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Geometric & material complexity in science & engineering

building information model

microCT scan
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Photorealistic rendering of complex geometry & materials

geometry + materials rendered output



Physical analysis of complex geometry & materials

4

Heat radiating from infinitely many blackbodies in a heterogenous medium  
About 600 million effective vertices from visible viewpoint



Challenge with conventional PDE solvers: scalability
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Challenge with conventional “mesh free” PDE solvers
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Boundary Element Method (BEM) and Meshless Finite Element (MFEM)
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Challenge with conventional “mesh free” PDE solvers
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MFEM & BEM:  
Global system solves 

BEM: No support for spatially-varying coefficients
 RBF meshless FEM

(~25k nodes)
piecewise linear FEM

(~25k vertices) 5x more fill

Boundary Element Method (BEM) and Meshless Finite Element (MFEM)

 RBF meshless FEM
(~25k nodes)

piecewise linear FEM
(~25k vertices) 5x more fill

MFEM: Careful node placement & connectivity



Monte Carlo Geometry Processing [SIGGRAPH 2020]
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delta tracking

delta tracking

Volume Rendering Partial Differential Equations

Contribution: Bridge between PDEs & Volume Rendering



Spatial heterogeneity is everywhere!
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Rich material properties e.g., wall with  
thermal insulation, sound proofing et.c
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Spatial heterogeneity is everywhere!

structural analysis 

acoustic performance

thermal performance electrical capacitance

geological modeling biological modeling 



Shortcoming of conventional PDE solvers
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Spatial discretization: expensive and error-prone

14 hrs / 30 GB RAM  
to generate FEM mesh

Defective geometry, e.g.,  
self-intersections, non-manifold elements

finite di!erence finite element Monte Carlo

finite di!erence finite element Monte Carlo



Shortcoming of conventional PDE solvers
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boundary mesh (input) 34 minutes / 6.1 GB RAM to generate  
FEM mesh (missing blood vessels)

Spatial discretization: destroys geometric features



Shortcoming of conventional PDE solvers
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Spatial discretization: causes aliasing in the PDE inputs and solution

FEM requires significant mesh refinement to match reference



Monte Carlo Rendering
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Ray intersection query

Does not require high quality meshing & solving global systems



Monte Carlo Rendering
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Photorealistic image generation of participating and granular media  



The walk on spheres (WoS) algorithm [Muller 1956]
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The walk on spheres (WoS) algorithm [Muller 1956]
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Does not require high quality meshing & solving global systems

Closest point query
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Multi-material physical simulation in graphics
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Multi-material physical simulation in graphics



The walk on spheres (WoS) algorithm [Muller 1956]
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Goal: extend to broader class of problems  PDEs with variable coefficients⟹

Closest point query



BACKGROUND
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A tale of three equations…
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2nd order linear elliptic PDEs
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2nd order linear elliptic PDEs

Δ := ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2
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2nd order linear elliptic PDEs
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2nd order linear elliptic PDEs
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Integral for Laplace equation
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Integral for Laplace equation

basis for WoS! 

∂
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Integral for Laplace equation

basis for WoS! 

∂
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Integral for screened Poisson equation (constant absorption)
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Integral for screened Poisson equation (constant absorption)

WoS: sample    inside each ball   f
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A tale of three equations…
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Ordinary differential equation (ODE)
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Ordinary differential equation (ODE)
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Stochastic differential equation (SDE)
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Stochastic differential equation (SDE)
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Stochastic differential equation (SDE)



Feynman-Kac formula 
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Special case: Kakutani’s principle
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Special case: Kakutani’s principle

38

u(x) = $[u(Wτ)]

= 1
|∂B(x) | ∫∂B(x)

u(y) dy

WoS simulates Brownian motion efficiently!



Feynman-Kac formula 
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Next: recursive integral equation for variable coefficients
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Method

41



42

WoS for PDEs with source terms

E.g., ; sample the spatially-varying source  inside each ballΔu = f(x) f



Transformations
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Δu − σ̄ u = f(x, α, ⃗ω , σ, u)
(No approximation!) constant

Girsanov & delta tracking 
transformations
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Transformations

43

Variable coefficient       

Constant coefficient     

∇ ⋅ (α∇u) + ⃗ω ⋅ ∇u − σ u = − f

Δu − σ̄ u = f(x, α, ⃗ω , σ, u)

∫B(x)
f(y, α, ⃗ω , σ, u) Gσ̄(x, y) dy + ∫∂B(x)

u(z) Pσ̄(x, z) dzIntegral

(No approximation!)

recursive 

constant

Girsanov & delta tracking 
transformations



u(x) = $ [∫
τ

0
e− ∫t

0 σ(Ws) ds f(Wt) dt + e− ∫τ
0 σ(Wt) dt g(Wτ)]

Re-express Feynman Kac in terms of Brownian motion

Transformation 1: Girsanov

44



dXt = ω(Xt) dt + α(Xt) dWt dXt = dWt

u(x) = $ [∫
τ

0
e− ∫t

0 σ(Ws) ds f(Wt) dt + e− ∫τ
0 σ(Wt) dt g(Wτ)]

Re-express Feynman Kac in terms of Brownian motion

Transformation 1: Girsanov

44

x xx



Volume Rendering Equation (VRE)

VRE describes the radiance in heterogeneous absorbing & scattering media

L(w, ω) = ∫
d

0
e− ∫t

0 σ(xs) ds f(xt, ω) dt + e− ∫d
0 σ(xt) dt g(xd, ω)

45



Structural connection between VRE & Feynman-Kac

VRE describes the radiance in heterogeneous  
absorbing & scattering media

Feynman-Kac for 2nd order  
variable coefficient PDEs

u(x) = $ [∫
τ

0
e− ∫t

0 σ(Ws) ds f(Wt) dt + e− ∫τ
0 σ(Wt) dt g(Wτ)]L(w, ω ) = ∫

d

0
e− ∫t

0 σ(xs) ds f(xt, ω ) dt + e− ∫d
0 σ(xt) dt g(xd, ω )

46



Transformation 2: Delta tracking
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u(x) = $ [∫
τ

0
e− ∫t

0 σ(Ws) ds f(Wt) dt + e− ∫τ
0 σ(Wt) dt g(Wτ)]

u(x) = $ [∫
τ

0
e−σ̄t f(Wt, σ, u) dt + e−σ̄τ g(Wτ)]

Variable coefficient       

Constant coefficient    
(No approximation!)
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Transformation 2: Delta tracking

47

u(x) = $ [∫
τ

0
e− ∫t

0 σ(Ws) ds f(Wt) dt + e− ∫τ
0 σ(Wt) dt g(Wτ)]

u(x) = $ [∫
τ

0
e−σ̄t f(Wt, σ, u) dt + e−σ̄τ g(Wτ)]

Variable coefficient       

Constant coefficient    
(No approximation!) constantrecursive 



Delta tracking variant of WoS

WoS delta tracking delta tracking method in volume rendering 
[Woodcock et al., 1965, Raab et al. 2008]
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scattering event

null events

null event



Next-flight variant of WoS

WoS next-flight

49



Next-flight variant of WoS

Next-flight algorithm in volume rendering 
[Cramer 1978]WoS next-flight
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Next-flight algorithm in volume rendering 
[Cramer 1978]WoS next-flight
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Next-flight variant of WoS

Similar variance & run-time characteristics as volume rendering counterparts

Next-flight algorithm in volume rendering 
[Cramer 1978]WoS next-flight

49

Fewer distance queries higher correlation compared to delta tracking WoS



Weight window [Hoogenboom and Légrády 2005]

Uses splitting and Russian roulette to reduce noise
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Implementation & Results
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PDE inputs



Acceleration of closest point queries
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Accelerate closest point queries using BVH



Acceleration of closest point queries
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Accelerate closest point queries using BVH

Unlike bad meshes, BVHs do not impact correctness/accuracy of PDE solution!



Interactive editing
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No model cleanup, reduction or homogenization!



End-to-end cost of conventional PDE solvers

56

cleanup, remeshing, etc.

tetrahedralization

FEM Solve
Input boundary representation

Refined surface mesh

Refined volume mesh

PDE solutionFinite Element Method (FEM) Pipeline



End-to-end cost of conventional PDE solvers

56

cleanup, remeshing, etc.

tetrahedralization

FEM Solve
Input boundary representation

Refined surface mesh

Refined volume mesh

PDE solutionFinite Element Method (FEM) Pipeline

brittle & expensive 



Conventional PDE solvers can be brittle

Poor mesh quality completely throws off FEM solution 

FEM solution Reference solution 
Source: Sharp and Crane, A Laplacian for Nonmanifold Triangle Meshes 57



Comparison with conventional solvers

The boundary element method (BEM) does not require volumetric meshing
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Comparison with conventional solvers

The boundary element method (BEM) does not require volumetric meshing

BEM does not support problems with source terms or variable coefficients
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Comparison with conventional solvers

Meshless FEM solvers also do not require a volume mesh
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Comparison with conventional solvers

Meshless FEM solvers also do not require a volume mesh

• Require dense sampling of 
the domain
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Comparison with conventional solvers

Meshless FEM solvers also do not require a volume mesh

39

Typical FEM sparse matrix  
(~25k vertices a er reordering)

Typical Meshless FEM sparse matrix  
(~25k nodes a er reordering)

~5x more fill 
relative to FEM
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Typical FEM sparse matrix  
(~25k vertices a er reordering)

Typical Meshless FEM sparse matrix  
(~25k nodes a er reordering)

~5x more fill 
relative to FEM

• Require dense sampling of 
the domain

• Require solving large 
linear systems

59



Meshless FEM is unreliable

Solvers have unpredictable convergence under refinement

60Tested on 10k models from the Thingi10k dataset WoS (delta tracking)
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Meshless FEM is unreliable

Solvers have unpredictable convergence under refinement

61Tested on 10k models from the Thingi10k datasetWoS (delta tracking)
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Meshless FEM is unreliable

Walk on spheres converges predictably

62Tested on 10k models from the Thingi10k dataset
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Stopping tolerance ε

Introduces minimal bias and has little impact on performance
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Stopping tolerance ε
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63



64

Discretized random walks

Explicit time stepping of diffusion process: Xk+1 = Xk + ⃗ω (Xk) h + α(Xk) (Wk+1 − Wk)
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Discretized random walks



0

1

2
3

Explicit time stepping of diffusion process: Xk+1 = Xk + ⃗ω (Xk) h + α(Xk) (Wk+1 − Wk)

Discretized walks can leave  
the domain, biasing estimates
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Discretized random walks



0

1

2
3

Explicit time stepping of diffusion process: Xk+1 = Xk + ⃗ω (Xk) h + α(Xk) (Wk+1 − Wk)

Discretized walks can leave  
the domain, biasing estimates



No spatial aliasing 

 

 

Boundary data and
screening coe!icient

Reference

Monte Carlo
(WoS)

FEM

Meshless FEM
(RBF-FD)

125 
walks

500 
walks

1k 
walks

2k 
verts

20k 
verts

200k 
verts

2k 
nodes

20k 
nodes

200k 
nodes

refinement

Monte Carlo decouples boundary conditions/coefficients from geometry
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No spatial aliasing 

 

 

Boundary data and
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walks

1k 
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2k 
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20k 
verts

200k 
verts

2k 
nodes

20k 
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200k 
nodes

refinement

Monte Carlo decouples boundary conditions/coefficients from geometry
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Physical analysis of complex geometry & materials

No homogenization of PDE coefficients!
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Example application: variable coefficient diffusion curves

Additional control over sharp details
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Example application: diffusion curves on surfaces

Use variable coeffs on flat domains to model constant coeffs on curved domains
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Example application: subsurface scattering

Easy to mix volumetric path tracing (VPT) and walk on spheres (WoS)

Hybrid strategy : VPT near boundary, WoS deeper inside volume



Limitations & Future Work
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High variance due to large spatial variation
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High variance due to large spatial variation

71

Future: local coefficient bounds, low-variance VRE estimators, adaptive weight window



Future: support for important features
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Neumann & Robin boundary conditions

Anisotropic diffusion coefficients

Non-linear PDEs

High performance distance queries

Differentiable implementation



The promise of grid-free Monte Carlo 

73
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BACKUP
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I don’t know…

D’oh!
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