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Photorealistic rendering ot complex geometry & materials
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Physical analysis of complex geometry & materials
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Heat radiating from infinitely many blackbodies in a heterogenous medium

About 600 million effective vertices from visible viewpoint




Challenge with conventional PDE solvers: scalability
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Challenge with conventional PDE solvers: scalability
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Challenge with conventional PDE solvers: scalability
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Challenge with conventional “mesh tree” PDE solvers

Boundary Element Method (BEM) and Meshless Finite Element (MFEM)



Challenge with conventional “mesh tree” PDE solvers
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Challenge with conventional “mesh tree” PDE solvers

Boundary Element Method (BEM) and Meshless Finite Element (MFEM)
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BEM: No support for spatially-varying coefficients
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Challenge with conventional “mesh tree” PDE solvers

Boundary Element Method (BEM) and Meshless Finite Element (MFEM)
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Fig. 2. We can directly solve PDEs on boundary representations not handled by conventional solvers. Left: discontinuous boundaj
surface are captured exactly, whereas FEM or BEM would need a fine mesh to approximate such features. Center: we avoid]
explicit mesh booleans, and can in fact combine heterogeneous representations via constructive solid geometry (CSG). Right: as in
meaningful solutions for geometry with extremely poor element quality, which degrade gracefully even in the presence of signif]

low-quality polygon soup. Moreover, Monte Carlo rendering can
use rich geometric representations beyond polygon meshes, since all
geometric evaluation boils down to simple ray intersection queries.
The methods described in this paper provide an analogous ap-
proach to geometry processing: ray intersection tests are replaced
by closest point queries, and recursive ray tracing is replaced by
the recursive walk on spheres (WoS) algorithm of Muller [1956], as
outlined in Sec. 2.2.1. This approach has a number of benefits:

Geometric Flexibility. It works directly with polygonal
meshes, NURBS/subdivision surfaces, implicit surfaces, con-
structive solid geometry, etc. Procedural (e.g., instanced) ge-
ometry can be used without consuming significant memory.
Geometric Robustness. Geometry need not be watertight,
manifold, orientable, nor free of self-intersections; no prepro-
cessing or tessellation/discretization is needed. Sharp edges,
small details, and thin features are exactly preserved.
Scalability. The main cost is a bounding volume hierarchy
(BVH) for closest point queries, which exhibits O(n log n) time
and memory complexity with respect to the size of the bound-
ary geometry, rather than an interior (volumetric) mesh.

e Parallelism. It is trivial to achieve near-perfect parallel scal-
ing, and many operations are easily vectorized.
Correctness. Since there is no discretization of space, time,
nor function spaces, one obtains the exact solution in expec-
tation, i.e., error is due purely to variance in the Monte Carlo
estimator, and can be reduced by simply taking more samples.
Adaptivity. Adaptive sampling akin to radiance caching [Ward
et al. 1988] significantly reduces cost in smooth regions; pro-
gressive sampling enables rapid previews of PDE solutions.
Output Sensitivity. The solution can be evaluated at points
or regions of interest (e.g., a small window or a slice plane),
without having to first perform a global solve.
Compatibility. Monte Carlo methods fit easily into the stan-
dard geometry processing pipeline, since they can be used as
“black box” solvers that return reliable and accurate solution
values at any given query point (e.g., at mesh vertices).

ACM Trans. Graph., Vol. 39, No. 4, Article 123. Publication date: July 2020.
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Monte Carlo Geometry Processing;:

A Grid-Free Approach to PDE-Based Methods on Volumetric Domains
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Fig. 1. Real-world geometry has not only rich surface detail (left) but also intricate internal structure (center). On such domains, FEM-based geometric
algorithms struggle to mesh, setup, and solve PDEs—in this case taking more than 14 hours and 30GB of memory just for a basic Poisson equation. Our Monte
Carlo solver uses about 1GB of memory and takes less than a minute to provide a preview (center right) that can then be progressively refined (far right).
[Boundary mesh of Fijian strumigenys FJ13 used courtesy of the Economo Lab at OIST.]

This paper explores how core problems in PDE-based geometry processing
can be efficiently and reliably solved via grid-free Monte Carlo methods.
Modern geometric algorithms often need to solve Poisson-like equations on
geometrically intricate domains. Conventional methods most often mesh
the domain, which is both challenging and expensive for geometry with
fine details or imperfections (holes, self-intersections, etc.). In contrast, grid-
free Monte Carlo methods avoid mesh generation entirely, and instead just
evaluate closest point queries. They hence do not discretize space, time,
nor even function spaces, and provide the exact solution (in expectation)
even on extremely challenging models. More broadly, they share many
benefits with Monte Carlo methods from photorealistic rendering: excellent
scaling, trivial parallel implementation, view-dependent evaluation, and the
ability to work with any kind of geometry (including implicit or procedural
descriptions). We develop a complete “black box” solver that encompasses
integration, variance reduction, and visualization, and explore how it can be
used for various geometry processing tasks. In particular, we consider several
fundamental linear elliptic PDEs with constant coefficients on solid regions
of R™. Overall we find that Monte Carlo methods significantly broaden the
horizons of geometry processing, since they easily handle problems of size
and complexity that are essentially hopeless for conventional methods.

CCS Concepts: « Computing methodologies — Shape analysis.
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1 INTRODUCTION

The complexity of geometric models has increased dramatically in
recent years, but is still far from matching the complexity found in
nature—consider, for instance, detailed microstructures that give
rise to physical or biological behavior (Fig. 1). PDE-based methods
provide powerful tools for processing and analyzing such data, but
have not yet reached a point where algorithms “just work”: even
basic tasks still entail careful preprocessing or parameter tuning, and
robust algorithms can exhibit poor scaling in time or memory. Monte
Carlo methods provide new opportunities for geometry processing,
making a sharp break with traditional finite element methods (FEM).
In particular, by avoiding the daunting challenge of mesh generation
they offer a framework that is highly scalable, parallelizable, and
numerically robust, and significantly expands the kind of geometry
that can be used in PDE-based algorithms.

Photorealistic rendering experienced an analogous development
around the 1990s: finite element radiosity [Goral et al. 1984] gave
way to Monte Carlo integration of the light transport equation [Ka-
jiya 1986], for reasons that are nicely summarized by Wann Jensen
[2001, Chapter 1]. Although this shift was motivated in part by a
desire for more complex illumination, it has also made it possible
to work with scenes of extreme geometric complexity—modern ren-
derers handle trillions of effective polygons [Georgiev et al. 2018]
and, in stark contrast to FEM, yield high-quality results even for

ACM Trans. Graph., Vol. 39, No. 4, Article 123. Publication date: July 2020.
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Fig. 3. The walk on spheres algorithm repeatedly jumps to a random point
on the largest sphere centered at the current point x;, until it gets within £
of the boundary. Since the largest sphere can be determined from a simple
closest point query, no spatial discretization is needed.

is equal to the expected value of the Monte Carlo estimator

N
Fy = 1015 Y fX), Xi ~U@) (1)
i=1

where N is any positive integer, and X; ~ U/(Q) indicates that X; are
independent random samples drawn from the uniform distribution
on Q. The error of Fy is characterized by its variance: its expected
(squared) deviation from the true value I.

Importance Sampling. More generally, let p be any probability
distribution on Q that is nonzero on the support of f. Then the
integral of f is equal to the expected value of the estimator

N 2
L w Xi ~p. (2)

Typically, p is chosen to reduce the variance of the estimate by
focusing on “important” features in the integrand [Pharr et al. 2016,
Section 13.10]. For simplicity, our initial discussion considers only
the basic Monte Carlo estimator (Eqn. 1); importance sampling
strategies are discussed in Sec. 4.2.

2.1.3 PDE Estimation. The solution to a linear elliptic PDE can
be expressed as a linear combination of contributions from the
boundary term and the source term. Estimation of these two terms
is well-illustrated via the Laplace equation (Sec. 2.2) and Poisson
equation (Sec. 2.3), resp. One can then build on these estimators
to solve other common equations such as the screened Poisson
(Sec. 2.4) and biharmonic equations (Sec. 2.5).

2.2 Laplace Equation

Laplace equations are commonly used to interpolate given boundary
data g : 9Q — R (encoding, e.g., color or deformation) over the
interior of the domain. The solution u satisfies the PDE

Au=0 onQ, 3)
u=g ondQ.

These so-called harmonic functions have two important charac-
terizations, which are illustrated in Fig. 4:

ACM Trans. Graph., Vol. 39, No. 4, Article 123. Publication date: July 2020.




Contribution: Bridge between PDEs & Volume Rendering
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Spatial heterogeneity is everywhere!
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Spatial heterogeneity is everywhere!
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Shortcoming of conventional PDE solvers

Spatial discretization: expensive and error-prone

finite difference
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Shortcoming of conventional PDE solvers

Spatial discretization: destroys geometric features

34 minutes / 6.1 GB RAM to generate

o
boundary mesh (input) FEM mesh (missing blood vessels)
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Shortcoming of conventional PDE solvers

Spatial discretization: causes aliasing in the PDE inputs and solution

FEM requires significant mesh refinement to match reference
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Monte Carlo Rendering

Does not require high quality meshing & solving global systems

Ray intersection query
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Monte Carlo Rendering

Photorealistic image generation of participating and granular media
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The walk on spheres (WoS) algorithm [Muller 1956]

Does not require high quality meshing & solving global systems
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The walk on spheres (WoS) algorithm [Muller 1956]

Does not require high quality meshing & solving global systems
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The walk on spheres (WoS) algorithm [Muller 1956]

Does not require high quality meshing & solving global systems
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Multi-material physical simulation in graphics

Examples from:
Han et al, “A Hybrid Material Point Method for Frictional Contact with Diverse Materials” (2019)
Zhu et al, “Codimensional Non-Newtonian Fluids” (2015) 17
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The walk on spheres (WoS) algorithm [Muller 1956]

Goal: extend to broader class of problems = PDEs with variable coefficients

18
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A tale of three equations...

differential

{ equatlons \

Integral stochastic

U(x) = — / u(y) dy / ) f(y) dy / W) dt + g(W; ’1"':' — A
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2nd order linear elliptic PDEs

diffusion drift absorption source domain

V-(eaVu)+w-Vu—ou = —f on Q

= g on 0€2
domain
boundary boundary

solution valinag



2nd order linear elliptic PDEs

Laplace equation
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2nd order linear elliptic PDEs

Poisson equation

SOUrcCeE

term f(x)
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2nd order linear elliptic PDEs

variable diffusion Poisson equation
1 0

diffusion
coeft. a(x)




2nd order linear elliptic PDEs

stationary advection-diffusion equation

transport
coeff. w(x)
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2nd order linear elliptic PDEs

screened Poisson equation
10 o

absorption
coeff. o(x)
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2nd order linear elliptic PDEs
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boundary source diffusion transport absorption
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Integral for Laplace equation

mean value property

solution solution
(unknown!) 1 (unknown!)
X)) = u(y) dy
\GB(x)l 0B(x)
volume of ball around

bounding sphere  point x
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Integral for Laplace equation

mean value property

solution solution
(unknown 1 (unknown!)

U= BE@) Js ) Y

volume of ball around ;
bounding sphere  point x
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Integral for Laplace equation

mean value property

basis for WoS!

solution solution
(unknown 1 (unknown!)

R e

volnme of ball around ;
bounding sphere point x
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Integral for Laplace equation

mean value property

Solutlon solution
(unknown 1 (unknown!)

U= BE@) Js ) Y

volume of ball around ;
bounding sphere  point x

29



Integral for screened Poisson equation (constant absorption)

screened Poisson — PDE

diffusion absorption source term

B — ocu = Bl on (2

solution Y = g on 6Q
screened Poisson — |E
source
term solution
ux) = [ f@OTwwdy+ [ u@P(z)dz
solution ¥ B(¢) Green's dB(c) Poisson
ball function kernel

containing x
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Integral for screened Poisson equation (constant absorption)

screened Poisson — PDE

diffusion absorption source term

B — ocu = Bl on (2
g on 0

solution Y

screened Poisson — |E
WoS: sample f inside each ball

source
term solution
u(x) = f(y)G® (x,y) dy + / u(z)P°(x,z) dz
solution ¥ B(¢) Green's dB(c) Poisson
ball function kernel

containing x

30



A tale of three equations...

differential
equations

[ g on 0¢)

integra Stochastic

U(x) = — / u(y) dy - / (y) dy / f(Wy)dt +g(W;) | Wy = x
()/3)(\ l J I B(x) . : J B(x) o ) .




Ordinary ditferential equation (ODE)

DETERMINISTIC
MOTION

dXt — CT)(Xt) dt

® trajectory (X;)
drift direction ()




Ordinary ditferential equation (ODE)
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Stochastic differential equation (SDE)

BROWNIAN MOTION

e dXt — th

® trajectory (X;)




Stochastic differential equation (SDE)

BROWNIAN MOTION

e dXt — th

® trajectory (X;)




Stochastic differential equation (SDE)

BROWNIAN MOTION
WITH DRIFT
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® trajectory (X;)
drift direction ()




Stochastic differential equation (SDE)
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drift direction ()




Stochastic differential equation (SDE)

BROWNIAN MOTION
WITH VARIABLE SCALE
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® trajectory (X;)

diffusivity (o)




Stochastic differential equation (SDE)

BROWNIAN MOTION
WITH VARIABLE SCALE
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® trajectory (X;)

diffusivity (o)




Stochastic differential equation (SDE)

BROWNIAN MOTION
. IN ABSORBING MEDIUM

. dXt — th
I ® trajectory (X;)

W absorption (o)
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Stochastic differential equation (SDE)

BROWNIAN MOTION
. IN ABSORBING MEDIUM
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Feynman-Kac formula

time to reach

boundary random
absorption —
) = | [ ek o0 o) dr e e XDdtgex,
solution 0 source boundary
values
random Brownian
walk motion
of dX; = O(X;)dt + \a(X;) dW;
X = diffusion

rate
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Special case: Kakutani’s principle

u(x) = E[u(W),)]




Special case: Kakutani's principle

u(x) = E[u(W),)]
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Special case: Kakutani's principle

E[u(W,)]

— d
0B(x)| J P
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Special case: Kakutani's principle

E[u(W,)]

— d
0B(x)| J P

:' . ‘; WoS simulates Brownian motion efficiently!
\ x\
O

‘_--_—
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Feynman-Kac formula

time to reach

boundary random
absorption —
) = | [ ek o0 o) dr e e XDdtgex,
solution 0 source boundary
values
random Brownian
walk motion
of dX; = O(X;)dt + \a(X;) dW;
X = diffusion

rate
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Next: recursive integral equation for variable coefficients

variable-
coefficient
PDE /\
constant recursive
coefficient IE
recursive
PDE
Monte Carlo

estimator

40



Method



WoS for PDEs with source terms

E.g., Au = f(x); sample the spatially-varying source f inside each ball




Transformations

Variable coefficient V.-(aVu)+ o -Vu—ocu=-—f



Transformations

Variable coefficient V.-(aVu)+ o -Vu—ocu=-—f

Girsanov & delta tracking
transformations
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Constant coefficient Au—ocu=fxa w,o,u)

(No approximation!) I
constant
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Transformations

Variable coefficient V.-(aVu)+ o -Vu—ocu=-—f

Girsanov & delta tracking
transformations
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constant
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Transformations

Variable coefficient V.-(aVu)+ o -Vu—ocu=-—f

Girsanov & delta tracking
transformations

Constant coefficient Au— 6 u=|f(x,a, @, o, u)—recurse

(No approximation!) I
constant ! !

Integral J fo,a, @,0,u) G°(x,y) dy + j u(z) P°(x,z) dz
B(x) 0B(x)
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Transformation 1: Girsanov

Re-express Feynman Kac in terms of Brownian motion

T

u(x) = E [ e~ loe W) ds (W) dr + e~looW)d g(W)
0



Transformation 1: Girsanov

Re-express Feynman Kac in terms of Brownian motion

i
u(x) = E || e b & qwy dr + e~ looWdt g(w)
0
dX, = o(X) dt + /a(X) dW, dX, = dWw,

diffusion transport screening
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Volume Rendering Equation (VRE)

VRE describes the radiance in heterogeneous absorbing & scattering media

d
Liw, @) = J e~ oot ds flx, ®) dt + e~ oot di g(x,, @)
0

O
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Structural connection between VRE & Feynman-Kac

B 3 o -
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e(xtaw) S(xtvw) g(xda 6()) x =X < -
=
= (U
f(xt’ a))
9(Xz)
d t d ¢ t T
Lw, @) = J e~ looWx) ds flx,, w) dt + e Jootw)d g(x, ) u(x) = E J' e~ looWy) ds fW) dt + e~ JooW) di g(W)
0 0
VRE describes the radiance in heterogeneous Feynman-Kac for 2nd order

absorbing & scattering media variable coefficient PDEs
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Transformation 2: Delta tracking

Variable coefficient u(x) = E “ e~ looW) ds qwy dr + e~ looWo dr g(WT)]
Ry
Constant coefficient u(x) = F U e~ f(W,o,u) dt + e " g(WT)]
0

(No approximation!)



Transformation 2: Delta tracking

Variable coefficient u(x) = E “ e~ oW) ds qwy dr + e~ oW di g(WT)]

Constant coefficient  u(x) = E U o,u)|dt + e~ g(WT)]

(No approximation!) recuTrsive
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Transformation 2: Delta tracking

Variable coefficient u(x) = E “ e~ oW) ds qwy dr + e~ oW di g(WT)]

Constantcosficent s = [~z + o7 )

(No approximation!) recursive constant
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Transformation 2: Delta tracking

Variable coefficient u(x) = E “ e~ oW) ds qwy dr + e~ oW di g(WT)]
0
Constant coefficient  u(x) = E U e~ f(W,,0,u)dt + e g(WT)]
(No approximation!) ’ recuTrsive constant

Ql




Delta tracking variant of WoS

0Q,

o null event

WoS delta tracking

scattering event

delta tracking method in volL

N

me rendering

[Woodcock et al., 1965, Raa

o et al. 2008]
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Next-tlight variant of WoS

WoS next-flight
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Next-tlight variant of WoS

Next-tflight algorithm in volume rendering

W -tligh
oS next-tlight [Cramer 1978]
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Next-tlight variant of WoS

Next-tflight algorithm in volume rendering

W -tligh
oS next-tlight [Cramer 1978]

Fewer distance queries higher correlation compared to delta tracking WoS
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Next-tlight variant of WoS

Next-tflight algorithm in volume rendering

WoS next-tlight Cramer 1978]
Fewer distance queries higher correlation compared to delta tracking WoS

Similar variance & run-time characteristics as volume rendering counterparts
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Weight window [Hoogenboom and Légrady 2005]

Uses splitting and Russian roulette to reduce noise

diffusion delta tracking with weight
coefficient (250 walks/point) window [0.5, 1.5]

d

eltq traCk,’
L1 100 - N
> w
02 10-1;

a (x)

102

reference

103
walks/point -



Implementation & Results



PDE inputs

diffusion drift absorption source domain

V-(eaVu)+w-Vu—ou = —f on Q

= g on 0€2
domain
boundary boundary

solution el
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Acceleration of closest point queries

Accelerate closest point queries using BVH

J
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i ‘ V7 S | eﬁ'ﬁ'ﬁ"; SANK [ T i =
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: 3 ARSI |/ | /| 2
7z M RN LY VL / I /1 A L
“ ) 'é' A o 7 /7 |/ T
Y LA . (| %P : =
: ‘ ﬁs’r‘:l =i
— J » e ———
- 7» ) ‘éj“: — e ———— A0

— \"'ﬂ' ——

input mesh w/ FASTTETWILD build BVH for WoS
(Thingi10k #996816) 1 hour 25 minutes < 1 second
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Acceleration of closest point queries

Accelerate closest point queries using BVH
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input mesh w/ FASTTETWILD build BVH for WoS
(Thingi10k #996816) 1 hour 25 minutes < 1 second

Unlike bad meshes, BVHs do not impact correctness/accuracy of PDE solution!
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Interactive editing

edit 1: geometry & boundary data edit 2: PDE coefticients

solution

Ay,

wait (5s)

o4






EFnd-to-end cost of conventional PDE solvers

cleanup, remeshing, etc.

tetrahedralization

%

SIS
=
AWzl

S
N
AN

NNVN
%&'ﬂ

AN

Input boundary representation

FEM Solve

T
K

A
e
K

¢
X

AN

NN
AVAN

N\
S

Refined surface mesh

Refined volume mesh

Finite Element Method (FEM) Pipeline S PDE solution ™
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EFnd-to-end cost of conventional PDE solvers

cleanup, remeshing, etc.

tetrahedralization

<

%

A\

AN,
N/

AW,
N

N
AN

B
Y SOSTAVZAARTS,

Input boundary representation

FEM Solve

T
K

N

W
SN
AN

A

4
N

N/

il =

SNON

PDE solution

Finite Element Method (FEM) Pipeline
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Conventional PDE solvers can be brittle

Poor mesh quality completely throws oft FEM solution

FEM solution Reference solution

Source: Sharp and Crane, A Laplacian for Nonmanifold Triangle Meshes 57



Comparison with conventional solvers

The boundary element method (BEM) does not require volumetric meshing

58



Comparison with conventional solvers

The boundary element method (BEM) does not require volumetric meshing

BEM does not support problems with source terms or variable coefficients
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Comparison with conventional solvers

Meshless FEM solvers also do not require a volume mesh
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Comparison with conventional solvers

Meshless FEM solvers also do not require a volume mesh

® Require dense sampling of

the domain
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Comparison with conventional solvers

Meshless FEM solvers also do not require a volume mesh

® Require dense sampling of - '
the domain

~5x more fill
relative to FEM

® Require solving large
inear systems

Typical FEM sparse matrix

Typical Meshless FEM sparse matrix
(~25k vertices after reordering)

(~25k nodes after reordering) 59



Meshless FEM is unreliable

Solvers have unpredictable convergence under refinement

Meshless FEM (Weighted Least Squares)
~100,000,000,000,000x *

3 |
105- P R BRSNS SNSRI L el T
' | ' / . “d \ o - ‘ o

108

i " - " »”
- e
-

= i
10—4_ —— Basis order 1
—— Basis order 2 |

¥ NaNs in the solution

— —— - - - -
1071 6x107¢ 4x107°3x107% 2x107°
node spacing h

e — —

Reduction in 12 error
=
o
-

- ‘ -
»
- .
0( » o~
y
|

Tested on 10k models from the Thingi10k dataset 60



Meshless FEM is unreliable

Solvers have unpredictable convergence under refinement

{\gseshless FEM (RBF-FD w. polynomial augmentation)

~100,000,000x |
105_

Reduction in 12 error

—— Basis order 1
- Basis order 2

' . - L . : . : .
1071 6 x 1072 4%x107% 3%x107° 2 x 1072
nhode spacing h

Tested on 10k models from the Thingi10k dataset o1



Meshless FEM is unreliable

Walk on spheres converges predictably
WoS (delta tracking)

10%

~2X

Reduction in RMSE

N

x 10~ L

# walks n
Tested on 10k models from the Thingi10k dataset 62



Stopping tolerance €

Introduces minimal bias and has little impact on performance
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Stopping tolerance €

Introduces minimal bias and has little impact on performance

steps/walk: 1.00

63



Discretized random walks

Explicit time stepping of diffusion process: X, | = X + @(X}) h ++/a(X}) (W, — W)
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Discretized random walks

Explicit time stepping of diffusion process: X, | = X + @(X}) h ++/a(X}) (W, — W)

Discretized walks can leave
the domain, biasing estimates

64



Discretized random walks

Explicit time stepping of diffusion process: X, | = X + @(X}) h ++/a(X}) (W, — W)

ground truth e=0.01 e =0.001 e =0.0001

delta tracking

h=0.01 h=0.001 h =0.0001

diffusion coefficient «

discretized walks

0.0001
0.001

= 0.01

€
€
€
——=- h=0.0001
\ h = 0.001
h

= 0.01

Discretized walks can leave
the domain, biasing estimates

64



No spatial aliasing

Monte Carlo decouples boundary conditions/coefficients from geometry

Monte Carlo
(WoS)

FEM

Meshless FEM
(RBF-FD)

L g
Boundary data and .~ 4 )
screening coefficient _ . refinement 65




No spatial aliasing

Monte Carlo decouples boundary conditions/coefficients from geometry

Monte Carlo
(WoS)

FEM

Meshless FEM
(RBF-FD)

Boundary data and [ 4 Wie _AY
screening coefficient _ _ . refinement o




No spatial aliasing

Monte Carlo decouples boundary conditions/coefficients from geometry

Monte Carlo
(WoS)

FEM

Meshless FEM
(RBF-FD)

Boundary data and [ 4 Wie _AY
screening coefficient _ _ . refinement o




Physical analysis of complex geometry & materials

No homogenization of PDE coefficients!

constant coefficients spatially-varying coefficients (ours)




Example application: variable coefticient diffusion curves

Additional control over sharp details

boundary (g) source (f) diffusion («) absorption (o)

[ @ G
WA

Variable
Coefficients

scalar scalar

variable
coefficients

constant
coefficients

67/



Example application: diffusion curves on surtaces

Use variable coeffs on flat domains to model constant coeffs on curved domains

68



Example application: subsurface scattering

Easy to mix volumetric path tracing (VPT) and walk on spheres (WoS)

2x107"
70 -
107'- Z
2] h)’brid a
6x10 2 (Oury)
_2_ .
410 °" medium lookups
10° 2x10° 3x10°  4x10°
converged

VPT hybrid

Hybrid strategy : VPT near boundary, WoS deeper inside volume
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| imitations & Future Work



High variance due to large spatial variation

diffusion delta tracking
coefficient (250 walks/point)

e
reference

/1



High variance due to large spatial variation

diffusion delta tracking
coefficient (250 walks/point)

e
reference

Future: local coeftficient bounds, low-variance VRE estimators, adaptive weight window

/1



Future: support for important features

Neumann & Robin boundary conditions

Anisotropic diffusion coefficients

Non-linear PDEs

High pertformance distance queries

Differentiable implementation

/2



The promise of grid-tfree Monte Carlo

DISCRETIZATION-FREE

VISUALIZE
"~ (local)

eliminate major bottleneck

accelerate design cycle

orid-free
Monte Carlo
MopeL methods

ANALYZE| avoid approximation error
(local)

improve reliability/robustness

focus computation only
where it’s needed

/3
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