
opens the possibility for more powerful new methods for inhomoge-
neous materials that optimize both the spatial mixture of materials
and also the properties of the individual materials themselves. Ul-
timately these technologies will lead to future machinery that can
automatically replicate the appearance of almost any material.
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