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- Hi everyone, in this talk we’ll present a 
Monte Carlo method to solve partial 
differential equations with spatially varying 
coefficients.
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Geometric & material complexity in science & engineering

building information model

microCT scan

- Models in engineerings & science often 
have way more complexity in their 
geometry and materials than what 
conventional PDE solvers can handle.
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Photorealistic rendering of complex geometry & materials

geometry + materials rendered output

- But imagine if simulation was like Monte 
Carlo rendering: just load up a complex 
model and hit go without worrying about 
meshing or basis functions. 

- Our paper takes a major step towards this 
vision by building a bridge between PDEs 
and volume rendering.



Physical analysis of complex geometry & materials
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Heat radiating from infinitely many blackbodies in a heterogenous medium  
About 600 million effective vertices from visible viewpoint

- Here’s an example: heat radiating off of 
infinitely many black body emitters, each 
with super-detailed geometry and material 
coefficients. 

- From this view alone, the boundary meshes 
have ~600M vertices. 

- To get the same level of detail with a 
conventional PDE solver such as

Challenge with conventional PDE solvers: scalability
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- the finite element method, we need about 
8.5M tetrahedra & 2.5 hours of meshing 
time even on a tiny piece of the scene. 

- But with Monte Carlo we get rapid feedback 
that can be progressively refined.

Challenge with conventional “mesh free” PDE solvers
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MFEM & BEM:  
Global system solves 

BEM: No support for spatially-varying coefficients
 RBF meshless FEM

(~25k nodes)
piecewise linear FEM

(~25k vertices) 5x more fill

Boundary Element Method (BEM) and Meshless Finite Element (MFEM)

 RBF meshless FEM
(~25k nodes)

piecewise linear FEM
(~25k vertices) 5x more fill

MFEM: Careful node placement & connectivity

- At this moment, experts might point to the 
boundary element method and meshless 
FEM. 

- The short story here is that these methods 
either lack support for variable coefficients, 
or they must still do expensive & error-
prone node placement and global solves.



Monte Carlo Geometry Processing [SIGGRAPH 2020]
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- Our journey with Monte Carlo began a few 
years ago, when we realized that rendering 
techniques from computer graphics could 
be used to turbo charge Muller’s “walk on 
spheres” algorithm for solving PDEs.
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delta tracking

delta tracking

Volume Rendering Partial Differential Equations

Contribution: Bridge between PDEs & Volume Rendering - In this paper, we make the connection 
between rendering & simulation even 
stronger, by linking and applying tools from 
volume rendering to PDEs with variable 
coefficients.

Spatial heterogeneity is everywhere!
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Rich material properties e.g., wall with  
thermal insulation, sound proofing et.c

- Spatially-varying coefficients are essential 
for capturing rich material properties.  

- For instance, to understand the thermal 
performance of a building, note that even a 
basic wall isn’t just a homogeneous slab—it 
has many layers of different density.
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Spatial heterogeneity is everywhere!

structural analysis 

acoustic performance

thermal performance electrical capacitance

geological modeling biological modeling 

- And that’s just the tip of the iceberg—PDEs 
with variable coefficients are everywhere in 
science & engineering, from thermal and 
structural analysis, to bimolecular and 
geological modeling.

Shortcoming of conventional PDE solvers

11

Spatial discretization: expensive and error-prone

14 hrs / 30 GB RAM  
to generate FEM mesh

Defective geometry, e.g.,  
self-intersections, non-manifold elements

finite di!erence finite element Monte Carlo

finite di!erence finite element Monte Carlo

- A major challenge with any PDE solver is 
spatial discretization: this process is 
expensive and error prone, especially for 
complex geometric models.

Shortcoming of conventional PDE solvers
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boundary mesh (input) 34 minutes / 6.1 GB RAM to generate  
FEM mesh (missing blood vessels)

Spatial discretization: destroys geometric features

- Apart from its massive cost, discretization 
also causes two major headaches for solving 
PDEs:  

- 1) important geometric features often get 
destroyed, and 



Shortcoming of conventional PDE solvers
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Spatial discretization: causes aliasing in the PDE inputs and solution

FEM requires significant mesh refinement to match reference

- 2) and significant mesh refinement can be 
needed to remove aliasing artifacts in the 
PDE solution, boundary conditions and 
coefficients.

Monte Carlo Rendering
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Ray intersection query

Does not require high quality meshing & solving global systems

- To avoid these problems, photorealistic 
rendering moved away from meshing to 
Monte Carlo methods that only need point-
wise access to the geometry via ray 
intersection queries.

Monte Carlo Rendering
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Photorealistic image generation of participating and granular media  

- This enabled simulation of intricate light 
transport phenomena on complex 
geometric models.  

- So what about PDEs?



The walk on spheres (WoS) algorithm [Muller 1956]
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Does not require high quality meshing & solving global systems

Closest point query

- Here there’s a little known algorithms called 
walk on spheres, which avoids spatial 
discretization altogether.  

- Much like rendering, it only needs access to 
a single geometric kernel, namely closely 
point queries. 

- Now, to be candid: WoS is *way* behind 
mature technology
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Multi-material physical simulation in graphics - like FEM—especially in computer graphics 
we’ve seen amazing PDE solvers that handle 
complex multi-physics scenarios.

The walk on spheres (WoS) algorithm [Muller 1956]
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Goal: extend to broader class of problems  PDEs with variable coefficients⟹

Closest point query

- But the WoS idea—and its promise to free 
us from the bonds for spatial discretization
—is so appealing that we want to extend it 
to a broader classes of PDEs. 

- So, let's talk about how



BACKGROUND
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- we can extend WoS to variable-coefficient 
problems.
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A tale of three equations… - This story is really a tale of three kinds of 
equations: 

- 1) PDEs 
- 2) integral equations and 
- 3) stochastic differential equations. 
- Our paper provides a playbook to convert 

between these different forms.
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2nd order linear elliptic PDEs - In precise terms, our goal is to develop a 
Monte Carlo method that solves 2nd order 
linear elliptic equations with spatially-
varying diffusion, drift, and absorption 
coefficients. 

- Let’s unpack this equation term by term.
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2nd order linear elliptic PDEs

Δ :=
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

- First, a Laplace equation describes the 
steady-state temperature inside a domain if 
heat is fixed to some given function g on the 
boundary.
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2nd order linear elliptic PDEs - Adding a source term f yields a Poisson 
equation, where f describes a background 
temperature. 

- Imagine heat being pumped into the 
domain at a rate f at each point x.
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2nd order linear elliptic PDEs - We can control the rate of heat diffusion by 
replacing the laplacian with the operator 
\grad of (\alpha \grad u), where \alpha is a 
scalar function. 

- Physically \alpha might describe the 
thickness or varying composition of a 
material.
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2nd order linear elliptic PDEs - Adding a drift term \omega \grad u to a 
Poisson equation indicates that heat is 
pushed along some vector field \omega—
imagine a flowing river, which mixes hot 
water into cold water until it reaches a 
steady state.
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2nd order linear elliptic PDEs - Finally, an absorption term \sigma u acts 
like a background medium that absorbs 
heat—think about a heat sink or a cold 
engine block. 

- The function \sigma describes the strength 
of absorption at each point x.
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2nd order linear elliptic PDEs - There are lots of other terms you could add 
to a PDE, but these already get you pretty 
far. 

- More importantly, these are terms we’ll be 
able to convert into integral 
representations, and ultimately into Monte 
Carlo algorithms for PDEs! 

- Let’s see how…
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Integral for Laplace equation

basis for WoS! 

∂

- The solutions to basic PDEs can be 
expressed via integral equations.  

- E.g., the solution to a Laplace equation is 
given by the “mean value property“, which 
says that “the solution at a point x equals 
the average value over any empty ball 
centered at x”.  

- This integral is *recursive*: the unknown 
value u at x depend on unknown values at 
y! 

- Sounds like a problem, but this *exactly* 
how WoS works:
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Integral for Laplace equation

basis for WoS! 

∂

- recursively estimate the value of u till we 
reach the boundary and then grab the 
known boundary value.
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Integral for screened Poisson equation (constant absorption)

WoS: sample    inside each ball   f

- As with PDEs, we can keep adding terms to 
integral equations to capture additional 
behavior.  

- For instance there’s a nice integral 
representation for a screened Poisson 
equation, as long as the absorption 
coefficient sigma is constant! 

- From an algorithmic perspective, WoS now 
also picks a random point inside each ball in 
the walk to sample the source term.
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A tale of three equations… - Finally, we can describe the same 
phenomena using stochastic differential 
equations (SDE).  

- For us, the stochastic picture is super 
important because it lets us deal with 
spatially-varying coefficients.

32

Ordinary differential equation (ODE) - An ODE describes the location of a particle 
in terms of its derivatives in time.  

- For instance, dX = \omega dt says that a 
particle’s velocity is given by some vector 
field \omega—e.g., a speck of dust blowing 
in the wind.
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Stochastic differential equation (SDE) - A *stochastic* differential equation 
describes random motions—a key example 
is a Brownian motion, where changes in 
position follow a Gaussian distribution, and 
are independent of past events.  

- Brownian motion is often used to model 
everything from moving molecules to 
fluctuations in stock prices.
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Stochastic differential equation (SDE) - Adding Brownian motion to our earlier ODE 
gives a more general *diffusion process* 
which we can think of as either a 
deterministic particle with noise, or a 
random walk with drift.
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Stochastic differential equation (SDE) - We can also modulate the strength of the 
jiggling via a function \alpha. As \alpha 
increases, things “heat up”, and particles 
move faster.
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Stochastic differential equation (SDE) - Finally we can think about a random walker 
possibly getting absorbed in a background 
medium, like ink getting soaked up in a 
sponge.  

- Here \sigma denotes the strength of 
absorption—it doesn’t show up in the SDE 
itself, but will be incorporated in a moment.



Feynman-Kac formula 
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- Now, it’s no coincidence that we use the 
same symbols \alpha, \sigma, \omega for 
both our PDE and SDE.  

- These perspectives are linked by the 
Feynman-Kac formula, which gives the 
solution to our main PDE as an expectation 
over many random walks.

Special case: Kakutani’s principle
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u(x) = 𝔼[u(Wτ)]

=
1

|∂B(x) | ∫∂B(x)
u(y) dy

WoS simulates Brownian motion efficiently!

- A special case of Feynman Kac is Kakutani’s 
principle, which says the solution to a 
Laplace equation is the average value seen 
by a Brownian random walk when it firsts 
hits the boundary.  

- When restricted to a ball, Kakutani’s 
principle is equivalent to the mean value 
property due to the rotational symmetry of 
Brownian motion. 

- WoS can therefore be seen as an 
acceleration strategy for simulating 
brownian motion.

Feynman-Kac formula 
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- More importantly, unlike classic integral 
equations, the Feynman-Kac formula 
handles spatially-varying coefficients! 

- As a result, we can use it to



Next: recursive integral equation for variable coefficients
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- build a *new* recursive but deterministic 
integral equation, which in turn leads to 
modified WoS algorithms for variable 
coefficient PDEs.

Method

41

- The key observation behind our method
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WoS for PDEs with source terms

E.g., ; sample the spatially-varying source  inside each ballΔu = f(x) f

- Is that even though WoS cannot directly 
handle PDEs with variable coefficients, it 
can still be used to solve problems with 
spatially-varying source terms.



Transformations
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Variable coefficient       

Constant coefficient     

∇ ⋅ (α∇u) + ⃗ω ⋅ ∇u − σ u = − f

Δu − σ̄ u = f(x, α, ⃗ω , σ, u)

∫B(x)
f(y, α, ⃗ω , σ, u) Gσ̄(x, y) dy + ∫∂B(x)

u(z) Pσ̄(x, z) dzIntegral

(No approximation!)

recursive 

constant

Girsanov & delta tracking 
transformations

- We therefore apply a series of 
transformations that convert our original 
heterogeneous PDE into a *constant*-
coefficient screened Poisson equation with 
a recursive source term.  

- From an FEM perspective, it might feel like 
we haven’t done anything useful: we just 
shuffled all the hard stuff to the other side 
of the equals sign.  

- Yet from the Monte Carlo perspective we 
now have a way forward, since we can 
recursively estimate the resulting 
deterministic integral.

dXt = ω(Xt) dt + α(Xt) dWt dXt = dWt

u(x) = 𝔼 [∫
τ

0
e− ∫t

0 σ(Ws) ds f(Wt) dt + e− ∫τ
0 σ(Wt) dt g(Wτ)]

Re-express Feynman Kac in terms of Brownian motion

Transformation 1: Girsanov
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x xx

- On the stochastic front, our first 
transformation rewrites the Feynman Kac 
formula purely in terms of brownian motion 
instead of a diffusion process. 

- As part of this transformation, all the 
original coefficients get converted into a 
single variable absorption coefficient 
\sigma. 

- To get rid of this \sigma,

Volume Rendering Equation (VRE)

VRE describes the radiance in heterogeneous absorbing & scattering media

L(w, ω) = ∫
d

0
e− ∫t

0 σ(xs) ds f(xt, ω) dt + e− ∫d
0 σ(xt) dt g(xd, ω)
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- we then observe that the Feynman Kac 
formula actually looks a lot like the volume 
rendering equation, which in computer 
graphics describes the radiance L along a ray 
in a heterogeneous medium that absorbs, 
scatters and emits radiation. 

- But if for a second we put aside the physical 
meaning of these symbols, 



Structural connection between VRE & Feynman-Kac

VRE describes the radiance in heterogeneous  
absorbing & scattering media

Feynman-Kac for 2nd order  
variable coefficient PDEs

u(x) = 𝔼 [∫
τ

0
e− ∫t

0 σ(Ws) ds f(Wt) dt + e− ∫τ
0 σ(Wt) dt g(Wτ)]L(w, ω ) = ∫

d

0
e− ∫t

0 σ(xs) ds f(xt, ω ) dt + e− ∫d
0 σ(xt) dt g(xd, ω )
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- then structurally the main difference 
between Feynman Kac and the VRE is that 
one requires simulation of Brownian 
random walks, while the other provides the 
radiance along a ray. 

- And as a result, transformations like delta 
tracking used in graphics to solve the VRE

Transformation 2: Delta tracking
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u(x) = 𝔼 [∫
τ

0
e− ∫t

0 σ(Ws) ds f(Wt) dt + e− ∫τ
0 σ(Wt) dt g(Wτ)]

u(x) = 𝔼 [∫
τ

0
e−σ̄t f(Wt, σ, u) dt + e−σ̄τ g(Wτ)]

Variable coefficient       

Constant coefficient    
(No approximation!) constantrecursive 

- can be applied to the Feynman Kac formula 
as well. 

- Here we basically move the variable 
coefficient \sigma to a recursively defined 
source term f as in the PDE setting. 

- \sigma \bar is a free parameter, which we 
set to the difference between the maximal 
values of \sigma over the entire domain.  

- Just as in volume rendering, we’ve 
essentially turned our original 
heterogeneous medium into an equivalent 
homogeneous one. 

- Now algorithmically, this is all really 
interesting because PDEs can suddenly 
benefit from decades worth of rendering 
research!



Delta tracking variant of WoS

WoS delta tracking delta tracking method in volume rendering 
[Woodcock et al., 1965, Raab et al. 2008]
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scattering event

null events

null event

- In particular, these transformations allow us 
develop modified versions of WoS with 
direct counterparts in volume rendering. 

- For instance, the delta tracking version, 
shown here on the left, uses the concept of 
null events from volume rendering to 
sample points either inside or on the 
boundary of a ball.

Next-flight variant of WoS

Similar variance & run-time characteristics as volume rendering counterparts

Next-flight algorithm in volume rendering 
[Cramer 1978]WoS next-flight
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Fewer distance queries higher correlation compared to delta tracking WoS

- Similarly, the next flight version always 
jumps to a random point on the largest 
sphere using off-centered walks, and 
conceptually it looks a lot like the next-flight 
algorithm from volume rendering. 

- In practice, we find that while the next flight 
version requires fewer distance queries, it 
usually suffers from higher correlation 
compared to delta tracking. 

- Both algorithms also share the variance and 
run-time characteristics of their volume 
rendering counterparts.

Weight window [Hoogenboom and Légrády 2005]

Uses splitting and Russian roulette to reduce noise
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- Finally, on problems with high frequency 
coefficients, standard variance reduction 
techniques in Monte carlo rendering, like 
Russian roulette and splitting, can provide 
similarly dramatic improvements to our 
algorithms, here providing a 6x speedup. 

- Run-time performance also improves in this 
case, since walks are often terminated early.



Implementation & Results
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- From an implementation perspective,
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PDE inputs - A PDE is encoded by the description of the 
scene geometry, boundary conditions, 
source term and coefficients. 

- In our implementation, this data is provided 
via callback routines that return a value for 
any query point in the domain.

Acceleration of closest point queries
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Accelerate closest point queries using BVH

Unlike bad meshes, BVHs do not impact correctness/accuracy of PDE solution!

- Closest point queries can be accelerated via 
standard spatial hierarchies such as a BVH 
for a wide variety of scene representations. 

- Unlike mesh generation, a BVH uses little 
memory and can be built quickly even for 
detailed models. 

- Also, unlike a bad mesh, a poorly-
constructed BVH only harms performance—
not correctness or accuracy.



Interactive editing
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- Our approach is ideal for interactive editing 
since it operates directly on the original 
scene representation, and provides instant 
feedback after updates to the geometry, 
boundary conditions and PDE coefficients.
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No model cleanup, reduction or homogenization! - Unlike conventional solvers, our method 
also doesn’t require any geometric pre-
processing, which allows it to scale to 
extremely large scenes.

End-to-end cost of conventional PDE solvers
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cleanup, remeshing, etc.

tetrahedralization

FEM Solve
Input boundary representation

Refined surface mesh

Refined volume mesh

PDE solutionFinite Element Method (FEM) Pipeline

brittle & expensive 

- In contrast, the significant issue with 
traditional numerical methods such as FEM 
is the end-to-end cost of the pipeline: even 
if the FEM solve is fast, one has to first 
convert the boundary description into a 
high quality simulation mesh. 

- This process can be brittle and slow, and 
requires careful consideration since



Conventional PDE solvers can be brittle

Poor mesh quality completely throws off FEM solution 

FEM solution Reference solution 
Source: Sharp and Crane, A Laplacian for Nonmanifold Triangle Meshes 57

- even a single bad quality element can throw 
off the the accuracy of an FEM solution 
completely.

Comparison with conventional solvers

The boundary element method (BEM) does not require volumetric meshing

BEM does not support problems with source terms or variable coefficients
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- Some conventional solvers such as the 
boundary element method don’t need to 
mesh the domain. 

- However, BEM can’t handle problems with 
source terms or spatially-varying 
coefficients on the domain interior. 

- To include these terms, it has to be coupled 
with a second solver such as FEM which 
requires volumetric meshing.

Comparison with conventional solvers

Meshless FEM solvers also do not require a volume mesh

39

Typical FEM sparse matrix  
(~25k vertices a er reordering)

Typical Meshless FEM sparse matrix  
(~25k nodes a er reordering)

~5x more fill 
relative to FEM
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Typical FEM sparse matrix  
(~25k vertices a er reordering)

Typical Meshless FEM sparse matrix  
(~25k nodes a er reordering)

~5x more fill 
relative to FEM

• Require dense sampling of 
the domain

• Require solving large 
linear systems
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- Meshless FEM methods such as moving 
least squares also don’t require meshing 
either. 

- However, unlike Monte Carlo, these 
methods still require a dense and careful 
sampling of the entire domain. 

- They also need to solve global systems of 
equations which are typically a lot larger in 
size compared to FEM.



Meshless FEM is unreliable

Solvers have unpredictable convergence under refinement

60Tested on 10k models from the Thingi10k dataset WoS (delta tracking)
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- The bigger problem with meshless methods 
is that they are unreliable. 

- Here we solve a standard PDE on all models 
from the Thingi10k dataset, and plot the 
error under refinement. 

- As indicated by the crosses in the plot, 
common meshless schemes often fail to 
converge under refinement, while

Meshless FEM is unreliable

Solvers have unpredictable convergence under refinement

61Tested on 10k models from the Thingi10k datasetWoS (delta tracking)
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- even state of the art approaches show 
extremely large variation in error.

Meshless FEM is unreliable

Walk on spheres converges predictably

62Tested on 10k models from the Thingi10k dataset
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- In contrast, WoS demonstrates very 
predictable convergence on all 10000 
models in the same dataset.



Stopping tolerance ε

Introduces minimal bias and has little impact on performance

63

- Like standard WoS, the only parameter in 
our algorithms is an epsilon tolerance that 
specifies how close to the boundary we 
have to be before we can grab the known 
boundary value. 

- This tolerance introduces minimal bias and 
has little impact on performance unlike 
tolerances in meshing algorithms.
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Discretized random walks



0

1

2
3

Explicit time stepping of diffusion process: Xk+1 = Xk + ⃗ω (Xk) h + α(Xk) (Wk+1 − Wk)

Discretized walks can leave  
the domain, biasing estimates

- Like ray marching, Feynman Kac can be 
directly approximated by simulating a 
diffusion process with explicit time 
stepping. 

- Unlike WoS however, discretized walks can 
leave the domain, which biases the solution 
estimates. 

- Smaller time steps help reduce this bias, but 
at significant detriment to run-time 
performance.

No spatial aliasing 

 

 

Boundary data and
screening coe!icient

Reference

Monte Carlo
(WoS)

FEM

Meshless FEM
(RBF-FD)

125 
walks

500 
walks

1k 
walks

2k 
verts

20k 
verts

200k 
verts

2k 
nodes

20k 
nodes

200k 
nodes

refinement

Monte Carlo decouples boundary conditions/coefficients from geometry
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- An extra benefit of Monte Carlo is that it 
decouples the boundary conditions and 
coefficients from the geometry. 

- As a result, there is never any spatial 
aliasing, and WoS is able to capture the 
global profile of the solution with just a few 
walks. 

- In contrast, conventional methods have to 
heavily refine the discretization to capture 
high frequency inputs. 

- In general, it’s very difficult to predict an 
adequate mesh size ahead of time.
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Physical analysis of complex geometry & materials

No homogenization of PDE coefficients!

- Though our main goal here is to develop 
core knowledge, there are some cool things 
we can immediately do. 

- One is to simply solve physical PDEs with 
complex geometry and coefficients.

67

Example application: variable coefficient diffusion curves

Additional control over sharp details

- A graphics example is to generalize so-called 
"diffusion curves" to variable coefficients, 
giving more control over how sharp or fuzzy 
details look.

68

Example application: diffusion curves on surfaces

Use variable coeffs on flat domains to model constant coeffs on curved domains

- Another nice point of view is that variable 
coefficients on a flat domain can actually be 
used to model constant coefficients on a 
curved domain!  

- This way, we can solve PDEs with intricate 
boundary data on smooth surfaces, without 
any meshing at all.
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Example application: subsurface scattering

Easy to mix volumetric path tracing (VPT) and walk on spheres (WoS)

Hybrid strategy : VPT near boundary, WoS deeper inside volume

- A Monte Carlo method also makes it easy to 
integrate PDE solvers with physically-based 
renderers.  

- For instance, we can get a way more 
accurate diffusion approximation of 
heterogeneous subsurface scattering, 
without having to painfully hook up to a 
FEM or grid-based solver. 

Limitations & Future Work
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- Our method is not without limitations.

High variance due to large spatial variation
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Future: local coefficient bounds, low-variance VRE estimators, adaptive weight window

- As in rendering, coefficients with large 
spatial variation can lead to increased 
variance. 

- Adapting further techniques from volume 
rendering such as local coefficient bounds, 
low-variance VRE estimators, and adaptive 
weight windows should help address this 
issue.



Future: support for important features
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Neumann & Robin boundary conditions

Anisotropic diffusion coefficients

Non-linear PDEs

High performance distance queries

Differentiable implementation

- More broadly, the WoS framework still lacks 
support for many basic features of schemes 
like FEM, such as Neumann boundary 
conditions and anisotropic diffusion 
coefficients. 

- That said, this framework is still a very 
interesting [fairly new] way to solve PDEs, 
with deep-but-unexplored connections to 
rendering.

The promise of grid-free Monte Carlo 
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- Moreover, since Monte Carlo methods are 
free from the bonds of spatial discretization, 
they open the door to new classes of PDE 
solvers that are robust to bad geometry, 
scalable to extremely large scenes, and 
progressive in their solution evaluation.
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- Thank you.



BACKUP
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I don’t know…

D’oh!
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