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Fig. 1. Distribution of heat (inset) radiating from infinitely many blackbodies—about 600M effective boundary vertices are visible from this viewpoint alone.
(Here we visualize a 2D slice of the full 3D solution.) Our Monte Carlo PDE solver directly captures fine geometric detail and intricate spatially varying
coefficients without meshing, sampling, or homogenizing the 3D domain, by building on techniques from volumetric rendering.

Partial differential equations (PDEs) with spatially varying coefficients arise
throughout science and engineering, modeling rich heterogeneous material
behavior. Yet conventional PDE solvers struggle with the immense complex-
ity found in nature, since they must first discretize the problem—leading to
spatial aliasing, and global meshing/sampling that is costly and error-prone.
We describe a method that approximates neither the domain geometry, the
problem data, nor the solution space, providing the exact solution (in expec-
tation) even for problems with extremely detailed geometry and intricate
coefficients. Our main contribution is to extend the walk on spheres (WoS)
algorithm from constant- to variable-coefficient problems, by drawing on
techniques from volumetric rendering. In particular, an approach inspired
by null-scattering yields unbiased Monte Carlo estimators for a large class of
2nd order elliptic PDEs, which share many attractive features with Monte
Carlo rendering: no meshing, trivial parallelism, and the ability to evaluate
the solution at any point without solving a global system of equations.

CCS Concepts: • Mathematics of computing → Partial differential
equations.

Additional KeyWords and Phrases: integral equations, Monte Carlo methods

∗and † indicate equal contribution.

Authors’ addresses: Rohan Sawhney, rohansawhney@cs.cmu.edu, Carnegie Mellon
University, USA; Dario Seyb, dario.r.seyb.gr@dartmouth.edu, Dartmouth College, USA;
Wojciech Jarosz, wojciech.k.jarosz@dartmouth.edu, Dartmouth College, USA; Keenan
Crane, kmcrane@cs.cmu.edu, Carnegie Mellon University, USA.

© 2022 Copyright held by the owner/author(s).
This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in ACM Transactions on
Graphics, https://doi.org/10.1145/3528223.3530134.

ACM Reference Format:
Rohan Sawhney, Dario Seyb, Wojciech Jarosz, and Keenan Crane. 2022. Grid-
Free Monte Carlo for PDEs with Spatially Varying Coefficients. ACM Trans.
Graph. 41, 4, Article 53 (July 2022), 17 pages. https://doi.org/10.1145/3528223.
3530134

1 INTRODUCTION
PDEs with spatially varying coefficients describe a rich variety of
phenomena. In thermodynamics, for example, variable coefficients
model how heterogeneous composite materials conduct or insulate
heat. Much as early algorithms for photorealistic rendering were mo-
tivated by predictive lighting design [Ward and Shakespeare 1998],
such models can be used to predict and improve thermal efficiency
in building design [Zalewski et al. 2010]. Likewise, variable per-
mittivity in electrostatics impacts the design of antennas [Ozdemir
2005] and the simulation of biomolecules [Fahrenberger et al. 2014];
in hydrology, variable transmissivity of water through soil impacts
remediation strategies for groundwater pollution [Willmann et al.
2010]. More directly connected to our work, variable coefficients
in the light transport equation are used to model heterogeneity in
participating media [Novák et al. 2018]. Beyond spatially varying
materials, variable coefficients can also be used to model curved
geometry by using PDE coefficients on a flat domain to encode an
alternative Riemannian metric (see Sec. 6.5).
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Fig. 2. We directly resolve the detailed effects of, e.g., spatially varying
material density—without resorting to homogenization of PDE coefficients.

Our method computes the exact solution (in expectation) to 2nd
order linear elliptic equations of the form

∇ · (𝛼∇𝑢) + ®𝜔 · ∇𝑢 − 𝜎𝑢 = −𝑓 on Ω,
𝑢 = 𝑔 on 𝜕Ω.

(1)

Here Ω is a region in R𝑛 , 𝛼 : Ω → R>0 and ®𝜔 : Ω → R𝑛 are a
twice-differentiable function and a vector field expressible as the
gradient of a scalar field (resp.), and 𝜎 : Ω → R≥0 is continuous
(𝐶0). These conditions are sufficient to ensure ellipticity. The source
term 𝑓 : Ω → R and boundary values 𝑔 : 𝜕Ω → R need not
be continuous. Figure 5 illustrates the effect of each term on the
solution 𝑢; see Sec. 2.2 for further background on PDEs. Note that
unlike methods for numerical homogenization [Desbrun et al. 2013],
we aim to directly resolve the original, detailed solution (Fig. 2).

Though many methods consider such PDEs, they all suffer from
a common problem: the need to spatially discretize (e.g., mesh or
point-sample) the domain interior. Even so-called meshless methods
(MFEM) must carefully distribute interior nodes (Fig. 4); boundary
element methods (BEM)must be integrated with volumetric methods
to handle interior terms (see Sec. 7). For problems with intricate
geometry, discretization is hence a major burden on designers, scien-
tists, and engineers: even state-of-the-art methods are error-prone,
can take hours of preprocessing, and can destroy application-critical
features due to spatial aliasing (Fig. 3). Such problems are further
compounded by variable coefficients, since now the discretization

Fig. 3. Top: The bottleneck in conventional methods is often not the solve
itself, but rather the cost of meshing (here, via Hu et al. [2020]). As in
rendering, WoS need only build a simple bounding volume hierarchy (BVH).
Bottom: Conventional methods also sacrifice spatial detail—here destroying
key features like blood vessels. Figures from Sawhney and Crane [2020].

Fig. 4. So-called “meshless” methods still perform a process akin to global
meshing, which can result in spatial aliasing of fine features. One ends up
with a mesh-like structure which must satisfy stringent sampling criteria to
avoid numerical blowup, and must still solve a large globally coupled linear
system. (Figure adapted from [Pauly et al. 2005, Figure 6].)

must also be carefully adapted to regions where coefficients ex-
hibit fine detail (Fig. 23). Moreover, meshing algorithms (and code)
for spatially-varying PDEs lag far behind technology for constant-
coefficient problems [Alauzet and Loseille 2016].
Overall, these challenges make it difficult (if not impossible) to

analyze large, heterogeneous systems (as in Fig. 1) which commonly
arise in real applications—say, directly analyzing a building informa-
tion model (BIM) that includes heating ducts, plumbing, insulation,
etc., rather than a simplified geometric proxy. Yet scenes of this
size and complexity are commonplace in rendering. Why such a big
gap between our ability to visualize and analyze complex scenes?
A major reason is rendering has moved away from methods like
finite element radiosity [Cohen andWallace 1993] and toward Monte
Carlo methods—both to handle more intricate light transport phe-
nomena and to avoid difficult meshing problems [Christensen and
Jarosz 2016; Jensen 2001, Chapter 1]. For PDEs however, Monte
Carlo techniques have received comparatively little attention.
Grid-free Monte Carlo methods solve PDEs without discretizing

the problem domain, nor the space of functions used to represent
the solution. The starting point is the walk on spheres (WoS) method
of Muller [1956], which uses a recursive integral formulation akin
to the classic rendering equation [Kajiya 1986]. This approach side-
steps many challenges faced by conventional solvers: it can evaluate
the solution at any point without solving a global system, is trivial
to parallelize, and works directly with any boundary representation
(implicit surfaces, spline patches, etc.), including coarse or low-
quality meshes unsuitable for finite-element analysis. Following
Sawhney and Crane [2020], recent work in computer graphics ex-
plores how to generalize and accelerateWoS, by drawing inspiration
from geometry processing and Monte Carlo rendering [Krayer and
Müller 2021; Marschner et al. 2021; Mossberg 2021; Nabizadeh et al.
2021]. To date, however, WoS still handles only a small class of
constant-coefficient PDEs, limiting its use in applications.

1.1 Contributions
We generalize WoS to a large set of variable-coefficient PDEs, by
establishing a link with recent null-scattering techniques for ren-
dering heterogeneous participating media [Novák et al. 2018]. To
our knowledge, there is no other way to solve such PDEs without
discretizing space—whether by previous WoS methods, or any other
means. Our method is appropriate for finding the steady-state so-
lution for a diffusive process (in contrast to, say, the dynamics of
large scale deformations). Specifically, we provide:
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• A novel integral formulation of variable-coefficient 2nd order
linear elliptic PDEs that makes them amenable to grid-free
Monte Carlo methods.

• EfficientWoS algorithms inspired by the delta tracking [Wood-
cock et al. 1965] and next-flight [Cramer 1978] methods from
volume rendering.

• A variance reduction strategy that significantly reduces noise
in problems with high-frequency coefficients, based onweight
windows from neutron transport.

In the process, we obtain a precise mathematical picture of the
relationship between diffusive variable-coefficient PDEs and het-
erogeneous participating media. Since we transform the original
problem into a constant-coefficient PDE with a variable source term,
we get the usual convergence guarantee for WoS algorithms: the
variance of an 𝑁 -sample estimate decreases at a rate 1/𝑁 , with
a negligible amount of bias due to the 𝜀-shell (see [Sawhney and
Crane 2020, Section 6.1]). Numerical experiments on several thou-
sand models empirically verify convergence behavior (see Figs. 16,
17, 24 and 28). A implementation of our method in both C++ and
detailed pseudocode can be found in the supplemental material.

Limitations. WoS is an emerging class of methods that does not
yet support all the features of more mature methods such as FEM—
for example, it is still not known how to handle general Neumann
or Robin boundary conditions (as needed in, e.g., linear elasticity).
These questions are largely orthogonal to the issues addressed here,
and are left as future work (see Sec. 8 for further discussion).

2 BACKGROUND
The derivation of our method depends on concepts from PDE theory,
the theory of integral equations, stochastic calculus, and volumetric
rendering. Since we expect few readers will be familiar with all these
topics, we provide essential background here. Sec. 3 then describes
the basic WoS algorithm, which is the starting point for our variable-
coefficient algorithm in Sec. 4. For a gentler introduction to WoS,
see Sawhney and Crane [2020, Section 2].

2.1 Notation
For any region 𝐴 ⊂ R𝑛 , we use |𝐴| to denote its volume and 𝜕𝐴 for
its boundary. For a point 𝑥 ∈ 𝐴, 𝑥 denotes the point closest to 𝑥 on
the boundary 𝜕𝐴. Throughout, Ω ⊂ R𝑛 is the domain of interest,
𝐵(𝑥) ⊂ Ω is a ball centered on 𝑥 , and 𝜕Ω𝜀 B {𝑥 ∈ Ω : |𝑥 − 𝑥 | < 𝜀}
is an epsilon shell around 𝜕Ω. We use ®𝑢 to denote a vector field on
R𝑛 , and ∇ and ∇· for the gradient and divergence operators (resp.),
so that Δ B ∇ · ∇ is the negative-semidefinite Laplacian. We use
U to denote the uniform distribution on [0, 1] ⊂ R, N(𝑥, 𝑣) for the
𝑛-dimensional normal distribution with mean 𝑥 and variance 𝑣 , and
E[𝑋 ] for the expected value of a random variable 𝑋 .

2.2 Differential Equations
A partial differential equation (PDE) describes a function𝑢 implicitly,
via relationships between partial derivatives in space. One must ulti-
mately solve for an explicit function satisfying this equation—which
is the raison d’être for numerical PDE solvers. Here we describe the
terms in our main PDE (Eq. 1), which are also visualized in Fig. 5.

Fig. 5. Effect of each term of our main PDE (Eq. 1) on the solution.

A standard PDE is the Laplace equation Δ𝑢 = 0, which describes
the steady-state of a diffusion process, i.e., the way heat diffuses
smoothly from the domain boundary into the interior. Like Eq. 1,
the Laplace equation is 2nd order in space since it involves spatial
derivatives no higher than degree two; it is linear since it is a linear
polynomial equation with respect to the function and its derivatives.

Boundary conditions. We primarily consider Dirichlet conditions,
which fix the solution at points where the value of 𝑢 is known (e.g.,
the temperature on the boundary). For instance, a Laplace equation
with Dirichlet boundary conditions has the form

Δ𝑢 (𝑥) = 0 on Ω,
𝑢 (𝑥) = 𝑔(𝑥) on 𝜕Ω,

(2)

where 𝑔 : 𝜕Ω → R is a given function. Neumann conditions instead
specify derivatives (e.g., heat flow through the boundary). Though
our final algorithms handle only Dirichlet conditions, the transfor-
mations in Sec. 4 make no assumptions about the type of boundary
conditions—and could in principle be applied to Neumann problems.

Source term. Continuing with the heat analogy, a source term
𝑓 : Ω → R adds additional “background temperature” to a PDE. For
instance, a Poisson equation has the form

Δ𝑢 (𝑥) = −𝑓 (𝑥) on Ω (3)
subject to, e.g., Dirichlet or Neumann boundary conditions.

Diffusion coefficient. The rate of diffusion in a spatially-varying
medium is modeled by replacing Δ with the operator ∇ · (𝛼 (𝑥)∇),
where 𝛼 : Ω → R>0 is the diffusion coefficient (Fig. 5, center).

Absorption. An absorption (or screening) coefficient 𝜎 : Ω → R
models “cooling” of the solution due to the background medium;
positive/negative coefficients dampen/magnify the solution, resp.
E.g., a screened Poisson equation, seen in Fig. 5, far right, is given by

Δ𝑢 (𝑥) − 𝜎 (𝑥)𝑢 (𝑥) = −𝑓 (𝑥) on Ω, (4)
again subject to boundary conditions.

Drift. Finally, a drift coefficient, given by a vector field ®𝜔 : Ω →
R𝑛 , models the motion of a material in a particular direction. For
instance, the steady-state advection equation ®𝜔 (𝑥) · ∇𝑢 (𝑥) = 0 de-
scribes a quantity 𝑢 that is unchanged as it flows along ®𝜔 ; adding
this term to a Poisson equation causes heat to drift as it diffuses.
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2.3 Integral Equations
One can often reformulate elliptic PDEs, such as the equations
from the previous section, as recursive integral equations—akin to
the classic rendering equation [Kajiya 1986]. As in rendering, such
equations can be solved without discretizing space, by recursively
applying Monte Carlo integration (as will be discussed in Sec. 3).

Boundary conditions. Our starting point is the mean value princi-
ple, which says that at each point 𝑥 ∈ Ω, the solution 𝑢 to a Laplace
equation (Eq. 2) equals its mean value over any sphere around 𝑥 :

𝑢 (𝑥) = 1
|𝜕𝐵(𝑥) |

∫
𝜕𝐵 (𝑥)

𝑢 (𝑧) d𝑧. (5)

Notice that Eq. 5 is recursive: the value of 𝑢 at 𝑥 depends on (un-
known) values at other points 𝑧. The “base case” is effectively pro-
vided by the (known) boundary values 𝑔(𝑥)—see especially Eq. 19.

Source term. For a PDE with a source term 𝑓 , such as the Poisson
equation (Eq. 3), the integral representation of 𝑢 gains a term∫

𝐵 (𝑥)
𝑓 (𝑦) 𝐺 (𝑥,𝑦) d𝑦, (6)

where 𝐺 (𝑥,𝑦) is the Green’s function for the PDE. In general, for a
linear PDE 𝐿𝑢 = 𝑓 , the Green’s function𝐺 satisfies 𝐿𝐺 = 𝛿 , where 𝛿
is a Dirac delta. When 𝐿 is the Laplacian Δ,𝐺 is called the harmonic
Green’s function, and describes a source 𝑓 with a single “spike” of
heat. Importantly, the Green’s function depends on the shape of
the domain Ω: it will be different for, e.g., a ball versus all of R𝑛 .
This representation is attractive because many common Green’s
functions are known in closed form (see Sec. 1 of the supplement).

Constant diffusion, absorption, and drift. For a constant diffusion
coefficient 𝛼 ∈ R, the Green’s function𝐺 simply scales by a factor 𝛼 .
Adding an absorption term 𝜎𝑢 (𝑥) with constant coefficient 𝜎 ∈ R
replaces the harmonic Green’s function with the Yukawa potential
𝐺𝜎 (Fig. 6), given explicitly in the supplement. Finally, drift along a
constant direction ®𝜔 ∈ R𝑛 can be captured via the von Mises–Fisher
distribution [Gatto 2013; Sabelfeld 2018], though we will not need
this distribution in our formulation.

Variable coefficients. The constant-coefficient representations de-
scribed in this section cannot immediately be applied to PDEs with
variable coefficients. In Sec. 4 we therefore transform our main PDE
(Eq. 1) into a constant-coefficient screened Poisson equation (Eq. 4),
but with a recursive right-hand side. Combining several of the terms
above, we can then write the solution to Eq. 4 in integral form:

𝑢 (𝑥) =
∫
𝐵 (𝑐)

𝑓 (𝑦) 𝐺𝜎 (𝑥,𝑦) d𝑦 +
∫
𝜕𝐵 (𝑐)

𝑢 (𝑧) 𝑃𝜎 (𝑥, 𝑧) d𝑧. (7)

Here we also use a more general off-centered formulation, where the
point of evaluation 𝑥 need not coincide with the center 𝑐 ∈ Ω of the
ball 𝐵(𝑐) [Duffy 2015; Hwang et al. 2015]. In particular, the boundary
term now incorporates the Poisson kernel 𝑃𝜎 (𝑥, 𝑧). Like the Green’s
function, the Poisson kernel describes how a “spike” on the boundary
affects the solution, and in general is given by the normal derivative
of the Green’s function at the boundary (see supplemental material
for explicit expressions). For 𝑥 = 𝑐 and 𝜎 = 0, 𝑃𝜎 (𝑥, 𝑧) reduces to
1/|𝜕𝐵(𝑥) |, recovering the usual mean value property.

Fig. 6. Top: As 𝜎 increases, the Green’s function𝐺𝜎 (𝑥, 𝑦) for a screened
Poisson equation becomes more localized around the point 𝑥 ; the magnitude
of the Poisson kernel 𝑃𝜎 (𝑥, 𝑧) shrinks. Bottom: When 𝑥 is not at the center
of the ball,𝐺𝜎 and 𝑃𝜎 are no longer rotationally symmetric; as 𝜎 → 0, they
approach the harmonic Green’s function and Poisson kernel (resp.).

2.4 Stochastic Equations
The solution to an elliptic PDE can also be described in terms of ran-
dom walks, via the Feynman-Kac formula from stochastic calculus
[Øksendal 2003, Ch. 8]. This formula will provide a critical starting
point for our method in Sec. 4, since it is more general than known
deterministic integral formulas. Moreover, Feynman-Kac has close
parallels with volume rendering (Sec. 2.5), providing us with key
techniques for numerical integration in Sec. 5.

Fig. 7. Brownian
motion is a random
walk (blue) which
on average models
diffusion (green).

2.4.1 Stochastic Processes. A continuous sto-
chastic process describes the trajectory of a par-
ticle taking a continuous “random walk.” A cen-
tral example is a Brownian motion𝑊𝑡 , character-
ized by the property that increments𝑊𝑡+𝑠 −𝑊𝑡

follow a normal distribution N(0, 𝑠), and are
independent of past values of𝑊𝑡 (Fig. 7). By
symmetry, a Brownian walk starting at the cen-
ter 𝑥 of a ball 𝐵(𝑥) exits on all points on its
boundary 𝜕𝐵(𝑥) with equal probability.

More generally, a diffusion process (Fig. 8) de-
scribes a particle with velocity ®𝜔 (𝑥) subject to random displace-
ments of strength 𝛼 (𝑥), and obeys a stochastic differential equation
(SDE)

d𝑋𝑡 = ®𝜔 (𝑋𝑡 ) d𝑡 +
√
𝛼 (𝑋𝑡 ) d𝑊𝑡 . (8)

As in volume rendering (Sec. 2.5), an extinction coefficient 𝜎 (𝑥) can
be used to model absorption into a background medium.

2.4.2 Feynman-Kac Formula. Notice that the parameters 𝛼, ®𝜔, 𝜎 of
a diffusion process resemble the coefficients of our main PDE (Eq. 1).
Feynman-Kac makes this relationship explicit by expressing the
solution to Eq. 1 as an expectation over random trajectories of 𝑋𝑡 .

Boundary term. We can build up the relationship between PDEs
and stochastic processes by first considering a basic Laplace equa-
tion Δ𝑢 = 0 with Dirichlet boundary values 𝑔 (Eq. 2). In this case,
Kakutani’s principle [Kakutani 1944] states that

𝑢 (𝑥) = E[𝑔(𝑊𝜏 )], (9)
where 𝜏 is the (random) timewhen𝑊𝑡 first hits the domain boundary
𝜕Ω. In other words, the solution to a Laplace equation is just the
average boundary value “seen” by random walkers starting at 𝑥 .
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x xx

Fig. 8. Components of a diffusion process. Note that unlike Brownian mo-
tion, a diffusion process will not in general have a uniform exit distribution
over 𝜕𝐵 (𝑥) . Left : the diffusion coefficient 𝛼 (𝑥) modulates the size of ran-
dom increments. Center : the drift coefficient ®𝜔 (𝑥) adds deterministic offsets
to the trajectory. Right : the screening coefficient 𝜎 (𝑥) > 0 describes the
probability of𝑊𝑡 being absorbed; 𝜎 (𝑥) < 0 essentially describes emission
of new random walkers.

Source term. For PDEs with a source term 𝑓 , such as the Poisson
equation Δ𝑢 = −𝑓 , the solution 𝑢 also picks up a term capturing the
average heat “felt” by a random walker along its path (see Øksendal
[2003, Ch. 9]):

E
[∫ 𝜏

0 𝑓 (𝑊𝑡 ) d𝑡
]
. (10)

Absorption. To model the effect of absorption, as in a screened
Poisson equation Δ𝑢 − 𝜎𝑢 = −𝑓 , we can incorporate the absorption
coefficient 𝜎 ∈ R into the boundary and source terms to get

E
[
e−𝜎𝜏𝑔(𝑊𝜏 )

]
and E

[∫ 𝜏

0 e−𝜎𝑡 𝑓 (𝑊𝑡 ) d𝑡
]
, (11)

respectively [Øksendal 2003, Ch. 8]. Notice that larger values of 𝜎
yield smaller contributions. For a spatially varying coefficient 𝜎 (𝑥),
we can simply replace −𝜎𝜏 with −

∫ 𝜏

0 𝜎 (𝑊𝑡 ) d𝑡 in both terms.

Feynman-Kac. Finally, to account for spatially varying diffusion
𝛼 (𝑥) and drift ®𝜔 (𝑥), we can replace the Brownian motion𝑊𝑡 with a
general diffusion process 𝑋𝑡 , à la Eq. 8. Combining the expressions
for boundary, source, and absorption terms from Eqs. 9–11, we
arrive at the Feynman-Kac formula

𝑢 (𝑥) = E
[∫ 𝜏

0
e−

∫ 𝑡

0 𝜎 (𝑋𝑠 ) d𝑠 𝑓 (𝑋𝑡 ) d𝑡 + e−
∫ 𝜏

0 𝜎 (𝑋𝑡 ) d𝑡𝑔(𝑋𝜏 )
]
. (12)

Though this formula can be approximated via direct simulation of
small, explicit time steps (Eq. 31), it is not amenable to efficient, bias-
free walk on spheres methods—see Sec. 7.1.3 for more discussion.

2.4.3 Relationship Between Stochastic and Integral Equations. The
stochastic viewpoint also provides a useful interpretation of the
Green’s function𝐺𝜎 and Poisson kernel 𝑃𝜎 . On a ball 𝐵(𝑥),𝐺𝜎 (𝑥,𝑦)
can be viewed as an (unnormalized) probability density, describing
how likely it is that a random walker starting at 𝑥 passes through
any point 𝑦 ∈ 𝐵(𝑥); 𝑃𝜎 (𝑥, 𝑧) likewise gives the probability that a
walker exits through any point 𝑧 ∈ 𝜕𝐵(𝑥) (assuming it is not first
absorbed). For instance, when 𝜎 = 0, a Brownian random walk
𝑊𝑡 starting at the ball center 𝑥 = 𝑐 will exit through all points on
the boundary sphere 𝜕𝐵(𝑥) with equal probability. In this case, the
Poisson kernel also reduces to a constant function, in accordance
with the mean value property (Eq. 5).

Fig. 9. Left : The VRE describes the radiance 𝐿 (𝑥, ®𝜔) along a ray as a function
of scattering and emission 𝑓 , as well as the radiance 𝑔 leaving the boundary.
Right : Feynman-Kac likewise describes how a source term 𝑓 and boundary
data 𝑔 contribute to the solution of a diffusive PDE with variable coefficients,
but along the trajectory of a random process 𝑋𝑡 instead of a light path.

2.5 Volume Rendering
In graphics, the radiative transport equation (RTE) [Chandrasekhar
1960] is used to describe the behavior of light in heterogeneous
media that absorb, scatter and emit radiation (Fig. 9, left). Unlike
Eq. 1, the RTE is only 1st order in space. It states that the radiance
𝐿(𝑥, ®𝜔) at each point 𝑥 and in each direction ®𝜔 ∈ R𝑛 satisfies

®𝜔 · ∇𝐿(𝑥, ®𝜔) − 𝜎 (𝑥)𝐿(𝑥, ®𝜔) = −𝑓 (𝑥, ®𝜔, 𝐿) on Ω,
𝐿(𝑥, ®𝜔) = 𝑔(𝑥, ®𝜔, 𝐿) on 𝜕Ω.

(13)

This equation is recursive, since the source term 𝑓 (𝑥, ®𝜔, 𝐿) depends
on the radiance 𝐿𝑠 (𝑥, ®𝜔) in-scattered at 𝑥 (as well as any emission
𝐿𝑒 (𝑥, ®𝜔)); likewise, the function 𝑔(𝑥, ®𝜔, 𝐿) describes radiance leav-
ing the boundary. The spatially varying extinction coefficient 𝜎 (𝑥)
specifies the density of scattering or absorbing particles at 𝑥 .
The integral representation of the RTE is called the volume ren-

dering equation (VRE) [Pharr et al. 2016, Ch. 15.1], which gives the
radiance 𝐿(𝑥, ®𝜔) as an integral along a ray 𝑥𝑡 B 𝑥 − ®𝜔𝑡 of length 𝑑 :

𝐿(𝑥, ®𝜔) =
∫ 𝑑

0
e−

∫ 𝑡

0 𝜎 (𝑥𝑠 ) d𝑠 𝑓 (𝑥𝑡 , ®𝜔, 𝐿) d𝑡 +

e−
∫ 𝑑

0 𝜎 (𝑥𝑡 ) d𝑡𝑔(𝑥𝑑 , ®𝜔, 𝐿) . (14)

Delta tracking. The VRE is typically solved using volumetric path
tracing (VPT) [Lafortune and Willems 1996], but a spatially varying
𝜎 (𝑥) presents challenges akin to those for Feynman-Kac: approx-
imating the transmittance function exp(−

∫ 𝑑

0 𝜎 (𝑥𝑡 ) d𝑡) via explicit
steps along 𝑥𝑡 can yield significant error. Delta tracking [Raab et al.
2008; Woodcock et al. 1965] instead rewrites Eq. 13 so that all spatial
variation in the extinction coefficient 𝜎 (𝑥) is captured by a source
term on the right-hand side—leaving only a constant absorption
coefficient 𝜎 B max(𝜎 (𝑥)) [Galtier et al. 2013; Kutz et al. 2017]:
®𝜔 ·∇𝐿(𝑥, ®𝜔) −𝜎𝐿(𝑥, ®𝜔) = − (𝑓 (𝑥, ®𝜔, 𝐿) + (𝜎 − 𝜎 (𝑥))𝐿(𝑥, ®𝜔))︸                                     ︷︷                                     ︸

=: 𝑓 ′ (𝑥, ®𝜔,𝐿)

. (15)

Conceptually, fictitious null matter is added to the initially hetero-
geneous medium so that it now has a constant density (Fig. 10, left).
Eq. 15 then has an integral representation

𝐿(𝑥, ®𝜔) =
∫ 𝑑

0
e−𝜎𝑡 𝑓 ′(𝑥𝑡 , ®𝜔, 𝐿) d𝑡 + e−𝜎𝑑𝑔(𝑥𝑑 , ®𝜔, 𝐿). (16)

This representation is more amenable to Monte Carlo integration,
since the transmittance function e−𝜎𝑡 can be evaluated in closed
form. Spatial variations in 𝜎 (𝑥) are now accounted for by weighting
the radiance inside the source term 𝑓 ′ in Eq. 16 by 𝜎 − 𝜎 (𝑥𝑡 ).
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Fig. 10. Left : The delta tracking method in volume rendering artificially fills
a heterogeneous medium with fictitious null matter (indicated by 𝜎𝑛 (𝑥))
so that the combined density 𝜎 (𝑥) is constant everywhere. Right : Null-
events probabilistically sampled inside the medium by VPT [Fong et al. 2017,
Algorithm 2] then re-weight the radiance by 𝜎 − 𝜎 (𝑥) to account for the
original heterogeneity in 𝜎 (𝑥) . Likewise, the WoS algorithm in Fig. 13 solves
variable-coefficient PDEs by introducing null-events into the random walk.

In Sec. 4, we derive a generalized mean value expression for
the PDE in Eq. 1 by applying the delta tracking transformation to
the Feynman-Kac formula, resulting in an integral representation
amenable to walk on spheres.

3 WALK ON SPHERES
We next describe the basic walk on spheres (WoS) algorithm. WoS
was developed by Muller [1956] to solve the Laplace equation (Eq. 2),
but has since been extended to a broader class of PDEs. Section 3.2
reviews WoS estimators for constant-coefficient PDEs, which serve
as building blocks for our variable-coefficient extension in Sec. 4.

3.1 Monte Carlo Integration
WoS is a Monte Carlo estimator for the solution to a PDE. In general,
aMonte Carlo estimator approximates an integral using random sam-
ples of the integrand. In particular, for any (𝐿1) integrable function
𝜙 : Ω → R, the quantity

𝐼 B

∫
Ω
𝜙 (𝑥) d𝑥 (17)

can be approximated by the sum

𝐼̂𝑁 B
1
𝑁

𝑁∑
𝑖=1

𝜙 (𝑋𝑖 )
𝑝 (𝑋𝑖 ) , 𝑋𝑖 ∼ 𝑝, (18)

where the 𝑋𝑖 are independent random samples drawn from any
probability density 𝑝 that is nonzero on the support of 𝜙 . In this
paper we will express all our estimators as single-sample estimators 𝐼̂
(dropping the subscript 𝑁 = 1 for brevity), with the expectation that
their values will be averaged over many trials to improve accuracy.
Importantly, although 𝐼̂𝑁 is called an “estimator”, it does not

provide merely an estimate—rather, a well-designed estimator will
give the exact value of the integral, in expectation. More precisely,
𝐼̂𝑁 is unbiased if E[𝐼̂𝑁 ] = 𝐼 for any number of samples 𝑁 , and
consistent if the error 𝐼̂𝑁 − 𝐼 goes to zero as 𝑁 → ∞with probability
one [Veach 1997, Section 1.4.4]. Error is more often quantified by
the variance Var[𝐼̂𝑁 ] := E[(𝐼̂𝑁 − E[𝐼̂𝑁 ])2], i.e., the average squared
deviation from the expected value. As long as 𝜙 has finite variance,
an unbiased estimator is automatically consistent (by the central
limit theorem), with variance going to zero at a rate 𝑂 (1/𝑁 ).

Fig. 11. Left : The walk on spheres algorithm repeatedly jumps to a random
point on the largest sphere centered at the current point 𝑥𝑘 , until it gets
within an 𝜀 distance to the boundary. Right : An additional random sample
𝑦𝑘+1 inside each ball 𝐵 (𝑥𝑘 ) is used to evaluate the source term 𝑓 .

3.2 The Walk on Spheres Algorithm
Suppose wewant to evaluate the solution to a basic Laplace equation
Δ𝑢 = 0 with Dirichlet boundary conditions 𝑔 (Eq. 2) at some point
𝑥0 ∈ Ω. The mean value formula (Eq. 5) says that 𝑢 (𝑥0) is equal to
the average of 𝑢 over any ball 𝐵(𝑥0) ⊂ Ω; alternatively, Kakutani’s
principle (Eq. 9) says that𝑢 (𝑥0) equals the expected value of𝑢 where
trajectories of random walkers first hit the ball boundary:

𝑢 (𝑥0) = 1
|𝜕𝐵(𝑥0) |

∫
𝜕𝐵 (𝑥0)

𝑢 (𝑧) d𝑧 = E[𝑢 (𝑊𝜏 )] .

Both perspectives point to the same strategy for estimating 𝑢 (𝑥0):
uniformly sample a point 𝑥1 on a ball around 𝑥0. If 𝑥1 is extremely
close to the domain boundary (i.e., within the 𝜀-shell Ω𝜀 ), grab the
boundary value 𝑔(𝑥1). Otherwise, evaluate 𝑢 (𝑥1). This reasoning
leads to the recursive WoS estimator

𝑢 (𝑥𝑘 ) B
{
𝑔(𝑥𝑘 ) 𝑥𝑘 ∈ 𝜕Ω𝜀 ,

𝑢 (𝑥𝑘+1) otherwise.
(19)

The point 𝑥𝑘+1 is drawn from a uniform distribution on the largest
sphere centered at 𝑥𝑘 , helping us reach the boundary in a small
number of steps—Fig. 11, left depicts one possible “walk.” As shown
in Fig. 28 (and in [Sawhney and Crane 2020, Figure 14]), terminating
this walk in the 𝜀-shell introduces negligible bias which diminishes
at a rate of 𝑂 (1/log 𝜀) [Binder and Braverman 2012].

Source term. To incorporate a source term 𝑓 , we must also add
an estimate of the integral over 𝐵(𝑥𝑘 ) from Eq. 6 to 𝑢 (𝑥𝑘 ) at each
step of the walk. Here again we use a single-sample estimate at a
point 𝑦𝑘+1 (Fig. 11, right). Though 𝑦𝑘+1 could be sampled uniformly,
Sawhney and Crane [2020, Section 4.2] achieve better results by
importance sampling the source term 𝑓 , Green’s function 𝐺 , or by
combining strategies via multiple importance sampling [Veach and
Guibas 1995].

Absorption. Finally, to incorporate a constant absorption term
𝜎𝑢, as in Eq. 4, we simply need to adopt the corresponding Green’s
function𝐺𝜎 and Poisson kernel 𝑃𝜎 (given in supplemental material).

Unfortunately, an integral representation of our main PDE (Eq. 1)
is not available, making it unclear how to apply WoS. In the next
section we exploit structural similarities between the Feynman-Kac
formula (Eq. 12) and the volume rendering equation (Eq. 14) to derive
a new integral representation for PDEs with variable coefficients.
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4 OUR METHOD
The standard WoS algorithm cannot handle the spatially varying
coefficients 𝛼 (𝑥), ®𝜔 (𝑥) and 𝜎 (𝑥) in Eq. 1, but it can solve a PDE
with a spatially varying source term 𝑓 (𝑥). We hence apply a series
of transformations (Fig. 12) that convert Eq. 1 into an equivalent
constant-coefficient screened Poisson equation (Eq. 23); we then
use the integral version of screened Poisson (Eq. 7) to define a
variable-coefficient WoS estimator. From a stochastic perspective,
these transformations are equivalent to writing Feynman-Kac purely
in terms of Brownian motion, rather than a generic diffusion process.
Our method applies whenever Eq. 1 is elliptic—which holds if

the diffusion coefficient 𝛼 (𝑥) is strictly positive and the screening
coefficient 𝜎 (𝑥) is nonnegative [Evans 1998; Friedman and Fu 1975].
For brevity, we here omit the drift term ®𝜔 (𝑥) · ∇𝑢 (𝑥), though the
approach is unchanged for equations with drift (see App. A.3). For
readers not interested in the derivation, Eq. 26 gives the final integral
formulation of Eq. 1; Sec. 5 describes our final algorithms.

4.1 Transformations
Second order. We first expand the 2nd order term ∇ · (𝛼 (𝑥)∇𝑢) in

Eq. 1 via the product rule. We then divide the resulting equation by
𝛼 (𝑥), and apply the identity ∇ ln(𝛼 (𝑥)) = ∇𝛼 (𝑥) /𝛼 (𝑥) to get

Δ𝑢 (𝑥) + ∇ ln(𝛼 (𝑥)) · ∇𝑢 (𝑥) − 𝜎 (𝑥)
𝛼 (𝑥)𝑢 (𝑥) = − 𝑓 (𝑥)

𝛼 (𝑥) . (20)

At this point the 2nd order term Δ𝑢 no longer has variable coeffi-
cients, but spatial variation in the lower order terms remains.

First order. A Girsanov transformation re-expresses a random pro-
cess under a change of probability measure, e.g., from a generic
diffusion process 𝑋𝑡 to an ordinary Brownian motion𝑊𝑡 [Øksendal
2003, Ch. 8]. As shown in App. A.1, applying this transformation
to Eq. 20 eliminates the 1st order operator from Eq. 20, shifting all
spatial variation into the 0th order term:

Δ𝑈 (𝑥) − 𝜎 ′(𝑥)𝑈 (𝑥) = −𝑓 ′(𝑥) on Ω,
𝑈 (𝑥) = 𝑔′(𝑥) on 𝜕Ω.

(21)

Here,

𝑈 (𝑥) B
√
𝛼 (𝑥) 𝑢 (𝑥), 𝑔′(𝑥) B

√
𝛼 (𝑥) 𝑔(𝑥), 𝑓 ′(𝑥) B

√
𝛼 (𝑥)
𝛼 (𝑥) 𝑓 (𝑥),

and 𝜎 ′(𝑥) B 𝜎 (𝑥)
𝛼 (𝑥) +

1
2

(
Δ𝛼 (𝑥)
𝛼 (𝑥) − |∇ ln(𝛼 (𝑥)) |2

2

)
.

Equation 21 is equivalent to our original PDE with variable coeffi-
cients in Eq. 1, which can be verified by substituting the expressions
for𝑈 ,𝑔′, 𝑓 ′ and 𝜎 ′ back into this equation.

Unlike Feynman-Kac, which involves a diffusion process 𝑋𝑡 , the
stochastic formula for Eq. 21 uses only simple Brownian motion𝑊𝑡 :

𝑈 (𝑥) = E
[∫ 𝜏

0
e−

∫ 𝑡

0 𝜎′ (𝑊𝑠 ) d𝑠 𝑓 ′(𝑊𝑡 ) d𝑡 +

e−
∫ 𝜏

0 𝜎′ (𝑊𝑡 ) d𝑡 𝑔′(𝑊𝜏 )
]
. (22)

Zeroth Order. The only remaining term on the left-hand side of
Eq. 21 with spatially varying coefficients is the 0th order screening
term 𝜎 ′(𝑥)𝑈 . We hence apply a transformation inspired by delta
tracking (Sec. 2.5) to shift this heterogeneity to a source term on

6

Fig. 12. An overview of the transformations we apply to Eq. 1 to derive an
integral formulation amenable to Monte Carlo estimation with WoS.

the right-hand side. In doing so, we introduce a coefficient 𝜎 > 0 by
subtracting 𝜎𝑈 from both sides of Eq. 21. The result is a PDE with
the same basic form as a screened Poisson equation:

Δ𝑈 (𝑥) − 𝜎𝑈 (𝑥) = − (
𝑓 ′(𝑥) + (𝜎 − 𝜎 ′(𝑥))𝑈 (𝑥))︸                             ︷︷                             ︸

=: 𝑓 ′ (𝑥, 𝑈 )

on Ω, (23)

𝑈 (𝑥) = 𝑔′(𝑥) on 𝜕Ω.

Though only constant coefficients now appear on the left-hand side,
no approximation of any kind has been introduced. Unlike a typical
linear PDE however, the solution 𝑈 appears on the right-hand side.
As in volume rendering, we account for this recursive dependence by
applying recursive Monte Carlo estimation (Sec. 5)—a strategy not
available in the traditional setting of, e.g., finite element methods.

Like the transformed VRE in Eq. 16, and the stochastic formulas in
Eq. 11, the stochastic expression for Eq. 23 also has a transmittance
function e−𝜎𝑡 that no longer varies spatially:

𝑈 (𝑥) = E
[∫ 𝜏

0
e−𝜎𝑡 𝑓 ′(𝑊𝑡 ,𝑈 ) d𝑡 + e−𝜎𝜏 𝑔′(𝑊𝜏 )

]
. (24)

4.2 Integral Representation
We can now express the solution to Eq. 23 using the integral form
of the constant coefficient screened Poisson equation (Eq. 7):

𝑈 (𝑥) =
∫
𝐵 (𝑐)

𝑓 ′(𝑦,𝑈 ) 𝐺𝜎 (𝑥,𝑦) d𝑦 +
∫
𝜕𝐵 (𝑐)
𝑈 (𝑧) 𝑃𝜎 (𝑥, 𝑧) d𝑧. (25)

(Recall that here 𝑥 can be any point inside 𝐵(𝑐)—not just its center.)
Finally, we make the substitution 𝑈 (𝑥) =

√
𝛼 (𝑥) 𝑢 (𝑥) from Eq. 21

to write this integral in terms of the original function 𝑢:

𝑢 (𝑥) = 1√
𝛼 (𝑥)

(∫
𝐵 (𝑐) 𝑓

′(𝑦,√𝛼 𝑢) 𝐺𝜎 (𝑥,𝑦) d𝑦 +∫
𝜕𝐵 (𝑐)

√
𝛼 (𝑧) 𝑢 (𝑧) 𝑃𝜎 (𝑥, 𝑧) d𝑧

)
.

(26)

Unlike Eq. 7, we now have a recursive integral equation (due to the
presence of 𝑢 in both volume and boundary terms), which can be
solved via recursive application of Monte Carlo integration.
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4.3 Monte Carlo Estimator
A single-sample estimator for Eq. 26 at a point 𝑥𝑘 ∈ 𝐵(𝑐) is given by

𝑢 (𝑥𝑘 ) B
1√

𝛼 (𝑥𝑘 )

( evaluate volume term with probability P𝐵︷                                ︸︸                                ︷
𝑓 ′(𝑦𝑘+1,

√
𝛼 𝑢) 𝐺𝜎 (𝑥𝑘 , 𝑦𝑘+1)

𝑝𝐵 (𝑦𝑘+1) P𝐵
+

evaluate boundary term with probability P𝜕𝐵︷                                     ︸︸                                     ︷√
𝛼 (𝑥𝑘+1) 𝑢 (𝑥𝑘+1) 𝑃𝜎 (𝑥𝑘 , 𝑥𝑘+1)

𝑝𝜕𝐵 (𝑥𝑘+1) P𝜕𝐵

)
, (27)

where 𝑦𝑘+1 and 𝑥𝑘+1 are points sam-
pled inside and on the surface of 𝐵(𝑐)
according to probability densities 𝑝𝐵
and 𝑝𝜕𝐵 (resp.). Values P𝐵, P𝜕𝐵 ∈
(0, 1] control the probability of sam-
pling the volume and boundary terms
(resp.). Letting P𝐵 = P𝜕𝐵 = 1 yields ex-
ponential growth in the number of steps, since each walk branches
into two (see inset), and walks do not terminate until both 𝑦𝑘+1 and
𝑥𝑘+1 are contained in 𝜕Ω𝜀 . In Sec. 5, we develop twoWoS algorithms
that avoid branching via careful choice of P𝐵 and P𝜕𝐵 .

5 ALGORITHMS
Due to the diversity of heterogeneous phenomena in nature, dif-
ferent algorithms for solving the VRE adopt different strategies to
trade off between variance, bias, and computational cost [Novák
et al. 2018]. Likewise, an algorithm for solving diffusive PDEs will
be more effective when it is well-matched to the way coefficients
are distributed in space. We provide a unified integral framework,
based on Eq. 27, which enables us to explore WoS variants appropri-
ate for different problems—akin to the unidirectional estimator in
Georgiev et al. [2019, Eq. 14]. In particular, we devise two estimators
inspired by delta tracking (Sec. 2.5) and next-flight [Cramer 1978]
methods from volume rendering. Sec. 3 of the supplement provides
pseudo-code for both methods; Sec. 2 shows how these methods
can also be used to compute the solution gradient ∇𝑢 (𝑥) needed in
a variety of applications (see Sawhney and Crane [2020, Section 3]).

5.1 Delta Tracking Variant
To avoid branching, our delta tracking variant of WoS uses a special
property of the Poisson kernel 𝑃𝜎 of a screened Poisson equation
when 𝑥𝑘 is at the ball center. Assuming 𝜎 > 0, and letting |𝐺𝜎 (𝑥) |
be the integral of 𝐺𝜎 over 𝐵(𝑥) (supplemental, Sec. 1.1), we have

𝑃𝜎 (𝑥𝑘 , 𝑥𝑘+1) =
1 − 𝜎 |𝐺𝜎 (𝑥𝑘 ) |

|𝜕𝐵(𝑥𝑘 ) |
.

Since 𝜎 |𝐺𝜎 (𝑥𝑘 ) | ∈ (0, 1) (see Eq. 4 of the supplement), we can
sample the boundary and volume terms with probability P𝜕𝐵 B
1−𝜎 |𝐺𝜎 (𝑥𝑘 ) | and P𝐵 B 1−P𝜕𝐵 , yielding a non-branching estimator

𝑢 (𝑥𝑘 ) B

𝑔(𝑥𝑘 ), 𝑥𝑘 ∈ 𝜕Ω𝜀 ,

1
𝜎
√
𝛼 (𝑥𝑘 )

𝑓 ′(𝑦𝑘+1,
√
𝛼 𝑢), 𝜇 ∼ U ≤ 𝜎 |𝐺𝜎 (𝑥𝑘 ) |,√

𝛼 (𝑥𝑘+1)/𝛼 (𝑥𝑘 ) 𝑢 (𝑥𝑘+1) otherwise.
(28)

Fig. 13. Left : Unlike standard WoS for constant coefficient problems, the
delta tracking variant jumps to a random point either inside or on the
surface of the largest ball 𝐵 (𝑥𝑘 ) centered at 𝑥𝑘 . As in rendering (right), null-
events sampled inside 𝐵 (𝑥𝑘 ) re-weight the solution estimate by 𝜎 − 𝜎′ (𝑥)
(see definition of 𝑓 ′ in Eq. 23) to account for spatial variations in the PDE.

This estimator importance samples 𝑦𝑘+1 and 𝑥𝑘+1 via the densities
𝑝𝐵 := 𝐺𝜎 (𝑥𝑘 , 𝑦𝑘+1)/|𝐺𝜎 (𝑥𝑘 ) | and 𝑝𝜕𝐵 := 1/|𝜕𝐵(𝑥𝑘 ) |, respectively.
Use of constant-coefficient kernels 𝐺𝜎 and 𝑃𝜎 is critical, since the
kernels for the original coefficient function 𝜎 ′(𝑥) (Eq. 21) are not
known in closed form. However, spatial variation in 𝜎 ′(𝑥) is still
accounted for by 𝑓 ′, which corresponds to probabilistically sampling
null-events (Fig. 13).

The coefficient 𝜎 is the only free pa-
rameter in this algorithm, and must be
strictly positive to ensure that P𝐵 >

0. In volume rendering one typically
lets 𝜎 = max(𝜎 (𝑥)), which enables
closed-form sampling of volumetric events (absorption, scatter-
ing, or null scattering) and boundary reflections. We instead let
𝜎 = max(𝜎 ′(𝑥)) −min(𝜎 ′(𝑥)), since in general 𝜎 ′(𝑥) (from Eq. 21)
can have both positive and negative values at different points 𝑥 ∈ Ω
(see inset). More recent volume rendering research [Georgiev et al.
2019; Novák et al. 2014] treats 𝜎 as a control variate rather than a
bound, to reduce variance based on the profile of the coefficients.
In conjunction with clever choices for 𝑝𝐵 and 𝑝𝜕𝐵 , these strategies
can be more efficient than delta tracking; we leave such extensions
to future work.

5.2 Next-Flight Variant
Our delta tracking variant of WoS takes far more steps as 𝜎 increases
(see Fig. 14), since the Green’s function becomes more localized
(Fig. 6) and it becomes more likely that we sample a point in the vol-
ume than on the boundary (P𝐵 > P𝜕𝐵 ). Longer walks are ultimately
more expensive, since distance queries are usually the bottleneck
for WoS (much like ray intersections in path tracing).

Fig. 14. As 𝜎 increases, the delta tracking variant requires far more distance
queries (reducing run-time performance), while the number of queries for
the next-flight strategy is unchanged.
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Fig. 15. Left : Our next-flight variant of WoS addresses heterogeneity in
PDE coefficients by evaluating off-centered versions of the Green’s function
and Poisson kernel for every ball 𝐵 (𝑥0

𝑘
) in a walk. Short walks in 𝐵 (𝑥0

𝑘
) all

terminate at a point 𝑥0
𝑘+1 ∈ 𝜕𝐵 (𝑥0

𝑘
) to avoid branching. Right : The next-

flight method for volume rendering likewise estimates transmittance along
a ray with a predetermined endpoint.

We hence propose a variant based on the next-flight scheme of
Cramer [1978], which takes big steps even when 𝜎 is large (Fig. 15).
As usual we walk along points 𝑥00 , 𝑥

0
1 , . . . sampled from successive

spheres 𝜕𝐵(𝑥𝑘−1), always estimating both boundary and volume
terms (P𝜕𝐵 = P𝐵 = 1). But rather than start a new walk to the
boundary for the volume term, we take a “short off-center walk”
𝑥1
𝑘
, 𝑥2

𝑘
, . . . , 𝑥𝑀

𝑘
within each ball 𝐵(𝑥0

𝑘
), and re-use the estimate of the

boundary contribution at 𝑥0
𝑘+1 for all steps in this short walk. An

expression for this estimator is obtained by recursively expanding
the definition of 𝑢 in the volume term of Eq. 27:

𝑢 (𝑥0
𝑘
) B 1√

𝛼 (𝑥0
𝑘
)

(√
𝛼 (𝑥0
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0
𝑘+1) 𝑇 (𝑥0𝑘 , 𝑥0𝑘+1) + 𝑆 (𝑥0

𝑘
)
)
,

(29)
where
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Fig. 16. Comparison of WoS variants for a screened Poisson problem with
spatially-varying absorption. Top: For smaller coefficients 𝜎 (𝑥) , next-flight
exhibits higher variance due to greater correlation among samples. Bottom:
for larger coefficients 𝜎 (𝑥) + 10 delta tracking now exhibits more variance
for equal compute time, since it requires far more distance queries.

For each point 𝑥𝑙
𝑘
, the subscript 𝑘 indexes steps in the walk; the

superscript 𝑙 indexes points along the short walk in 𝐵(𝑥0
𝑘
). The num-

ber of terms𝑀 is determined by using the “throughput”
∏𝑗−1

𝑙=0𝑊 (𝑙)
as a probability for Russian roulette [Pharr et al. 2016, Ch. 13.7]. Pa-
rameters 𝜎 , 𝑝𝐵 and 𝑝𝜕𝐵 are the same as in Sec. 5.1, but the Green’s
function 𝐺𝜎 and Poisson kernel 𝑃𝜎 must now be evaluated and
sampled using general off-centered formulas (see Sec. 1.2 and Sec.
1.4 of the supplemental).

A key benefit of the next-flight scheme is that it does not need
additional distance queries to evaluate 𝑇 and 𝑆 within 𝐵(𝑥𝑘 ). De-
creased computation does however come at the cost of increased
correlation in 𝑇 due to the reuse of 𝑢 (𝑥𝑘+1); see Fig. 16.

5.3 Variance Reduction



split

pass through

roulette

+

−

BothWoS variants exhibit the standard
rate of convergence for Monte Carlo
(see plots of root mean squared error
(RSME) in Figs. 16, 17, 24 and 28). How-
ever, we can further reduce variance
using a weight window strategy from
neutron transport [Hoogenboom and
Légrády 2005]. The basic observation is that different walks can
have very different cumulative weights, leading to high estimator
variance—especially for long walks. For instance, in each delta track-
ing step the estimate gets scaled by one of the coefficients of 𝑢 in
Eq. 28, leading to very small (or large) weights when 𝜎 is large. A
weight window (inset) helps ensure that all walks have a similar

Fig. 17. Weight windows significantly reduce variance for problems with
large variation in coefficients, as seen here for the problem ∇ · (𝛼 (𝑥) ∇𝑢) =
−𝑓 (𝑥) with two different coefficient functions 𝛼1 (𝑥), 𝛼2 (𝑥) .
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Fig. 18. Our approach is ideal for interactive editing since it operates directly
on the original scene representation (here, signed distance fields composed
via CSG operations) and provides instant feedback after updates to scene
geometry and boundary conditions (edit 1) or PDE coefficients (edit 2).

weight by either using Russian roulette to terminate low-weight
walks (which contribute little to the overall estimate), or splitting
high-weight walks into multiple lower-weight walks (promoting
better exploration of the domain).
At each step, a walk is allowed to continue if its weight 𝑤 is

within the window [𝑤−,𝑤+] (we use a static window [0.5, 1.5]). If
𝑤 < 𝑤−, the walk is terminated with a Russian roulette probability
of𝑤/𝑤−. If𝑤 > 𝑤+, it is split into roughly𝑚 := 𝑤/𝑤+ new walks,
each of weight 𝑤/𝑚. Since 𝑚 is generally not an integer, we use
the expected value splits approach of Booth [1985] which spawns
𝑛 B ⌊𝑚⌋ walks with probability 𝑛+1−𝑚, and 𝑛+1walks otherwise.

Figure 17 highlights the effectiveness of a static weight window
for reducing variance in problems with high frequency coefficients
and large parameter bounds 𝜎 . Prior work in neutron transport
and rendering has shown that choosing the window size adaptively
can improve efficiency by up to an order of magnitude [Booth and
Hendricks 1984; Vorba and Křivánek 2016; Wagner and Haghighat
1998]. We leave such optimization to future work.

6 IMPLEMENTATION AND RESULTS
We next discuss practical considerations pertaining to our modi-
fied WoS algorithms. We also highlight the unique benefits of our
approach on a range of example problems inspired by engineering
and design applications.

6.1 Implementation
Similar to a scene in a renderer, a PDE is encoded by a description
of the domain geometry Ω, and the functions 𝛼, ®𝜔, 𝜎, 𝑓 , 𝑔 in Eq. 1.
Functions are provided as arbitrary callback routines that re-

turn a value for any query point 𝑥 ; unlike FEM, finite difference
methods, etc., they need not be discretized or approximated in a
finite-dimensional basis. The gradient and Laplacian of coefficients
𝛼 (𝑥) and ®𝜔 (𝑥) (see Sec. 4.1 and App. A.3) can be evaluated via any
standard technique (e.g., automatic differentiation); the bounding
parameter 𝜎 B max(𝜎 ′(𝑥)) −min(𝜎 ′(𝑥)) is computed as in volume
rendering [Novák et al. 2018], e.g., by random or regular sampling.
Geometry is encoded by a function that gives the point 𝑥 ∈ 𝜕Ω

closest to any query point 𝑥 ∈ Ω (hence the radius of the largest
empty ball 𝐵(𝑥)). Such closest point queries are easily evaluated for a
wide variety of boundary representations (polygonal meshes, spline

Fig. 19. Our hybrid subsurface scattering strategy yields lower relative mean
squared error than VPT for an equal number of medium lookups.

patches, implicit surfaces, etc.) and can be accelerated via standard
spatial hierarchies such as a bounding volume hierarchy (BVH) or
octree [Ericson 2004; Intel 2013; Museth 2013]. Unlike finite element
mesh generation (or node placement for meshless FEM), an accel-
eration hierarchy uses very little memory and can be built almost
instantaneously even for very detailed models (Fig. 3, top). More-
over, unlike a bad mesh, a poorly-constructed hierarchy harms only
performance—not correctness or accuracy. For experiments we use
a basic CPU-based axis aligned BVH for triangle meshes [Sawhney
et al. 2020], though ray tracing hardware in recent GPUs shows
potential for further acceleration of other queries [Burgess 2020].

6.2 Interactive Editing
Monte Carlo methods are popular in rendering because they provide
immediate feedback that can be progressively improved—enabling
engineers and artists to quickly iterate on designs. We explored
this modality for PDEs by implementing a GPU version of our
solver in Unity (Fig. 18) where domain geometry is encoded by a
signed distance function (SDF), and visualized via sphere tracing [Hart
1996]; WoS need only estimate the solution at points visible to the
camera. This setup allows us to interactively explore problems of
immense geometric complexity—for instance, Fig. 1 shows a scene
with an infinite, aperiodic arrangement of detailed models with
high-frequency material coefficients, which would be impractical
or impossible for conventional PDE solvers. In fact, as shown in
Fig. 23, meshing even a small region of this scene is prohibitively
expensive. Fig. 18 shows interactive editing via constructive solid
geometry (CSG) operations, which are easily represented without
meshing via implicit functions. The solution is visualized on a 2D
slice plane, and samples are accumulated progressively until the
scene changes—in this case our solver runs at 60 frames per second.

6.3 Subsurface Scattering
Our Monte Carlo PDE solvers are easily combined with Monte Carlo
renderers, since both support pointwise evaluation. One interesting
use case is subsurface scattering in dense, high-albedo media like
milk or marble. Since light in such media experiences thousands of
scattering events, a diffusion approximation [Jensen et al. 2001] is
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Fig. 20. Our method enables us to augment classic diffusion curve images
with spatially varying coefficients that provide greater artistic control. For
instance, source terms 𝑓 have limited use in classic diffusion curves, since
they get severely blurred out (left). By locally adjusting the diffusion strength
𝛼 , we can decorate the image with interesting textures or decals (right).

often much faster than direct estimation via volumetric path tracing
(VPT). Popular methods based on variants of dipole approximation
make further simplifying assumptions, such as homogeneity and
local geometric planarity, which often induce more error than the
diffusion assumption itself [d’Eon and Irving 2011; Donner et al.
2008; Habel et al. 2013; Jensen et al. 2001]. Other methods use stan-
dard PDE solvers to evaluate diffusion [Arbree et al. 2011; Koerner
et al. 2014], but face the usual challenges of volumetric meshing and
global solves—and the difficulty of coupling with a renderer.
We avoid such challenges by combining VPT and WoS via a

simple rule: at each path vertex we generate a free-flight distance
(as in VPT) and compute the distance to the medium boundary
(as in WoS). We then continue with either VPT or WoS based on
the larger distance. Unlike dipole techniques, this strategy directly
models heterogeneity in the medium; it is conceptually similar to
shell tracing [Moon et al. 2008; Müller et al. 2016] or condensed
history neutron transport [Fleck and Canfield 1984], since eachWoS
step effectively aggregates a large number of VPT steps. In practice,
it tends to take more accurate VPT steps near the boundary and
large WoS deeper in the medium, yielding significantly less variance
than pure VPT for an equal number of medium lookups (Fig. 19).

6.4 Heterogeneous Diffusion Curves
WoS is attractive for diffusion curves [Orzan et al. 2008], since it
provides real-time progressive previews that are easily implemented
on the GPU [Quilez 2020], can be applied to a zoom-in without first
computing a coarse global solution (as done by Orzan et al. [2008,
Section 3.2.4]), and avoids aliasing of fine features due to grid res-
olution [Sawhney and Crane 2020, Figure 16]. Our method makes
it possible to generalize classic diffusion curves by also painting a
source 𝑓 (𝑥), diffusion coefficient 𝛼 (𝑥), and absorption coefficient
𝜎 (𝑥)—Fig. 20 shows one example. The added benefit is that, un-
like constant-coefficient diffusion images, the source term 𝑓 (𝑥) is
no longer severely blurred—enabling one to add interesting decals
or background texture, while still smoothly diffusing color over

Fig. 21. Variable coefficients enable us to extendWoS to curved domains (not
previously possible). Here we directly resolve intricate boundary conditions
for diffusion curves—without generating a fine surface mesh that conforms
to boundary curves or a spatially-adaptive grid in the parameter domain.

regions without such details. Variable absorption 𝜎 (𝑥) helps to fur-
ther emphasize detail, since the strength of the source contribution
is roughly 1/𝜎 (𝑥). Akin to “texture shaders” [Bowers et al. 2011;
Prévost et al. 2015], this enables an enriched design space span-
ning diffusion curves and traditional 2D graphics, which previous
approaches achieved via simpler alpha blending.

6.5 Walk on Curved Surfaces
A basic hypothesis of the original WoS algorithm is that a random
walk exits every point on the boundary of a ball with equal probabil-
ity (Sec. 3.2). However, on surfaces with non-constant curvature this
hypothesis no longer holds: intuitively, more walkers will escape
through the “valleys” than through the “mountains.” As a result,
standard WoS cannot be used for many algorithms in geometric and
scientific computing that need to solve equations on a surface/shell.
Our variable-coefficient

scheme enables WoS to be
applied to curved surfaces
for the first time. In partic-
ular, consider any surface
expressed as a conformal parameterization 𝑓 : R2 ⊃ 𝑈 → R3; con-
formal means that 𝑓 distorts the surface by a positive scaling 𝜆(𝑥)
at each point 𝑥 ∈ 𝑈 , i.e., 𝐽𝑇

𝑓
𝐽𝑓 = 𝜆(𝑥)𝐼 , where 𝐼 is the identity and

𝐽𝑓 is the Jacobian of 𝑓 . The Laplacian Δ𝑓 of the curved surface is
then related to the ordinary Laplacian via Δ = 𝜆Δ𝑓 . Hence, we
can solve PDEs on the curved surface by replacing the usual diffu-
sion coefficient 𝛼 (𝑥) with 𝜆(𝑥). Fig. 21 shows several examples; for
periodic domains (like the torus) our walks simply “wrap around.”
In theory, every surface admits a conformal parameterization (by
the uniformization theorem [Abikoff 1981]), but in practice many
important surfaces used in engineering (such as NURBS or other
spline patches) are expressed in non-conformal coordinates. To di-
rectly handle such patches, we would need to extend our method
to anisotropic diffusion coefficients—an important topic for future
work. Note also that earlier work on diffusion curves for surfaces
uses free-space 2DGreen’s functions [Sun et al. 2012], which provide
only a rough proxy for a curved surface’s true Green’s function.
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Fig. 22. With both FEM and MFEM, local aliasing of high-frequency bound-
ary data yields large global errors in the solution, demanding significant
refinement. In contrast, WoS always captures the global solution (even with
very few samples); error instead manifests as high-frequency noise.

7 RELATED WORK AND COMPARISONS

7.1 PDE Solvers
There are many methods for solving variable-coefficient PDEs—far
too many to review here. Instead, we examine the unique benefits
of Monte Carlo in terms of the basic properties shared by all meth-
ods within each major class. Since our goal is to directly resolve
fine details, we omit discussion of homogenization schemes, which
approximate fine-scale behavior via coarse-scale models [Abdulle
et al. 2012; Durlofsky 1991; Dykaar and Kitanidis 1992; Efendiev and
Hou 2009; March et al. 2021]; Monte Carlo methods like ours may
in fact help to accurately determine parameters for such schemes.

7.1.1 Finite Element Methods (FEM). All finite element methods
(including BEM and meshless FEM) adopt a common framework:
for a linear PDE 𝐿𝑢 = 𝑓 , find the best approximation to 𝑢 in a finite-
dimensional function space. E.g., standard Galerkin FEM uses an
approximation 𝑢 :=

∑𝑛
𝑖=1 𝑢𝑖𝜙𝑖 in a basis 𝜙1, . . . , 𝜙𝑛 : Ω → R, where

𝑢𝑖 ∈ R are unknown coefficients. Letting ⟨𝑢, 𝑣⟩ B
∫
Ω 𝑢 (𝑥)𝑣 (𝑥) d𝑥

denote the 𝐿2 inner product, one then seeks a 𝑢 satisfying

⟨𝐿𝑢, 𝜙 𝑗 ⟩ = ⟨𝑓 , 𝜙 𝑗 ⟩, 𝑗 = 1, . . . , 𝑛, (30)

i.e., such that 𝑢 agrees with the true solution 𝑢 when restricted to
the subspace 𝑉 := span({𝜙𝑖 }). To solve Eq. 30, one rewrites it as∑𝑛

𝑖=1 𝑢𝑖 ⟨𝐿𝜙𝑖 , 𝜙 𝑗 ⟩ =
∑𝑛
𝑖=1 𝑓𝑖 ⟨𝜙𝑖 , 𝜙 𝑗 ⟩.

The inner products on the left- and right-hand side define mass and
stiffness matrices (resp.), and are often further approximated via
numerical quadrature. From this perspective, the only difference
between flavors of FEM is the choice of basis functions 𝜙𝑖 (and the
difficulty of integrating them). Otherwise, all finite element methods
share a common set of challenges:

• They must all solve a globally coupled system of equations.

Fig. 23. Even when starting with a coarse approximation of just a single
black body from Fig. 1, FEM takes immense time and memory to resolve
detailed variations due to PDE coefficients. Here, initial coarse meshing by
FastTetWild [Hu et al. 2020] takes about 1.5 hours to produce a mesh that
cannot resolve fine details in solution or geometry (despite being quite large
already). After 1 hour more of AMR via Anderson et al. [2021] the solution
is better resolved, but the mesh size has blown up. Our CPU-based WoS
implementation takes about 10 minutes total, on the same machine.

• They are all prone to spatial aliasing in the geometry, solution,
boundary conditions, source terms, and/or coefficients, since
any finite basis {𝜙𝑖 } provides limited spatial resolution.

• They all demand spatial discretization (meshing or sampling)
to define bases 𝜙𝑖 , which can be costly and error prone (Fig. 3).

In contrast, WoS can directly evaluate the solution at any point
without meshing or global node placement, and without a global
solve. Moreover, it does not suffer from aliasing in the solution or
problem data, since functions are not restricted to a finite-dimensional
subspace𝑉 (see Fig. 22). For these reasons, it is also difficult to make
an exact performance comparison between WoS and traditional
solvers in terms of target accuracy, since performance is contingent
on several factors beyond just rates of convergence, such as the cost
of mesh generation and refinement, parallel scalability and the need
for local versus global evaluation of the solution.

Mesh-Based FEM. Most often, FEM bases 𝜙𝑖 are defined via poly-
hedral mesh elements. Quickly and robustly meshing large, detailed
and/or imperfect geometry (e.g., with self-intersections) is an on-
going “grand challenge,” where even state-of-the-art methods can
struggle (Fig. 3). This problem gets harder if the mesh must also
be refined for spatially varying coefficients: even with intelligent
adaptive mesh refinement (AMR) [Zienkiewicz and Zhu 1992a,b],
meshing quickly becomes prohibitive (Fig. 23). More recent a priori
𝑝-refinement does not help, since it considers only element quality
and not spatial frequencies in the solution or problem data [Schnei-
der et al. 2018]. WoS bypasses meshing entirely, needing only a BVH
(for closest point queries), which uses minimal memory and can be
built in a fraction of a second—even for totally degenerate geometry
(see [Sawhney and Crane 2020, Figure 2]).

Meshless FEM. Though meshless FEM (MFEM) seems like a nat-
ural alternative to grid-free Monte Carlo, the term “meshless” is
a bit of misnomer: MFEM does not need a polyhedral mesh, but
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Fig. 24. Convergence of meshless FEM is not well-understood: such meth-
ods often fail to converge under refinement and/or show extremely large
variation in error, as seen here for a variable-coefficient problem on models
from the Thingi10k dataset [Hu et al. 2020; Zhou and Jacobson 2016]). Both
mesh-based FEM and Monte Carlo methods come with rigorous conver-
gence guarantees and behave much more predictably under refinement.

must still discretize the domain by carefully arranging a collection
of nodes (Fig. 4). Nodes are then associated with bases 𝜙𝑖 , such
as radial basis functions (RBFs), to build mass and stiffness matri-
ces. To couple bases with overlapping support one must identify
neighbors—forming a global graph structure similar in size and
complexity to a polyhedral mesh. Node locations must satisfy cri-
teria that are often just as difficult and delicate to enforce as mesh
quality criteria [Li and Liu 2007, Ch. 3], and often require global op-
timization akin to mesh smoothing [Slak and Kosec 2019]. Moreover,
just as one bad element can ruin an FEM solution, bad node place-
ment can lead to catastrophic failure (e.g., NaNs in the solution—see
Fig. 24, top left). One can adaptively sample nodes to mitigate spa-
tial aliasing—but unlike mesh-based FEM, adaptive refinement for
MFEM is poorly understood (lacking, e.g., rigorous convergence
guarantees). Finally, typical MFEM bases are approximating rather
than interpolating, complicating enforcement of boundary condi-
tions [Fries et al. 2004; Nguyen et al. 2008]; some methods hence
modulate bases by distance-like functions [Shapiro and Tsukanov
1999], but still effectively discretize functions on the interior by
choosing a finite basis {𝜙𝑖 }.
As shown in Fig. 24, a more serious challenge with MFEM is

stagnation: only until very recently [Bayona et al. 2019, 2017; Flyer
et al. 2016], MFEM methods might fail to converge without careful
problem-specific tuning of parameters such as neighborhood size.
More damning is that increasing the neighborhood size does not
always make the solution better (see Fig. 25). Moreover, whereas
convergence of adaptive FEM is rigorously understood [Mekchay
and Nochetto 2005], there is a dearth of corresponding results for
adaptive MFEM schemes—especially important for problems with
detailed geometry and coefficients. In practice, MFEM also requires
denser mass/stiffness matrices (Fig. 26) than those used in mesh-
based FEM, while often providing less accurate results. For instance,
methods such as RBF-FD with polynomial augmentation [Flyer et al.
2016] that converge under refinement require at least order-2 bases.
On the whole, MFEM is not known for its reliability—in stark

contrast, WoS guarantees that the expected solution equals the

reference n = 12 n = 18 n = 24 

4k uniformly distributed nodes

L2  e
rr

or
 

neighborhood size n

Fig. 25. In practice, it can be difficult to find reliable parameters for meshless
FEM—for instance, increasing neighborhood size often increases error in an
unpredictable way. In contrast, WoS requires no parameter tuning.

 RBF meshless FEM
(~25k nodes)

WoS
(no linear system)

piecewise linear FEM
(~25k vertices)

5x more fill

Fig. 26. Meshless FEM must solve a much denser linear system than even
standard FEM—whereas WoS avoids solving a global system altogether.

true solution of the smooth PDE without any parameter tuning
whatsoever. Moreover, unlike MFEM, WoS is truly “meshless”: at no
point does one require a global sampling or meshing of the domain.
Finally, though MFEM has been around for a long time, it has not
seen nearly as much use in practice as mesh-based methods (e.g.,
with very few open source or commercial packages available).

Boundary Element Methods (BEM). Boundary element methods
approximate the solution using bases functions 𝜙𝑖 associated only
with elements of a boundary mesh (such as free-space Green’s func-
tions). These methods draw a natural comparison with WoS, since
they need not discretize the interior of the domain. However, there
is a significant difference in capabilities: whereasWoS easily handles
problems with source terms and spatially varying coefficients on
the domain interior, basic BEM ignores these terms altogether (see
Fig. 27). In order to handle general interior terms, one must couple
BEM with a second interior solver such as FEM, MFEM, or FD—
inheriting all the same challenges [Coleman et al. 1991; Costabel
1987; Partridge et al. 2012]. Moreover, even for problems involving
only boundary terms, BEM must discretize the boundary geometry,
leading to spatial aliasing in both boundary data and geometry. Un-
like FEM/MFEM, BEM must solve a globally coupled dense system
of equations, demanding special techniques like hierarchical matrix
approximation [Hackbusch 2015] to obtain reasonable performance.

7.1.2 Finite Difference (FD) Methods. The main conceptual differ-
ence between finite difference and finite element methods is that
degrees of freedom now represent point samples of the unknown
function at nodal points, rather than coefficients in a finite basis.
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Fig. 27. Unlike FEM and Monte Carlo, traditional BEM ignores volumetric
functions (e.g.coefficients and source terms) that affect the PDE solution.

Derivatives are likewise evaluated via Taylor series approximation
(e.g., using finite difference formulas), rather than by taking deriva-
tives of basis functions.

On the one hand, FD schemes are attractive due to the simplicity
of implementation on a regular grid. They are however less than
ideal for PDEs with nonuniform coefficients, where the uniformity
of grid cells can lead to significant numerical diffusion [Umansky
et al. 2005], spurious negative values [Sharma and Hammett 2007],
and locking/stagnation [Babuška and Suri 1992]. Another major
challenge is spatial adaptivity: for many elliptic PDEs, refining the
whole domain is overkill. Hierarchical structures like octrees can
be used to adaptively refine solutions [Gibou et al. 2018; Losasso
et al. 2006], yet come with their own challenges (e.g., less coher-
ent memory access, and increased complexity of implementation).
Enforcement of boundary conditions may also not be straightfor-
ward, since cell boundaries are typically axis aligned [Causon and
Mingham 2010].
On the whole, finite differences suffer from the same basic chal-

lenges as finite element methods: one must spatially discretize the
domain, boundary conditions, source term, and coefficient func-
tions, leading to either aliasing or oversampling. Moreover, one
must solve a globally coupled system of equations over the entire
domain, rather than concentrating computational effort only at
points or regions of interest (as with Monte Carlo).

Material Point Methods. Material point methods [Jiang et al. 2016],
such as PIC [Harlow and Welch 1965], FLIP [Brackbill and Rup-
pel 1986; Zhu and Bridson 2005], APIC [Jiang et al. 2015], and
MPM [Sulsky et al. 1995] are popular for time-dependent computa-
tional mechanics problems involving large-scale deformation (fluids,
plasticity, etc.). These methods are also sometimes referred to as
“meshless”, but they are not (in general) MFEM schemes as defined
in Sec. 7.1.1. Rather, these methods use particles to approximate
advection, and a background grid to solve elliptic problems (such as
pressure projection in fluids). Critically, for the problems we con-
sider here (time-independent elliptic PDEs), there is no advection
component, and MPM reduces to simply solving elliptic equations
on a grid—with the same trade-offs discussed above.

7.1.3 Stochastic Methods. Not all PDE solvers need to discretize
space—the notable exception are Monte Carlo methods based on
continuous random processes such as Brownian motion. The sto-
chastic approach to deterministic boundary value problems centers
on the simulation of random walks that in aggregate solve a large
class of elliptic PDEs [Øksendal 2003]. Pointwise evaluation of PDE

Fig. 28. Top Row, Right : Our WoS algorithms correctly resolve the boundary
conditions for any value of 𝜀 ; shrinking the 𝜀-shell reduces bias in the
solution in a predicable manner, with little impact on performance (Bottom
Right).Middle Row, Right : Solving the same PDEwith the integration scheme
in Eq. 31 eventually resolves the boundary conditions with a finer step-size,
though at the detriment of run-time performance (Bottom Right).

solutions has allowed this formulation to find extensive use in sci-
entific disciplines such as mathematical finance [Black and Scholes
1973; Cox et al. 1985; Merton 1971; Merton and Samuelson 1992],
computational physics and chemistry [Gillespie 1977; Grebenkov
2007; Mascagni and Simonov 2004a,b] and optimal control [Kalman
1960; Kappen 2007] (albeit often on simple geometric domains).

Discretized RandomWalks. In place of WoS, one might try approx-
imating the Feynman-Kac formula by directly simulating a diffusion
process 𝑋𝑡 with explicit time stepping [Higham 2001; Kloeden and
Platen 2013], akin to ray marching [Tuy and Tuy 1984]:

𝑋𝑘+1 = 𝑋𝑘 + ®𝜔 (𝑋𝑘 )ℎ +
√
𝛼 (𝑋𝑘 ) (𝑊𝑘+1 −𝑊𝑘 ). (31)

However, this approach introduces several sources of error. E.g.,
walks often leave the domain and must be clamped to the boundary
(Fig. 29); shrinking ℎ reduces error, but significantly slows down
computation (Fig. 28). Also, nonlinear functions 𝜑 do not in general
commute with an expectation (E[𝜑 (𝑋 )] ≠ 𝜑 (E[𝑋 ])), hence it is not
clear how to estimate the function exp(−

∫ 𝜏

0 𝜎 (𝑋𝑡 ) d𝑡) in Eq. 12 in
an unbiased way. Bias is exacerbated in problems with variable diffu-
sion and drift coefficients which implicitly modify the ideal step size.



0

1

2
3

Fig. 29. Discretized ran-
dom walks can leave the
domain, biasing estimates.

In contrast, the 𝜀-shell inWoS incurs only
minuscule bias at the very end of a walk,
leading to far less error overall (Fig. 28,
top); the size of 𝜀 also has little effect
on performance (Fig. 28, bottom). Note
that as with ray marching in rendering
[Kettunen et al. 2021], discretized walks
do still exhibit fairly predictable and low
variance, as long as some bias is tolerable.

Continuous Random Walks. A variety of so-called grid-free Monte
Carlo methods have been developed for simulating random walks
without spatial discretization. The chief example is the WoS method
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from Sec. 3; variants include walk on rectangles [Deaconu and Lejay
2006] andwalk on boundaries [Sabelfeld and Simonov 2013]. Zagajac
[1995] describes an alternative strategy based on shooting rays,
albeit only for the basic Laplace equation. WoS has been applied to
a limited set of problems with piecewise constant coefficients [Lejay
and Maire 2013; Maire and Nguyen 2016]; ours is the first grid-free
method for fairly general continuously-varying coefficients.

7.2 Volume rendering
While Monte Carlo is little-used for PDEs, it is the method of choice
for the RTE in both neutron transport [Spanier and Gelbard 1969]
and rendering [Novák et al. 2018; Pharr et al. 2016]. Our approach is
closest to null-scattering methods, such as the delta tracking method
detailed in Sec. 2.5 [Coleman 1968; Raab et al. 2008; Woodcock et al.
1965]. Early null-scattering methods were physically motivated,
but lacked rigorous mathematical justification. More recent work
re-derives null-scattering in a framework that allows construction
of estimators without the need for a direct physical interpretation
[Galtier et al. 2013; Georgiev et al. 2019; Jonsson et al. 2020; Kettunen
et al. 2021; Kutz et al. 2017; Miller et al. 2019], and enables known
properties of the medium to be exploited, e.g., using control variates
[Kutz et al. 2017; Novák et al. 2014]. A clear mathematical foundation
provides rich opportunities for improvement—we likewise expect
the framework introduced here will make future work in volume
rendering more easily transferable to methods for diffusive PDEs.

8 LIMITATIONS AND FUTURE WORK
Our method is not without limitations. As in rendering, coefficients
with large spatial variation can lead to increased variance—unlike
rendering, large variations in 𝜎 ′(𝑥) (Eq. 21) typically stem from
derivatives of diffusion and drift coefficients, making it difficult to
deal with, e.g., sharp changes in material density. Adapting fur-
ther techniques from volume rendering may help address such
situations—e.g., local bounds on coefficient functions [Szirmay-
Kalos et al. 2011; Yue et al. 2011], low-variance estimators for the
VRE [Georgiev et al. 2019; Novák et al. 2018], or adaptive weight
windows (as discussed in Sec. 5.3). Likewise, techniques from the
SDE literature such asmulti-level Monte Carlo [Giles 2015] may help
accelerate run-time performance.
More broadly, the WoS framework still lacks support for many

basic features of schemes like FEM, such as Neumann or Robin
boundary conditions on general domains. Our hope is that the
framework introduced here provides building blocks for extending
WoS to a much larger class of PDEs, such as those with anisotropic
coefficients or certain forms of nonlinearity. In the long term we
are optimistic that grid-free Monte Carlo will develop into a mature
technology, enabling engineers and scientists to analyze systems
of extreme complexity without having to worry about meshing or
discretization—just as in rendering today.
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A REMOVING THE FIRST ORDER TERM
Sec. 4 transforms a 2nd order PDE with variable drift into an equiva-
lent PDE without a 1st order term (Eqs. 20 and 21). Here we give the
details of this transformation; note that App. A.1 assumes 𝛼 := 1,
since a variable diffusion coefficient 𝛼 (𝑥) can be absorbed into the
source function 𝑓 (𝑥) and screening coefficient 𝜎 (𝑥), as in Eq. 20.

A.1 Girsanov Transformation
In stochastic calculus, a Girsanov transformation describes how the
dynamics of a continuous random process transform under a change
of probability measure. Let 𝑋𝑡 be the diffusion process governed by
the SDE d𝑋𝑡 = ®𝜔 (𝑋𝑡 ) d𝑡 + d𝑊𝑡 . The solution to the PDE

1
2Δ𝑢 (𝑥) + ®𝜔 (𝑥) · ∇𝑢 (𝑥) − 𝜎 (𝑥)𝑢 (𝑥) = −𝑓 (𝑥) on Ω, (32)

𝑢 (𝑥) = 𝑔(𝑥) on 𝜕Ω.

can then be expressed via the expectation

𝑢 (𝑥) = E
[∫ 𝜏

0
e−

∫ 𝑡

0 𝜎 (𝑋𝑠 ) d𝑠 𝑓 (𝑋𝑡 ) d𝑡 + e−
∫ 𝜏

0 𝜎 (𝑋𝑡 ) d𝑡𝑔(𝑋𝜏 )
]

(33)

over random trajectories of 𝑋𝑡 , conditioned on 𝑋0 = 𝑥 . The Gir-
sanov transformation modifies the drift coefficient ®𝜔 (𝑥) of 𝑋𝑡 by
introducing an importance sampling weight

𝑍 (𝑊𝑡 ) := e
∫ 𝑡

0 ®𝜔 (𝑊𝑠 ) ·d𝑊𝑠 − 1
2
∫ 𝑡

0 | ®𝜔 (𝑊𝑠 ) |2 d𝑠 . (34)

into Eq. 33. The term
∫ 𝑡

0 ®𝜔 (𝑊𝑠 ) · d𝑊𝑠 is called a stochastic integral
since it is defined with respect to variations of a Brownian process
𝑊𝑠 (App. A.2 describes how to evaluate this integral; see Øksendal
[2003] for a formal definition). Reweighting by𝑍 yields an equivalent
stochastic formula involving only a Brownian random walk𝑊𝑡 :

𝑢 (𝑥) = E
[∫ 𝜏

0
e−

∫ 𝑡

0 𝜎 (𝑊𝑠 ) d𝑠 𝑍 (𝑊𝑡 ) 𝑓 (𝑊𝑡 ) d𝑡 +

e−
∫ 𝜏

0 𝜎 (𝑊𝑡 ) d𝑡 𝑍 (𝑊𝜏 ) 𝑔(𝑊𝜏 )
���𝑊0 = 𝑥

]
. (35)

A.2 The Chain Rule of Stochastic Calculus
It𝑜’s lemma is the stochastic counterpart of the chain rule: given a
twice differential function 𝛾 (𝑥) : R𝑛 ↦→ R, it says that the differen-
tial d𝛾 , as a function of a Brownian process𝑊𝑠 , is given by

d𝛾 (𝑊𝑠 ) = ∇𝛾 (𝑊𝑠 ) · d𝑊𝑠 + 1
2Δ𝛾 (𝑊𝑠 ) d𝑠 . (36)

Integrating over time and rearranging the terms then yields:∫ 𝑡

0 ∇𝛾 (𝑊𝑠 ) · d𝑊𝑠 = 𝛾 (𝑊𝑡 ) − 𝛾 (𝑊0) −
∫ 𝑡

0
1
2Δ𝛾 (𝑊𝑠 ) d𝑠 . (37)

This integrated version of It𝑜’s lemma allows us to re-express the
importance weight 𝑍 without a stochastic integral. In particular, if
the drift coefficient takes the form ®𝜔 (𝑥) = ∇𝛾 (𝑥) for some scalar
field 𝛾 , then an alternative expression for 𝑍 is given by:

𝑍 (𝑊𝑡 ) = e𝛾 (𝑊𝑡 ) − 𝛾 (𝑊0) − 1
2
∫ 𝑡

0 (Δ𝛾 (𝑊𝑠 ) + |∇𝛾 (𝑊𝑠 ) |2) d𝑠 . (38)

A.3 Derivation of Eq. 21
With this new expression for 𝑍 , Eq. 35 now takes the form

𝑢 (𝑥) = e−𝛾 (𝑥) E
[∫ 𝜏

0
e−

∫ 𝑡

0 𝜎′ (𝑊𝑠 ) d𝑠 𝑓 ′(𝑊𝑡 ) d𝑡 +

e−
∫ 𝜏

0 𝜎′ (𝑊𝑡 ) d𝑡𝑔′(𝑊𝜏 )
���𝑊0 = 𝑥

]
, (39)

where
𝑓 ′(𝑥) := e𝛾 (𝑥) 𝑓 (𝑥), 𝑔′(𝑥) := e𝛾 (𝑥)𝑔(𝑥),

𝜎 ′(𝑥) := 𝜎 (𝑥) + 1
2

(
Δ𝛾 (𝑥) + |∇𝛾 (𝑥) |2

)
.

Setting 𝑈 (𝑥) := e𝛾 (𝑥)𝑢 (𝑥), the PDE corresponding to Eq. 39 no
longer has a 1st order drift term:

1
2Δ𝑈 (𝑥) − 𝜎 ′(𝑥)𝑈 (𝑥) = −𝑓 ′(𝑥) on Ω, (40)

𝑈 (𝑥) = 𝑔′(𝑥) on 𝜕Ω,

Note in particular that we obtain Eq. 21 from Eq. 20 by letting
𝛾 (𝑥) = 1

2 ln(𝛼 (𝑥)).
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