Non-linear Sphere Tracing for Rendering Deformed Signed Distance Fields

Dario Seyb¹

Alec Jacobson²

Derek Nowrouzezahrai³

Wojciech Jarosz¹

DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation. Genova et. al, 2019

"Forward" Deformations

Implicit Surface Representations

$$S(\boldsymbol{x}) = |\boldsymbol{x} - \boldsymbol{c}| - \boldsymbol{r} = 0$$

Implicit Surface Deformation

Problem Statement

Use conventional deformation techniques to directly render deformed implicit surfaces

Conversion to Explicit Representation

Conversion to Explicit Representation

Increasing the resolution helps, but...

Ground Truth

128x128x128

256x256x256

512x512x512

Costly and still full of artifacts!

Conversion to Explicit Representation

- Data Structure for Soft Objects [Wyvill et al. 1986]
- →Marching Cubes [Lorensen et al. 1987]
- Dual Contouring [Ju et al. 2002]

•

Problem Statement - Solved?

Use conventional deformation techniques to directly render deformed implicit furfaces

Implicit Surface Rendering

Sphere Tracing [Hart1996]

Sphere Tracing [Hart1996]

Sphere Tracing [Hart1996]

Sphere Tracing - Deformation

Sphere Tracing - Deformation

Sampling in Undeformed Space

Sampling in Undeformed Space

Sampling in Undeformed Space

Issue #1: Remapping the Distance

Issue #2: Non Invertible Deformations

Problem Statement – Solved?

Use convectional deformation techniques to directly render deformed implicit surfaces

Non-linear Sphere Tracing

The distance isn't valid here...

But it is here!

Idea: Trace in Undeformed Space

What is the deformed ray equation?

Line integrals to the rescue!

Line integrals to the rescue!

Line integrals to the rescue!

Finding the Tangent

Finding the Tangent

Finding the Tangent

Numerical Integration

Non-linear Sphere Tracing

Non-linear Sphere Tracing

Taking Substeps

Integration – Summary

$$\hat{\boldsymbol{x}}(s) = \boldsymbol{b} + \int_{0}^{s} \hat{\boldsymbol{\omega}} \, \mathrm{d}t$$

Integration – Summary

$$\hat{\boldsymbol{x}}(s) = \hat{\boldsymbol{p}} + \int_{0}^{s} \hat{\boldsymbol{\omega}} \, \mathrm{d}t$$

$$\hat{\boldsymbol{p}} = D^{-1}(\boldsymbol{p})$$

Finding the Start Point

Finding the Start Point

Subdividing the Hull

Problem Statement - Solved!

Use conventional deformation techniques to directly render deformed implicit surfaces

Results

Regularized Kelvinlets, Fernando de Goes and Doug L. James

Linear Blend Skinning

Limitations

- Geometry: Signed distance function
- Deformation: Locally foldover free

Future Work

• Generalize to all implicit surfaces

Future Work

- Generalize to all implicit surfaces
- Support cheap layering of deformations

FFD

FFD + Kelvinlet

Future Work

- Generalize to all implicit surfaces
- Support cheap layering of deformations
- Evaluate deformed SDF

Thank you!

Please visit

dartgo.org/nlst

for the full paper and supplemental material

Dario Seyb dario.r.seyb.gr@dartmouth.edu

Derek Nowrouzezahrai derek@cim.mcgill.ca

Scan Me!

Alec Jacobson jacobson@cs.toronto.edu

Wojciech Jarosz wojciech.k.jarosz@dartmouth.edu

Integration – Comparison

Hull Subdivision – Results

Results - Error Control

