Combining Point and Line Samples for Direct Illumination

Points only

Points + Lines

Katherine Salesin

Wojciech Jarosz

DARTMOUTH VISUAL COMPUTING LAB
Motivation

Combining point and line samples for direct illumination
Motivation

Combining point and line samples for direct illumination
Motivation

Direct lighting:
Motivation

Direct lighting: **point sampling**
Motivation

Direct lighting: **point sampling** and **line sampling**
Theory:

Direct lighting + Monte Carlo sampling
Combining point and line samples for direct illumination
Theory

Direct lighting
Theory

Direct lighting
Combining point and line samples for direct illumination
Combining point and line samples for direct illumination
Combining point and line samples for direct illumination
Theory

Direct lighting

Combining point and line samples for direct illumination
Combining point and line samples for direct illumination

\[L_o(e, x) = \int_A f_r(e, x, l)G(x, l)V(x, l)L_e(x, l) \, dA(l) \]
Combining point and line samples for direct illumination

\[L_o(e, x) = \int_A f_r(e, x, l) G(x, l) V(x, l) L_e(x, l) \, dA(l) \]
Theory

Direct lighting

\[L_o(e, x) = \int_A f_r(e, x, l)G(x, l)V(x, l)L_e(x, l) \, dA(l) \]
Theory

Direct lighting

\[L_o(e, x) = \int_A f_r(e, x, l) G(x, l) V(x, l) L_e(x, l) \, dA(l) \]
Combining point and line samples for direct illumination

\[L_o(e, x) = \int_A f_r(e, x, l) G(x, l) V(x, l) L_e(x, l) \, da(l) \]
Theory

Direct lighting

\[L_o(e, x) = \int_u \int_v f_r(e, x, l_{uv}) G(x, l_{uv}) V(x, l_{uv}) L_e(x, l_{uv}) \, dv \, du \]
Combining point and line samples for direct illumination

Theory

Direct lighting

\[L_0(e, x) = \int_u \int_v f_r(e, x, l_{uv}) G(x, l_{uv}) V(x, l_{uv}) L_e(x, l_{uv}) \, dv \, du \]
Theory

Direct lighting

\[L_o(e, x) = \int_U \int_V f_r(e, x, l_{uv}) G(x, l_{uv}) V(x, l_{uv}) L_e(x, l_{uv}) \, dv \, du \]
Theory

Direct lighting

\[L_o = \int_u \int_v f(u, v) \, dv \, du \]
Combining point and line samples for direct illumination

Theory

Direct lighting

\[L_o = \int_u \int_v f(u, v) \, dv \, du \]
Monte Carlo sampling

\[L_0 = \int_{\mathcal{U}} \int_{\mathcal{V}} f(u, v) \, dv \, du \approx \langle L_0 \rangle = \frac{1}{N} \sum_{i=1}^{N} \frac{f(u_i, v_i)}{p(u_i, v_i)} \]
Theory

Monte Carlo sampling

\[L_o = \int_{\mathcal{U}} \int_{\mathcal{V}} f(u, v) \, dv \, du \approx \langle L_o \rangle = \frac{1}{N} \sum_{i=1}^{N} \frac{f(u_i, v_i)}{p(u_i, v_i)} \]
Theory

Monte Carlo sampling

\[L_o = \int_{\mathcal{U}} \int_{\mathcal{V}} f(u, v) \, dv \, du \approx \langle L_o \rangle = \frac{1}{N} \sum_{i=1}^{N} \frac{f(u_i, v_i)}{p(u_i, v_i)} \]
Combining point and line samples for direct illumination

Monte Carlo sampling

\[
\langle L_0 \rangle = \frac{1}{N} \sum_{i=1}^{N} \frac{f(u_i, v_i)}{p(u_i, v_i)}
\]
Combining point and line samples for direct illumination

Monte Carlo sampling

\[
\langle L_0 \rangle = \frac{1}{N} \sum_{i=1}^{N} \frac{f(u_i, v_i)}{p(u_i, v_i)}
\]
Theory

Monte Carlo sampling

\[\langle L_0 \rangle = \frac{1}{N} \sum_{i=1}^{N} \frac{f(u_i, v_i)}{p(u_i, v_i)} \]
Combining point and line samples for direct illumination

Line sampling

\[L_o = \int_U \int_V f(u, v) \, dv \, du = \int_U f_v(u) \, du \]
Theory

Line sampling

$[BD16]$

\[
L_0 = \int_{\mathcal{U}} f_v(u) \, du
\]
Line sampling

\[L_o = \int_{\mathcal{U}} f_v(u) \, du \approx \langle L_o \rangle = \frac{1}{N} \sum_{i=1}^{N} \frac{f_v(u_i)}{p(u_i)} \]
Combining point and line samples for direct illumination

\[\langle L_0 \rangle = \frac{1}{N} \sum_{i=1}^{N} \frac{f_v(u_i)}{p(u_i)} \]
Monte Carlo sampling

\[
\langle L_o \rangle = \frac{1}{N} \sum_{i=1}^{N} \frac{f_v(u_i)}{p(u_i)}
\]
Theory

Monte Carlo sampling

\[\langle L_o \rangle = \frac{1}{N} \sum_{i=1}^{N} \frac{f_v(u_i)}{p(u_i)} \]
Prior work: line sampling
Prior work: line sampling

- **Direct illumination** [BD16]
Prior work: line sampling

- **Direct illumination** [BD16]
- Transient light transport [MGJ*19]
Prior work: line sampling

- **Direct illumination** [BD16]
- Transient light transport [MGJ*19]
- Transmittance [BJ17]
Prior work: line sampling

- **Direct illumination** [BD16]
- Transient light transport [MGJ*19]
- Transmittance [BJ17]
- Motion blur [GDA10]
Prior work: line sampling

- **Direct illumination** [BD16]
- Transient light transport [MGJ*19]
- Transmittance [BJ17]
- Motion blur [GDA10]
- Depth of field [TPD*12]
Prior work: line sampling

- **Direct illumination** [BD16]
- Transient light transport [MGJ*19]
- Transmittance [BJ17]
- Motion blur [GDA10]
- Depth of field [TPD*12]
- Environment lights [NBMJ14]
Prior work: line sampling

- **Direct illumination** [BD16]
- Transient light transport [MGJ*19]
- Transmittance [BJ17]
- Motion blur [GDA10]
- Depth of field [TPD*12]
- Environment lights [NBMJ14]
- Hair [BGA12]
Prior work: line sampling

- **Direct illumination** [BD16]
- Transient light transport [MGJ*19]
- Transmittance [BJ17]
- Motion blur [GDA10]
- Depth of field [TPD*12]
- Environment lights [NBMJ14]
- Hair [BGA12]

and more…
Line sampling: pros and cons
Line sampling: pros and cons

✓ Less error per sample than points
Line sampling: pros and cons

✓ Less error per sample than points
✓ Better convergence rate than points (if stratified)
Line sampling: pros and cons

✓ Less error per sample than points
✓ Better convergence rate than points (if stratified)
 • BUT convergence rate may depend on line orientation [SMJ17]
Line sampling: pros and cons

✓ Less error per sample than points
✓ Better convergence rate than points (if stratified)
 • BUT convergence rate may depend on line orientation [SMJ17]
✗ Hard to analytically integrate one dimension
Line sampling: pros and cons

✓ Less error per sample than points
✓ Better convergence rate than points (if stratified)
 • BUT convergence rate may depend on line orientation [SMJ17]
✗ Hard to analytically integrate one dimension
 • [BD16] derived solution only for diffuse and Phong materials

Combining point and line samples for direct illumination
Line sampling: pros and cons

✓ Less error per sample than points
✓ Better convergence rate than points (if stratified)
 • BUT convergence rate may depend on line orientation [SMJ17]
✗ Hard to analytically integrate one dimension
 • [BD16] derived solution only for diffuse and Phong materials
✗ Slow to evaluate samples
Line sampling: pros and cons

✓ Less error per sample than points
✓ Better convergence rate than points (if stratified)
 • BUT convergence rate may depend on line orientation [SMJ17]
✗ Hard to analytically integrate one dimension
 • [BD16] derived solution only for diffuse and Phong materials
✗ Slow to evaluate samples
 • Expensive line sample-scene intersection
Motivation
Motivation

Make line samples play nicely with any point-based strategy
Motivation

Make line samples play nicely with any point-based strategy.

Mitigate orientation-based performance issues.
MIS Points + Lines
(Ours)
Roadmap
Roadmap

• Reframe line samples as point samples that importance sample visibility
Roadmap

- Reframe line samples as point samples that *importance sample visibility*
- Show how to *multiple importance sample* between lines and points, and lines of different orientations
Roadmap

• Reframe line samples as point samples that importance sample visibility

• Show how to multiple importance sample between lines and points, and lines of different orientations

• Propose novel MIS weighting scheme to improve convergence rate
Main idea

Point sampling

\[L_o = \int_{\mathcal{U}} \int_{\mathcal{V}} f(u, v) \, dv \, du \]

Line sampling

\[L_o = \int_{\mathcal{U}} f_v(u) \, du \]
Main idea

Point sampling

\[L_o = \int_{\mathcal{U}} \int_{\mathcal{V}} f(u, v) \, dv \, du \]

Line sampling

\[L_o = \int_{\mathcal{U}} f_v(u) \, du \]

Combining point and line samples for direct illumination
Main idea

Combining point and line samples for direct illumination

Point sampling

Line sampling

\[L_o = \int_U \int_V f(u, v) \, dv \, du \quad \text{constant} \]

\[L_o = \int_U f_v(u) \, du \]
Main idea

Point sampling

\[L_o = \int \int f(u, v) \, dv \, du \]

Line sampling

\[L_o = \int f_v(u) \, du \]

Combining point and line samples for direct illumination
Main idea

Point sampling

\[\langle L_0 \rangle = \frac{1}{N} \sum_{i=1}^{N} \frac{f(u_i, v_i)}{p(u_i, v_i)} \]

Line sampling

\[\langle L_0 \rangle = \frac{1}{N} \sum_{i=1}^{N} \frac{f_v(u_i)}{p(u_i)} \]
Main idea

Point sampling

\[\langle L_o \rangle = \frac{1}{N} \sum_{i=1}^{N} \frac{f(u_i, v_i)}{p(u_i, v_i)} \]

Line sampling

\[\langle L_o \rangle = \frac{1}{N} \sum_{i=1}^{N} \frac{f_v(u_i)}{p(u_i)} \]
Combining point and line samples for direct illumination

Point sampling

\[\langle L_0 \rangle = \frac{1}{N} \sum_{i=1}^{N} \frac{f(u_i, v_i)}{p(u_i, v_i)} \]

Line sampling

\[\langle L_0 \rangle = \frac{1}{N} \sum_{i=1}^{N} \frac{f_v(u_i)}{p(u_i)} \]
Main idea

Point sampling

\[
\langle L_o \rangle = \frac{1}{N} \sum_{i=1}^{N} \frac{f(u_i, v_i)}{p(u_i, v_i)}
\]

Line sampling

\[
\langle L_o \rangle = \frac{1}{N} \sum_{i=1}^{N} \frac{f_v(u_i)}{p(u_i)}
\]
Main idea

Point sampling

\[
\langle L_o \rangle = \frac{1}{N} \sum_{i=1}^{N} \frac{f(u_i, v_i)}{p(u_i, v_i)}
\]

Line sampling

\[
\langle L_o \rangle = \frac{1}{N} \sum_{i=1}^{N} \frac{f_v(u_i)}{p(u_i)}
\]
Main idea

Point sampling

\[\langle L_o \rangle = \frac{1}{N} \sum_{i=1}^{N} \frac{f(u_i, v_i)}{p(u_i, v_i)} \]

Line sampling

\[\langle L_o \rangle = \frac{1}{N} \sum_{i=1}^{N} \frac{f(u_i, v_i)}{p(u_i, v_i)} \]

Combining point and line samples for direct illumination
Main idea

\[
\langle L_0 \rangle = \frac{1}{N} \sum_{i=1}^{N} \frac{f(u_i, v_i)}{p(u_i, v_i)}
\]
Main idea

Point sampling

$$\langle L_o \rangle = \frac{1}{N} \sum_{i=1}^{N} \frac{f(u_i, v_i)}{p(u_i, v_i)}$$

Line sampling

$$\langle L_o \rangle = \frac{1}{N} \sum_{i=1}^{N} \frac{f(u_i, v_i)}{p(u_i) p(v_i | u_i)}$$
Main idea

Point sampling

\[
\langle L_0 \rangle = \frac{1}{N} \sum_{i=1}^{N} f(u_i, v_i)
\]

Line sampling

\[
\langle L_0 \rangle = \frac{1}{N} \sum_{i=1}^{N} p(u_i) \frac{f(u_i, v_i)}{f_y(u_i)}
\]

Combining point and line samples for direct illumination
Main idea

Point sampling

\[
\langle L_o \rangle = \frac{1}{N} \sum_{i=1}^{N} \frac{f(u_i, v_i)}{p(u_i, v_i)}
\]

Line sampling

\[
\langle L_o \rangle = \frac{1}{N} \sum_{i=1}^{N} \frac{f(u_i, v_i)}{p(u_i)} \cdot \frac{f(u_i, v_i)}{f_v(u_i)}
\]
Main idea

Point sampling

\[\langle L_o \rangle = \frac{1}{N} \sum_{i=1}^{N} \frac{f(u_i, v_i)}{p(u_i, v_i)} \]

Line sampling

\[\langle L_o \rangle = \frac{1}{N} \sum_{i=1}^{N} \frac{f_v(u_i)}{p(u_i)} \]

Combining point and line samples for direct illumination
Main idea

Point sampling

\[\langle L_o \rangle = \frac{1}{N} \sum_{i=1}^{N} \frac{f(u_i, v_i)}{p(u_i, v_i)} \]

Line sampling

\[\langle L_o \rangle = \frac{1}{N} \sum_{i=1}^{N} \frac{f_v(u_i)}{p(u_i)} \]
Main idea

Combining point and line samples for direct illumination
Main idea

• But a perfect conditional pdf would be hard to find for the full direct lighting integral
Main idea

• But a perfect conditional pdf would be hard to find for the full direct lighting integral

• Instead, we use simpler conditional pdfs that work well in practice
Main idea

• But a perfect conditional pdf would be hard to find for the full direct lighting integral
 • Instead, we use simpler conditional pdfs that work well in practice
• Effectively **importance sampling visibility**
Main idea

Conditional point pdfs

We propose two options:
Main idea

Conditional point pdfs

We propose two options:

Surface-area-based sampling
(uniform over surface area)
Main idea

Conditional point pdfs

We propose two options:

Surface-area-based sampling (uniform over surface area)

Solid-angle-based sampling (uniform over solid angle)

from [UFK13]
Combining point and line samples for direct illumination
Summary

• We have reframed line sampling as point sampling that **importance samples visibility**
Summary

• We have reframed line sampling as point sampling that **importance samples visibility**

• We can now use line sampling with **any BRDF**
Summary

• We have reframed line sampling as point sampling that **importance samples visibility**

• We can now use line sampling with **any BRDF**

• But line samples are still bad at importance sampling some terms – can we do better?
Theory

Combining point and line samples for direct illumination
Theory

• We can use **multiple importance sampling** (MIS) to combine the strengths of different strategies
• We can use **multiple importance sampling** (MIS) to combine the strengths of different strategies

• MIS uses a set of **weights** to favor each strategy where it is strongest (i.e. where a strategy’s pdf is largest relative to other strategies’ pdfs)
Combining point and line samples for direct illumination
Summary

- We can now MIS lines with lines of other orientations
MIS between lines:
Equal time comparison
Relative MSE

<table>
<thead>
<tr>
<th>Lines (average) [BD16]</th>
<th>Full image</th>
<th>Green</th>
<th>Purple</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.6 x 10^{-1}</td>
<td>1.2 x 10^{-2}</td>
<td>1.5 x 10^{0}</td>
<td></td>
</tr>
</tbody>
</table>

Equal time comparison
Relative MSE

<table>
<thead>
<tr>
<th></th>
<th>Full image</th>
<th>Green</th>
<th>Purple</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lines (average)</td>
<td>2.6 x 10^{-1}</td>
<td>1.2 x 10^{-2}</td>
<td>1.5 x 10^{0}</td>
</tr>
<tr>
<td>[BD16]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solid-angle points</td>
<td>2.0 x 10^{-1}</td>
<td>1.4 x 10^{-3}</td>
<td>1.9 x 10^{0}</td>
</tr>
<tr>
<td>[UFK13]</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Equal time comparison

<table>
<thead>
<tr>
<th></th>
<th>Full image</th>
<th>Green</th>
<th>Purple</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lines (average)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[BD16]</td>
<td>2.6×10^{-1}</td>
<td>1.2×10^{-2}</td>
<td>1.5×10^{0}</td>
</tr>
<tr>
<td>Solid-angle points</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[UFK13]</td>
<td>2.0×10^{-1}</td>
<td>1.4×10^{-3}</td>
<td>1.9×10^{0}</td>
</tr>
<tr>
<td>MIS lines</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[Ours]</td>
<td>1.0×10^{-1}</td>
<td>2.6×10^{-3}</td>
<td>3.3×10^{-1}</td>
</tr>
</tbody>
</table>
Summary

• We can now MIS lines with lines of other orientations
Summary

• We can now MIS lines with lines of other orientations

• We can now MIS lines with points that importance sample other distributions (like BRDFs)
MIS between points and lines:

Equal time comparisons
<table>
<thead>
<tr>
<th>Relative MSE</th>
<th>Full image</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSDF</td>
<td>5.5×10^1</td>
</tr>
</tbody>
</table>
Equal time comparison

Relative MSE

Full image

| BSDF | 5.5×10^1 |
Equal time comparison

<table>
<thead>
<tr>
<th></th>
<th>Relative MSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full image</td>
<td>5.5 \times 10^1</td>
</tr>
<tr>
<td>BSDF</td>
<td>5.5 \times 10^1</td>
</tr>
<tr>
<td>Solid-angle points</td>
<td>4.5 \times 10^{-1}</td>
</tr>
<tr>
<td>[UFK13]</td>
<td>4.5 \times 10^{-1}</td>
</tr>
</tbody>
</table>
Relative MSE

<table>
<thead>
<tr>
<th></th>
<th>Full image</th>
<th>BSDF</th>
<th>Solid-angle points [UFK13]</th>
<th>MIS BSDF + SA points</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSDF</td>
<td>5.5×10^1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solid-angle points</td>
<td>4.5×10^{-1}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIS BSDF + SA points</td>
<td>2.0×10^{-1}</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Equal time comparison
Relative MSE

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Equation</td>
<td>Value</td>
</tr>
<tr>
<td>Full image</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BSDF</td>
<td>5.5×10^1</td>
<td></td>
</tr>
<tr>
<td>Solid-angle points</td>
<td>[UFK13]</td>
<td>4.5×10^{-1}</td>
</tr>
<tr>
<td>MIS</td>
<td></td>
<td>2.0×10^{-1}</td>
</tr>
<tr>
<td>BSDF + SA points</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solid-angle lines</td>
<td>[Ours]</td>
<td>4.2×10^{-1}</td>
</tr>
</tbody>
</table>

Equal time comparison
Relative MSE

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full image</td>
<td></td>
</tr>
<tr>
<td>BSDF</td>
<td>5.5×10^1</td>
</tr>
<tr>
<td>Solid-angle points [UFK13]</td>
<td>4.5×10^{-1}</td>
</tr>
<tr>
<td>MIS BSDF + SA points</td>
<td>2.0×10^{-1}</td>
</tr>
<tr>
<td>Solid-angle lines [Ours]</td>
<td>4.2×10^{-1}</td>
</tr>
<tr>
<td>MIS BSDF + SA lines</td>
<td>6.8×10^{-2}</td>
</tr>
</tbody>
</table>
Relative MSE

<table>
<thead>
<tr>
<th></th>
<th>Full image</th>
<th>Green</th>
<th>Purple</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 points : 0 lines</td>
<td>4.0×10^{-1}</td>
<td>5.7×10^{-2}</td>
<td>4.4×10^{-1}</td>
</tr>
</tbody>
</table>
Equal time comparison

<table>
<thead>
<tr>
<th></th>
<th>Full image</th>
<th>Green</th>
<th>Purple</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 points : 0 lines</td>
<td>4.0 $\times 10^{-1}$</td>
<td>5.7 $\times 10^{-2}$</td>
<td>4.4 $\times 10^{-1}$</td>
</tr>
<tr>
<td></td>
<td>Full image</td>
<td>Green</td>
<td>Purple</td>
</tr>
<tr>
<td>------------------</td>
<td>------------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>4 points : 0 lines</td>
<td>4.0×10^{-1}</td>
<td>5.7×10^{-2}</td>
<td>4.4×10^{-1}</td>
</tr>
<tr>
<td>3 points : 1 line</td>
<td>1.0×10^{0}</td>
<td>1.1×10^{-1}</td>
<td>1.1×10^{-1}</td>
</tr>
</tbody>
</table>
Equal time comparison

<table>
<thead>
<tr>
<th></th>
<th>Full image</th>
<th>Green</th>
<th>Purple</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 points : 0 lines</td>
<td>4.0 x 10⁻¹</td>
<td>5.7 x 10⁻²</td>
<td>4.4 x 10⁻¹</td>
</tr>
<tr>
<td>3 points : 1 line</td>
<td>1.0 x 10⁰</td>
<td>1.1 x 10⁻¹</td>
<td>1.1 x 10⁻¹</td>
</tr>
<tr>
<td>2 points : 2 lines</td>
<td>1.0 x 10¹</td>
<td>5.2 x 10⁻¹</td>
<td>9.8 x 10⁻²</td>
</tr>
</tbody>
</table>
Relative MSE

<table>
<thead>
<tr>
<th>Points</th>
<th>Full Image</th>
<th>Green</th>
<th>Purple</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 points : 0 lines</td>
<td>4.0×10^{-1}</td>
<td>5.7×10^{-2}</td>
<td>4.4×10^{-1}</td>
</tr>
<tr>
<td>3 points : 1 line</td>
<td>1.0×10^0</td>
<td>1.1×10^{-1}</td>
<td>1.1×10^{-1}</td>
</tr>
<tr>
<td>2 points : 2 lines</td>
<td>1.0×10^1</td>
<td>5.2×10^{-1}</td>
<td>9.8×10^{-2}</td>
</tr>
<tr>
<td>1 point : 3 lines</td>
<td>2.8×10^{-1}</td>
<td>5.5×10^{-1}</td>
<td>1.3×10^{-1}</td>
</tr>
</tbody>
</table>

Equal time comparison
Equal time comparison

<table>
<thead>
<tr>
<th>Points: Lines</th>
<th>Full Image</th>
<th>Green</th>
<th>Purple</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 points: 0 lines</td>
<td>4.0×10^{-1}</td>
<td>5.7×10^{-2}</td>
<td>4.4×10^{-1}</td>
</tr>
<tr>
<td>3 points: 1 line</td>
<td>1.0×10^{0}</td>
<td>1.1×10^{-1}</td>
<td>1.1×10^{-1}</td>
</tr>
<tr>
<td>2 points: 2 lines</td>
<td>1.0×10^{1}</td>
<td>5.2×10^{-1}</td>
<td>9.8×10^{-2}</td>
</tr>
<tr>
<td>1 point: 3 lines</td>
<td>2.8×10^{-1}</td>
<td>5.5×10^{-1}</td>
<td>1.3×10^{-1}</td>
</tr>
<tr>
<td>0 points: 4 lines</td>
<td>5.3×10^{-1}</td>
<td>1.9×10^{1}</td>
<td>1.1×10^{-1}</td>
</tr>
</tbody>
</table>
Summary

• We can now MIS lines with lines of other orientations
• We can now MIS lines with points that importance sample other distributions (like BRDFs)
Summary

• We can now MIS lines with lines of other orientations
• We can now MIS lines with points that importance sample other distributions (like BRDFs)
• But MIS inherits the worst convergence rate of its strategies – can we do better?
Discontinuity-smoothing MIS

Combining point and line samples for direct illumination
Discontinuity-smoothing MIS

• We know convergence rate improves when discontinuities in effective integrand are smoothed
Discontinuity-smoothing MIS

• We know convergence rate improves when discontinuities in effective integrand are smoothed

• MIS estimator:
Discontinuity-smoothing MIS

• We know convergence rate improves when discontinuities in effective integrand are smoothed

• MIS estimator:

\[
\langle L_o \rangle^{\text{mis}} = \frac{1}{S} \sum_{s=1}^{S} \left(\frac{1}{N_s} \sum_{i=1}^{N_s} w_s(u_i, v_i) \frac{f(u_i, v_i)}{p_s(u_i, v_i)} \right) \quad \text{for S strategies}
\]
Discontinuity-smoothing MIS

- We know convergence rate improves when discontinuities in effective integrand are smoothed

- MIS estimator:

\[
\langle L_o \rangle_{\text{mis}} = \frac{1}{S} \sum_{s=1}^{S} \left(\frac{1}{N_s} \sum_{i=1}^{N_s} w_s(u_i, v_i) \frac{f(u_i, v_i)}{p_s(u_i, v_i)} \right)
\]

for \(S \) strategies

effective integrand
Discontinuity-smoothing MIS

• We know convergence rate improves when discontinuities in effective integrand are smoothed

• MIS estimator:

\[
\langle L_0 \rangle_{\text{mis}} = \frac{1}{S} \sum_{s=1}^{S} \left(\frac{1}{N_s} \sum_{i=1}^{N_s} w_s(u_i, v_i) \frac{f(u_i, v_i)}{p_s(u_i, v_i)} \right)
\]

for \(S \) strategies

effective integrand

[SSC*19]
• We know convergence rate improves when discontinuities in effective integrand are smoothed

• MIS estimator:

\[
\langle L_o \rangle_{\text{mis}} = \frac{1}{S} \sum_{s=1}^{S} \left(\frac{1}{N_s} \sum_{i=1}^{N_s} w_s(u_i, v_i) \frac{f(u_i, v_i)}{p_s(u_i, v_i)} \right)
\]

for S strategies.

[Ours]
Discontinuity-smoothing MIS

Let us MIS:

1. **BRDF point samples**
2. **Vertical line samples**
3. **Horizontal line samples**
Discontinuity-smoothing MIS

Effective integrand for the
BRDF strategy

without smoothing
Effective integrand for the **BRDF strategy** without smoothing

Discontinuity-smoothing MIS
Discontinuity-smoothing MIS

Effective integrand for the **BRDF strategy** without smoothing
Discontinuity-smoothing MIS

Effective integrand for the
BRDF strategy
without smoothing
Discontinuity-smoothing MIS

Effective integrand for the BRDF strategy without smoothing
Discontinuity-smoothing MIS

Effective integrand for the BRDF strategy without smoothing
Effective integrand for the \textbf{BRDF strategy} without smoothing

\textbf{Discontinuity-smoothing MIS}
Effective integrand for the BRDF strategy with smoothing
Smoothing MIS:
Convergence tests
Convergence tests
Convergence tests
Convergence tests

Combining point and line samples for direct illumination
Convergence tests

BSDF \(N^{-1.38}\)
Convergence tests

Combining point and line samples for direct illumination

<table>
<thead>
<tr>
<th>Pixel A (multijittered)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variance</td>
</tr>
<tr>
<td>Number of Light Samples</td>
</tr>
</tbody>
</table>

- BSDF (N^{-1.38})
- Horiz. lines (N^{-2.13})
Convergence tests

BSDF (N^{-1.38})
Horiz. lines (N^{-2.13})
Vert. lines (N^{-2.14})

Pixel A (multijittered)

Variance

Number of Light Samples
Convergence tests

- BSDF ($N^{-1.38}$)
- Horiz. lines ($N^{-2.13}$)
- Vert. lines ($N^{-2.14}$)
- MIS BSDF + Lines ($N^{-1.40}$)
Convergence tests

<table>
<thead>
<tr>
<th>Number of Light Samples</th>
<th>Variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSDF (N(^{-1.38}))</td>
<td></td>
</tr>
<tr>
<td>Horiz. lines (N(^{-2.13}))</td>
<td></td>
</tr>
<tr>
<td>Vert. lines (N(^{-2.14}))</td>
<td></td>
</tr>
<tr>
<td>MIS BSDF + Lines (N(^{-1.40}))</td>
<td></td>
</tr>
<tr>
<td>MIS BSDF + Lines with smoothing (N(^{-2.04}))</td>
<td></td>
</tr>
</tbody>
</table>

Pixel A (multijittered)

Combining point and line samples for direct illumination
Convergence tests

Combining point and line samples for direct illumination
Convergence tests
Convergence tests

Combining point and line samples for direct illumination
Convergence tests

BSDF ($N^{-1.48}$)

Pixel B (multijittered)

Variance

Number of Light Samples
Convergence tests

BSDF ($N^{-1.48}$)
Horiz. lines ($N^{-2.57}$)

Pixel B (multijittered)

Variance
Number of Light Samples
Convergence tests

BSDF \((N^{-1.48})\)
Horiz. lines \((N^{-2.57})\)
Vert. lines \((N^{-1.61})\)

Pixel B (multijittered)

Number of Light Samples vs. Variance
Convergence tests

BSDF \((N^{-1.48}) \)
Horiz. lines \((N^{-2.57}) \)
Vert. lines \((N^{-1.61}) \)
MIS BSDF + Lines \((N^{-1.53}) \)

Pixel B (multijittered)

Variance vs. Number of Light Samples
Convergence tests

BSDF (N\(^{-1.48}\))
Horiz. lines (N\(^{-2.57}\))
Vert. lines (N\(^{-1.61}\))
MIS BSDF + Lines (N\(^{-1.53}\))
MIS BSDF + Lines with smoothing (N\(^{-1.68}\))
Wrapping things up:
What’s Next?
Future work
Future work

• Optimize the line sample-scene intersection
Future work

• Optimize the line sample-scene intersection
 • Line sample-scene intersection 1.2x - 55x slower than shadow ray
Future work

- Optimize the line sample-scene intersection
 - Line sample-scene intersection 1.2x - 55x slower than shadow ray

- Support arbitrarily-shaped light sources and all line directions (for solid-angle lines)
Future work

• Optimize the line sample-scene intersection
 • Line sample-scene intersection 1.2x - 55x slower than shadow ray

• Support arbitrarily-shaped light sources and all line directions (for solid-angle lines)

• Improve smoothing MIS heuristic to be more robust to all scenarios
Future work

• Optimize the line sample-scene intersection
 • Line sample-scene intersection 1.2x - 55x slower than shadow ray

• Support arbitrarily-shaped light sources and all line directions (for solid-angle lines)

• Improve smoothing MIS heuristic to be more robust to all scenarios

• Apply novel concepts to other line sampling (or even higher-dimensional) applications
Thank you!

Please visit

dartgo.org/pointsandlines

for the full paper, supplemental document, and interactive image viewer.

Katherine Salesin
katherine.a.salesin.gr@dartmouth.edu

Wojciech Jarosz
wojciech.k.jarosz@dartmouth.edu
Thank you!

Please visit dartgo.org/pointsandlines for the full paper, supplemental document, and interactive image viewer.

Katherine Salesin
katherine.a.salesin.gr@dartmouth.edu

Wojciech Jarosz
wojciech.k.jarosz@dartmouth.edu