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Fig. 1. Our system allows for player-driven lighting changes at run-time. Above we show a scene where a door is opened during gameplay. The image on the
left shows the final lighting produced by our system as seen in the game. In the middle, we show the scene without the methods described here (top). Our
system enables us to efficiently precompute the associated lighting change (bottom). This functionality is built on top of a dynamic light set system which
allows for levels with hundreds of lights who’s contribution to global illumination can be controlled individually at run-time (right). ©Activision Publishing, Inc.

We describe the design and evolution of UberBake, a global illumination
system developed by Activision, which supports limited lighting changes in
response to certain player interactions. Instead of relying on a fully dynamic
solution, we use a traditional static light baking pipeline and extend it with
a small set of features that allow us to dynamically update the precomputed
lighting at run-time with minimal performance and memory overhead. This
means that our systemworks on the complete set of target hardware, ranging
from high-end PCs to previous generation gaming consoles, allowing the
use of lighting changes for gameplay purposes. In particular, we show how
to efficiently precompute lighting changes due to individual lights being
enabled and disabled and doors opening and closing. Finally, we provide
a detailed performance evaluation of our system using a set of production
levels and discuss how to extend its dynamic capabilities in the future.
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1 INTRODUCTION
AAA games today produce images at real-time frame rates (usually
30 or 60 frames per second) that can rival the realism and complexity
of offline rendered movies from just a few years ago. This leaves
just 16–30ms to simulate the virtual environment, react to player
input, and produce images showing a wide range of complex light-
transport phenomena. This last goal can be especially challenging,
as players enjoy games on a variety of hardware platforms and
comparable quality needs to be achieved on all of them, including
ones less powerful than the state of the art, such as mobile devices
or previous generation consoles.
One of the difficulties of the rendering process is computing

global illumination—the component of the lighting that arrives at
each point not directly from a light source, but after some number
of bounces off other surfaces in the scene. Given the limited time
budget, most modern game engines rely on some form of precompu-
tation or baking. Parts of the lighting are computed offline, stored in
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some data structure, and efficiently retrieved at run time. This was
pioneered by the work of id Software on Quake and Quake 2 [Abrash
2000], with the latter being the first game to feature truly indirect
lighting, precomputed and stored in textures.
While recent developments in hardware-accelerated ray trac-

ing [Parker et al. 2010; Wyman et al. 2018] provide hope for limited
forms of real-time global illumination, these techniques have so far
remained too costly as general lighting solutions in AAA games.
With the exception of isolated effects (e.g. mirror reflections) real-
time ray tracing is unlikely to supplant current baking-based solu-
tions, or even be universally available, for at least the next console
generation (and likely longer for mobile platforms).
The limitations of baked lighting are, however, significant. Any

changes to the geometry require a costly, offline update that can
often take multiple hours, significantly increasing the iteration time
for artists. Because the precomputation is performed assuming static
level geometry, any changes at run-time have no effect on lighting.
For example, a player might destroy a wall, which should flood
the inside of a building with light; however, since the lighting was
precomputed with the wall intact, there is no information available
about how the lighting distribution inside the room should change
when it is no longer there. Even simple interactions like opening
doors might leave the level’s lighting in an inconsistent state.
We describe the design and evolution of UberBake, a dynamic

light baking system we developed to address these issues and which
we’ve since used on multiple AAA games. UberBakewas developed
over the course of multiple releases and innovation was driven
mainly by gameplay and level-design requirements. Particularly,
we wanted to implement a system for global illumination in which
certain player actions can cause dynamic lighting changes. This
allows the lighting to be used not only for dramatic visuals, but
also as part of the gameplay, for instance to drive player’s attention
(e.g., flickering lamp can suggest a point of interest) or as a way to
solve the game’s puzzles (e.g., shooting lights out before engaging
enemies will make them less likely to aim accurately).
The central insight of our work is that we can choose a limited

subset of user interactions that affect lighting (enabling/disabling
lights and opening/closing doors) and receive many of the benefits
of a fully dynamic global illumination solution. This made it possible
to 1) efficiently pre-compute lighting changes associated with each
interaction and 2) implement a run-time system that, on average, is
no slower than our previous fully static implementation and uses
a minimal amount of extra memory, that scales linearly with the
number of allowed interactions.

1.1 Design criteria
During the development of this system we had to fulfill a set of hard
constraints. A system that failed to meet one of them would not
have been shippable.

C.1 Near-zero runtime overhead. We want to ship games run-
ning at 60 FPS on a wide variety of hardware, from modern
gaming PCs, to consoles and smart phones. Since the lighting
effects are relevant for gameplay, we cannot disable them on

low end platforms. For our system to run on all target plat-
forms, it has to have very little overhead on top of existing
static lighting.

C.2 No additional constraints on geometry. Many global illu-
mination algorithms impose specific restrictions on level geom-
etry such as a requiring a minimum wall thickness, preferring
axis aligned features, and more. There was already a significant
amount of content when we implemented our system. Since
it was not feasible to rework much of the content, the system
had to work well while only requiring minor level changes.

C.3 No major revisions to engine and tools code. We have a
large amount of engineering and art resources invested in ex-
isting tools and cannot change them significantly. Additionally,
we do not have the resources to rewrite large parts of the en-
gine. We had to extend the existing baking pipeline without a
complete overhaul, and implementation time had to be weighed
against supporting production or extending the baking pipeline
in other ways.

Meeting the above-mentioned constraints was the highest priority
and narrowed down our options in the design of the system, but we
also strived to optimize for the following design goals.
G.1 Minimize artist iteration time. As opposed to run-time per-

formance, we do not have any hard constraints on baking per-
formance. Still, long bakes increase artist iteration times which
we would like to avoid. Bake time should scale with scene
complexity and the number of interactive elements per scene.
Specifically, we strived to achieve sub 10 minute bake times for
preview-quality results to enable fast iteration.

G.2 Minimal content creation overhead. Previous systems had
content creators manually label every scene element (lights,
geometry, etc.) affected by a particular change in the lighting
setup. Particularly, it was necessary to classify elements into
being active before, during, or after the change in lighting. This
was prone to errors due to mislabeling, caused a large workload
on lighting artists, and ultimately, the system not being widely
used.

G.3 Maximize implementation orthogonality. We want to be
able to add interactive elements and improve the baking code
without significant changes to the run-time system. This allows
us to expose new functionality to artists without the risk that
engine changes pose.

While these constraints and goals might seem overly restrictive
in an academic context, to our knowledge they are common in pro-
duction environments and thus our solutions to them are likely
broadly applicable. Still, as in any production lighting system, there
are many design decisions we made due to constraints specific to
our existing shared technology, artist workflows, and production
needs. For example the engine we are using is a forward+ renderer
[Harada et al. 2012]. This makes using lightmaps a more feasible
solution than they would be when implementing a deferred engine.
Even though fully volumetric approaches could provide certain ben-
efits (e.g., a better unification of the lighting on different objects),
they come both with higher lookup costs (which is problematic, as
we target 60Hz titles) and their own set of problems (that the artists
were not familiar with, as the previous games relied on lightmaps).
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This made us keep and extend the existing solutions, rather then
rewrite them entirely, but a similar line of reasoning to the one de-
scribed in this paper could be applied to add dynamism to volumetric
representations as well.

Non-goals. Finally, we want to explicitly point out that we do not
aim to develop a system for use in a customer facing game engine
such as Unity [Unity Technologies 2020] or Unreal Engine [Epic
Games 2020], but rather a tool that is used internally. This means we
only need to support the hardware that our games ship on, without
the need to provide fallback solutions for legacy platform, that may
be potentially in use by some customers of these general game en-
gines. We can also take certain liberties in choosing implementation
details, as all the features are developed in close collaboration with
the people using them. For example, in some cases we can rely on
a manual procedure, if we know it will not cause an unnecessary
burden for the users and when an automatic one would be difficult
or time consuming to implement reliably. Additionally, we did not
set out to develop a general solution to dynamic global illumination.
Instead we empower artists to decide which dynamic effects are
important for the look and feel in each level.

1.2 Existing and Alternative Solutions
There exists a vast body of research on global illumination methods
for real-time applications. Before endeavouring to develop a new
approach, we carefully considered and evaluated existing techniques
against our specific goals and constraints, i.e., runtime performance
and support for dynamic geometry.

Real-time Light Transport (dynamic lighting and geometry). Real-
time light transport methods support dynamic lighting and geom-
etry with minimal precomputation at the cost of run-time perfor-
mance. Real-time path tracing offers a conceptually simple frame-
work for computing global illumination, and it has recently gained
popularity [4AGames 2019; Hillair 2018; InfinityWard 2019; Remedy
Entertainment 2019; Schied 2019] due to the availability of hard-
ware accelerated ray intersection queries [Parker et al. 2010; Wyman
et al. 2018] and recent advances in denoising methods [Koskela et al.
2019; Mara et al. 2017; Schied et al. 2017, 2018]. Many-light methods
cast the indirect illumination problem in terms of direct illumina-
tion from a potentially large number of related virtual light sources
[Dachsbacher et al. 2014; Keller 1997]. Unfortunately the current
generation of consoles does not ship with dedicated ray-tracing
hardware. Hence, given constraints C.1 and C.3, both real-time
path tracing and solving the massive visibility problem in the con-
text of many-light methods remains infeasible.
Using a simplified, volumetric representation of the scene is a

common way to decouple geometry from the lighting calculations
in order to reduce the lighting and visibility computation time while
supporting dynamic geometry and lighting [Crassin et al. 2011; Ka-
planyan and Dachsbacher 2010; Laine and Karras 2010; Yudintsev
2019] and can be combined with real-time path tracing [Majercik
et al. 2019]. Aside from the non-trivial runtime cost, the main down-
side of volumetric light transport methods is rooted in the mismatch
between the simplified scene representation used for lighting and
the scene geometry. Achieving consistent lighting without leaks or

interpolation artifacts remains a challenge, often requiring changes
to level design [Caurant and Lambert 2018; Hooker 2016; Silven-
noinen and Timonen 2015], violating constraint C.2.

Precomputed Light Transport (dynamic lighting, static geometry).
Precomputed light transport (PRT) methods allow dynamic envi-
ronment lighting while keeping the runtime cost low under the
assumption that geometry is mostly static by performing the ex-
pensive visibility calculations offline [Christin 2018; Silvennoinen
and Timonen 2015; Sloan et al. 2002]. Direct-to-indirect transport
methods generalize the lighting model to allow arbitrary, local light
sources [Hašan et al. 2006; Kontkanen et al. 2006; Lehtinen et al. 2008;
Martin and Einarsson 2010]. With only a few exceptions, PRT meth-
ods remain largely incompatible with arbitrary geometry changes,
and those that do [Loos et al. 2011, 2012; Silvennoinen and Lehtinen
2017] impose constraints on the structure of the scene geometry
that are too limiting in our context (C.2), or have performance costs
that are too high (C.1).

Precomputed Lighting (static lighting and geometry). At the other
end of the spectrum, constraining both lighting and geometry to
be static has, naturally, the smallest runtime cost, and is arguably
the most common form of global illumination in game production
[Barré-Brisebois 2017; Chen 2008; Guinier 2020; Iwanicki and Sloan
2017; McTaggart 2004; Neubelt and Pettineo 2015; O’Donnell 2018].
Despite fulfilling all of our constraints we cannot use any of these
techniques as is, because they do not allow for any dynamic light-
ing changes. Still, particularly due to their run-time performance
characteristics, they serve as a good basis to build upon.

Limited forms of dynamic lighting can be supported by precom-
puting multiple lighting scenarios and interpolating between them
at runtime at the expense of increased streaming memory cost. In
contrast to the fixed memory overhead of precomputed transport
methods, the memory cost from blending the lighting solutions is
temporary and can usually be streamed in and out [Blizard 2017;
Caurant and Lambert 2018; Christin 2018; McAuley 2018; Öztürk
and Akyüz 2017; Tokarev 2018]. These approaches work well in
scenarios where lighting changes are limited and not controlled by
the player, e.g., when changing the time-of-day. There, streaming
load is easily predicted and at most two different sets of lighting
have to be kept in memory. Our whole motivation is to support
player-driven lighting changes to a large set of interactive elements.
Using existing techniques would quickly exhaust our memory bud-
get and streaming in a completely new set of lighting in response
to player input is not feasible.

1.3 Summary and overview
In summary, no single existing method is able to readily meet our
design goals under the performance constraints. We therefore de-
veloped our own system based on precomputed lighting using a
mixture of volumetric and lightmapped representations for max-
imum performance while supporting dynamic geometry changes
via efficient local lighting updates. In the following we will first
describe our (static) global illumination solution (Section 2) and
then go into detail about how we gradually extended it during the
development of multiple games to handle dynamic lighting effects.

ACM Trans. Graph., Vol. 39, No. 4, Article 150. Publication date: July 2020.



150:4 • Dario Seyb, Peter-Pike Sloan, Ari Silvennoinen, Michał Iwanicki, and Wojciech Jarosz

“Dynamic Light Sets” (DLSs) enable us to turn sets of lights on and
off in response to player actions (Section 3) and update their contri-
butions to global illumination accordingly. Finally, in Section 4 we
extend DLSs to handle non-linear changes in lighting, such as ones
resulting from opening and closing doors.

2 OUR BAKED GLOBAL ILLUMINATION SOLUTION
Before we dive into the dynamic part of our system, we describe
the basic processes and data structures we use to incorporate static
global illumination into our games. While doing so we will highlight
some of the changes we made to the purely static lighting system to
prepare for the introduction of dynamic elements. It turned out that
all of those changes also improve our static lighting performance,
quality, and memory usage, and are in use even when there are no
dynamic elements present in the level.
We build off a static lighting system typical in game production

and only provide a high-level view of its workings, sufficient enough
to understand the changes to make it dynamic. A more detailed
treatment of the static baking system we started with is available in
Iwanicki and Sloan [2017]. The techniques described there result
in a performant approach to baked global illumination that has
been proven to work well in practice in a wide variety of scenarios.
Lighting artists, level designers and engineers are familiar with the
limitations of this type of system and know how to work around
potential pitfalls. These considerations are important in a production
system since changing central technology always requires buy-
in from all parties. Many of the decisions we will outline in the
following are therefore driven by user concerns as much as by
technological arguments.
There are four parts to our lighting solution: How we represent

(Section 2.1) and store (Section 2.2) lighting, how we precalculate
global illumination and what assumptions we make regarding level
geometry (Section 2.3), and how we use the precomputed data to
incorporate global illumination during shading on both static and
moving objects (Section 2.4).

2.1 Representing lighting
When choosing the representation for our lighting data we have a
wide variety of options. Not only do we have to decide how we store
lighting values, but also which lighting we store in the first place.

Path notation. For this purpose we introduce some notation to
allow us to precisely express paths and their contributions. We
extend Heckbert [1990]’s path notation for our use case and denote
light sources with L, diffuse reflections with D, and receivers with R.
We use multiple different types of light sources, and we will discuss
them in detail later in this section. A set of light paths L can be
described by a regular expression with each symbol corresponding
to an interaction event. For example, LDDR denotes all paths that
start at a light source and end at a receiver via two diffuse bounces.
We abuse notation, and will use L to refer both to a set of paths, as
well as the corresponding lighting resulting from those paths.

We largely go with the common industry practice of only pre-
computing diffuse indirect lighting, that is, paths of the form LD+R.
We convert our run-time material model to purely Lambertian dur-
ing baking using total hemispherical reflectance (instead of the

diffuse albedo component). This gives us a low-frequency approxi-
mation to the lighting equation while including much of the energy
that contributes to the shaded result. Including specular or direct
lighting would require storing data at a much higher resolution
to allow satisfactory reconstruction quality. We instead use run-
time methods to compute those contributions. That said, in some
cases (illustrated below) we do include direct lighting in the bake
to trade worse lighting quality for better run-time performance.

(d) sky light(b) static light(a) primary light

(e) lightmap texel

(c) emissives

Here we show the different types of light paths we compute for
the example of a lightmap texel (e). Primary lights LP (a) are the
most common light sources in our system. For these we bake indi-
rect lighting only, direct lighting is computed at run-time per pixel.
Artists can also place static lights LS (b) for which direct lighting
is baked as well, this is done in areas with many lights where we
would not be able to compute direct lighting, and particularly shad-
ows, at run-time. We additionally support lighting from emissive
geometry LE (c), and again, this would be too expensive to evaluate
at run-time, so both direct and indirect lighting is baked. Note that
here lights are infinitesimal light sources such as point or spot lights,
while emissives are triangles with an emissive material. Finally, any
light coming from the sky LSky (d), directly or indirectly, is baked,
since computing it at run-time would be prohibitively expensive.
This gives us the final baked lighting in the form

LB = ((LPD) | (LS | LE | LSky))D∗R. (1)

2.2 Storage formats
We store this lighting in different formats depending onmemory con-
sumption, run-time access performance, and reconstruction quality
considerations. Having multiple storage solutions gives us flexibility
in trading off quality and performance depending on the current
needs of game and level design. Ensuring that the lighting is consis-
tent despite the different storage formats is important, as it allows
us to use them all in a single scene without artifacts (see Fig. 2).

Fig. 2. We use different types of lighting representation in the same scene.
On the left is a breakdown of models that use LLGs (teal) and geometry
that uses lightmaps (yellow). On the right we highlight dynamic objects in
red. Note that dynamic objects still use LLGs, hence the rendering pipeline
is unaware of the difference. ©Activision Publishing, Inc.
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Directional lighting encoding. Storing simple scalar irradiance
would preclude the use of normal maps at run-time, which are
critical for appearance fidelity.We therefore store incoming radiance
in some basis, e.g., spherical harmonics, which allows us to evaluate
irradiance for a given surface normal.

Lightmaps. Lightmaps are the traditional and still widely used
way to store lighting data for surfaces in a level. While they can ac-
curately represent surface lighting and are very efficient at run-time,
they do come with several downsides. Most importantly, meshes
with fine features may require impractically high lightmap reso-
lutions and often exhibit visual artifacts caused by discontinuities
in the parametrization. Examples of such difficult meshes are door
handles and wires. Still, we use lightmaps for geometry created by
level designers in our proprietary level editing tools as well as for
large, structural models, such as individual wall segments, or entire
buildings. This geometry is mostly comprised of big, flat surfaces,
whichmakes it easy to automatically generate high-quality lightmap
UVs. To encode the lighting data we use a variant of Ambient High-
light Direction (AHD) encoding [id Software 1999], with changes by
Sloan and Silvennoinen [2018] to improve the reconstruction quality
of bilinearly filtered samples. This representation uses 8 bytes/texel
which are allocated as follows: one 11_11_10_Float texture (4 bytes/-
texel) stores the irradiance in local +Z direction (HDR data), another
RGBA8 texture (4 bytes/texel) stores the luminance ratio of irradi-
ance in local +Z to ambient radiance (the value is restricted to [0,1]
range) and the direction of the highlight. The spatial resolution for
lightmaps is determined by the artists, to fit within the prescribed
memory budgets. On top of that, we scale the lightmap resolution
on each surface relatively in cases when more detail is needed in
certain areas. We explored alternatives, but they are more expensive
and our lighters preferred this representation.

Local Light Grids (LLGs). Small props such as debris, or intricate
ones like cars, doorways or characters are not an ideal application
for lightmaps. Debris models might be instanced many times in
a level, and, for more intricate models, computing lightmap UVs
automatically is prone to failure and edge cases.

Instead we use a data structure we call “Local Light Grids,” which
was first introduced by Iwanicki and Sloan [2017] to provide a volu-
metric alternative to lightmaps. Instead of trying to store lighting
values on the surface of objects, LLGs store them in SH radiance
probes around the model, akin to an object-centric irradiance vol-
ume [Greger et al. 1998]. While Iwanicki and Sloan [2017] used a
tetrahedral grid, we decided to go with a simpler Euclidean grid for
faster lookups and full decoupling of the lighting, using an oriented
bounding box to represent the volume around the model. The main
issue with such volumetric storage methods is that the resulting
lighting reconstruction misses high frequency detail introduced by
visibility changes over the model surface. LLGs solve this problem
by storing an additional self-visibility term for each model vertex,
and accounting for it when interpolating lighting data from the grid
probes. An additional benefit of decoupling lighting from visibility
is that self-visibility stays the same, no matter where the model is
placed in the scene. This allows using instancing to render amodel at
many scene locations, since the per vertex data is the same for each
instance and only the grid probe values change across instances.

This representation handles fine features, like door knobs or wires,
that would require impractical resolutions with lightmaps. The
spatial resolution of LLG defaults to a sample every 1.5meters, but
we use heuristics to change it on a per object basis: if the number of
probes used by a single grid is over a certain threshold, we lower the
resolution; we add extra probes for objects that can be connected
and need a lighting gradients; we also allow overriding the density
per-object.

The Global Light Grid (GLG). We now have two representations
for lighting on static models, but we are missing a way to shade
moving objects. While dynamic objects in our system do not affect
global illumination, we still want precomputed global illumination to
influence moving characters, vehicles, and particle effects. One way
to handle this is to introduce a volumetric lighting representation
that allows us to sample indirect lighting at arbitrary points in
space. This means that moving objects can evaluate static lighting
at whatever position they happen to be in. The resolution of the
GLG is variable across the map and determined automatically, based
on the distribution of the lighting itself, and the available, gameplay-
related information (for instance, playable areas allocate higher
resolution GLG). The highest density is a probe every 1.0 meter.
We use a traditional radiance probe grid, distributed over the

whole map using a tetrahedral grid [Cupisz 2012; Iwanicki and
Sloan 2017]. Each probe (both for the GLG and the LLG) stores
radiance in a 3rd order spherical harmonics (SH) basis. This results
in 9 coefficients per color channel. The non-DC bands are divided by
DC component and scaled by 1/

√
3 (linear band) or 1/

√
5 (quadratic

band) to bring them to the [−1, 1] range (non-negative functions
have this bound when projected into SH). For an arbitrary point
and normal, we compute the indirect lighting by finding the nearest
probes, interpolating their SH values, and evaluating the irradiance
for the normal with a convolution. To control light leaking we also
store coarse visibility information per tetrahedral face and use it
during interpolation to cull non-visible probes [Iwanicki and Sloan
2017]. Volumetric effects sample the GLG directly, while models
resample the GLG into a dynamic atlas of LLGs per model. This
way the run-time implementation of the lighting lookup can be the
same for both static and dynamic objects, with the only difference
being the source of the data stored in LLGs. This allows us also to
amortize the high cost of GLG lookups—instead of performing such
lookups for the millions of visible pixels, we perform it only for
the thousands of probe position in the LLG. Just like the LLGs, the
GLG stores radiance, which allows us to multiply it by per-vertex
self-visibility before performing the cosine convolution.

2.3 Baking via series expansion
Our precomputation uses Monte Carlo ray tracing, but in contrast
to alternatives like path tracing [Immel et al. 1986; Kajiya 1986], we
structured it as a series expansion of the rendering equation, where
we compute one bounce at a time, for the whole map. This creates a
sequence of final gather [Reichert 1992] passes that can reuse all of
the information computed from the previous bounces. With diffuse
lighting, each bounce can be stored in the same data structures
(lightmaps and LLGs) used for the final rendering. Doing so means
that sub-paths are maximally reused, which is biased, but a huge
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Fig. 3. Our dynamic lighting system enables us to update global illumination,
even in complex scenes. We can go from a completely dark room (left) to a
brightly lit one (right) with little performance impact at run-time. In most
cases building walls severely limit the influence range of the illumination
change. Here the lighting in the adjacent room does not change substantially
when we turn on the ceiling light. ©Activision Publishing, Inc.

performance improvement over path tracing where sub-paths are
not shared at all. Even though this step runs offline on the CPU
and does not impact the run-time of the shipped game, efficiency
here was important to us (G.1). For the baking pipeline we made
the decision to focus on performance on single machines and not
distribute over the network. The internal networks in our studios are
the limiting factor if we did try and distribute, pushing GB’s of data
for a couple of minutes of compute is inefficient. Similarly, using a
series expansion instead of a path tracer was a conscious decision
– we wanted to get a low-quality bake of a level in 5-10minutes,
which would be difficult without using a series expansion. The series
expansion also means that data structures only need to be updated
between bounces, minimizing both the temporary memory that
needs to be stored and eliminating the need for locking a read/write
data structure, as irradiance caching [Ward et al. 1988] requires. We
use Embree [Wald et al. 2014] for tracing the final gather rays and
aggressively pre-sort the rays to maximize SIMD coherence.

2.4 Run-time shading
Due to our performance constraints, we have to make sure that we
do as little work as possible at run-time. This deems solutions that
require searches in depth maps [Majercik et al. 2019], or software
interpolation [Silvennoinen and Timonen 2015] too expensive. We
also want to simplify the rendering to avoid a combinatorial explo-
sion of shaders. Using LLGs for both dynamic and static models
is an example of this, where identical shaders simply run with dif-
ferent resources. We perform expensive operations like evaluating
the GLG with compute shaders at sparse locations for dynamic ob-
jects, volumetrics and effects. Wemoved LLG evaluation from vertex
shaders, to pixel shaders, and back to vertex shaders in the three
games we have shipped using them. This was based on performance
constraints, efficiency improvements in the geometry submission
pipeline, and the complexity of the content being used on each title.

3 INTERACTIVE LIGHTING UPDATES
Up to this point, all the techniques we describe form a capable and
performant, but static global illumination system. While we did
have some capability to change lighting during gameplay, this was
limited to large scale scripted events, such as buildings collapsing.
This required many hours of artist and engineering effort to set

up in each instance and hence was used sparingly. In this and the
following sections we detail how we extended this system to allow
for player-driven dynamic lighting updates. Our goal was to do so
with a minimal set of changes, while preserving the performance
and memory characteristics of the static solution. We also made sure
that the system was extensible and capable of supporting complex
lighting changes, as we’ll discuss in Section 4.

3.1 Dynamic Light Sets
The first iteration of our dynamic lighting system incorporated
“Dynamic Light Sets” (DLSs). This addressed the simple problem
of being able to toggle sets of lights at run-time while updating
their contributions to global illumination. We chose this as a first
step because it is relatively simple to implement and has a large
impact on gameplay (e.g., being able to shoot out lights in a first-
person shooter). A dynamic light set is a set of primary lights { LPi }.
Following our path notation, its baked lighting contribution is S =
(LP1 | LP2 | . . .)D+R. This contribution has to be computed in a
separate baking step for each DLS. In our implementation we simply
reuse the existing series-expansion baker. Any light in a dynamic
light set is ignored in the base bake and a separate pass is run with
just the relevant lights enabled.
At run-time, each DLS has an associated blend weight, ω. This

weight is computed as the average strength of the lights in the light
set. For example, consider a dynamic light set containing two lights
illuminating a hallway each at full strength. When one of them is
shot out (its strength set to 0), ω now equals 0.5, halving the direct
lighting contribution of both lights in the light set.

The final lighting used for shading, L, is then just a linear combi-
nation of the base lighting, LB, and each of the dynamic light set
contributions, Sj , multiplied by their respective weight ωj

L = LB +
∑
j
ωj · Sj . (2)

In levels with no dynamic light sets present, this is equivalent to our
static lighting system. As described so far, the approach is conceptu-
ally simple and closely related to the technique presented by Öztürk
and Akyüz [2017]. Unfortunately, it is prohibitively expensive, so in
the following we discuss how we limited the performance impact
to scale our system to hundreds of DLSs for single levels.

3.2 Minimal overhead via sparse lighting storage
A major performance concern is that, in theory, each dynamic light
set has to compute and store lighting data for every receiver in the
level. After all, even though a light’s contribution falls off with the
square of the distance to the light, it does contribute some light
for any given distance. This means, that apart from lights which
are fully enclosed, any light might contribute to any receiver in
the level. Storing the complete set of data is prohibitively expen-
sive for maps with more than a few dynamic light sets. On large
maps it would take multiple gigabytes of memory and make our
technique intractable on current hardware. In practice light sets
only contribute significantly to a limited region as shown in Fig. 3.
To take advantage of this we use a sparse data structure to store
lighting values for dynamic light sets. The base bake runs first and
stores data for all receivers. To find relevant receivers, each dynamic
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Fig. 4. If we implement dynamic light sets naively, we have to store data for
all receivers in the map for each light set, which is prohibitively expensive.
Our sparse storage dramatically reduces the memory overhead caused by
dynamic light sets. (Note that the y-axis is on a log-scale.). For details on
each of these maps, see Table 1 in Section 5.

light set computes direct lighting and two bounces via our series-
expansion baker. Then, the mean indirect intensity of the texels lit
directly by the sources is used to calculate a threshold (in practice,
we use 1% of the mean). Any receivers either lit directly or with
intensity higher than that threshold are stored in the update records
for a given light set. This limits both the final memory required (see
Fig. 4) and also the precomputation time, where the final gather
has orders of magnitude more rays to sample. The sparse lighting
data structure used during baking is simple. For each active receiver
we store an index, pointing to the receiver’s location in the base
lightmap (for texels) or corresponding probe in the GLG (for GLG
probes). The tricky part is keeping performance of the compute
shaders high during run-time, and having as little ancillary data as
possible, which we address in the following section.

3.3 Fast run-time combination of light sets
The sparse lighting storage we introduced for dynamic light sets
reduces memory usage at the cost of run-time complexity. We want
to be able to efficiently update our lighting representation (i.e.,
lightmaps, LLGs and the GLG) when the state of a dynamic light set
changes and to do so we have to keep the following set of constraints
in mind.
(1) Our solution has to be efficient on the GPU, meaning variable-

length data structures and divergent code are problematic.
(2) Since our payload data is so small (8 bytes per lightmap texel), we

have to keep any memory overhead of incidental data structures
low. Even just storing a single additional index per texel (4 bytes)
increases memory storage by 50%.

(3) A common case is that a DLS is completely off and we need to
be able to skip these efficiently.

(4) Similarly, we need to be able to skip updates for texels where all
the contributing DLSs are unchanged from the previous frame.

(5) We want to directly update the final resource if possible. A lot
of PC hardware cannot read-modify-write to texture formats –
we can only read or only write the resource in compute shaders.
Even where possible, read-modify-write operations have a band-
width overhead we would like to avoid.
In the following we will discuss why these constraints ruled out

naive solutions to the problem, give a high-level overview of our
technique, and then describe why and how our approach had to
evolve over the last two games using this system.

Naive solutions. One natural way to produce a final lightmap is to
gather data from DLSs per texel. This is analogous to, for example,
matrix palette skinning. Every texel/LG (4 bytes for address) stores
the number of DLS that overlap (1 byte), for each overlap it also
needs to store the index (1 byte) and the lighting data (8/28 bytes
LM/LG). This representation has two problems that make it not
viable: It is variable length per texel, which means to index into
it we would need to store some base address (even more memory
overhead – another 4 bytes), it would have divergence in the shaders
(variable loop lengths), and it would be hard to skip work efficiently
if all the DLS for a given texel did not change.

The second simple approach would be to store each DLS indepen-
dently and scatter data to the final lightmap. This would require the
target texel/LG addresses to be redundantly stored and read-modify-
write access to the final resource, but it would make the blend index
implicit and have a fixed stride. As an additional upside, we could
easily skip work if a DLS did not change or is zero, but only if we
did the blends incrementally which can lead to numerical precision
problems. If we desire deterministic blend ordering, we would need
to update any texel that has any non-zero blend, which can’t be
reasoned about per DLS.

Our approach. Our technique sits firmly between the two naive
solutions discussed above, combining the benefits of both. Instead
of either considering individual texels or individual DLSs we cluster
texels by the light sets they are affected by in a preprocessing step.
This gives us a list of light set combinations with a set of affected
texels each. We can then generate one GPU compute dispatch per
combination. This fulfills all of the constraints listed above. Within
a dispatch, the source information (which light sets to blend) stays
constant and thus is the same for each target texel. This means that
we require no variable length data structures, avoid divergent code
execution, and no redundant data is stored per texel. It is easy to
detect if any of the involved light sets for a given dispatch are off and
make sure to skip blending these. Furthermore, if none of the light
sets for a dispatch has changed, we can simply skip it completely.
Finally, we do not need any read-modify-write resources. Each texel
belongs to exactly one dispatch and hence is written to once. Even
though this technique is conceptually sound and performant, in
practice we need to make additional considerations, and these had
to evolve as lighting artists started using DLSs more extensively. In
particular, creating one dispatch per unique light set combination
can lead to dispatches containing very few texels, causing poor GPU
utilization and high per-dispatch overhead. This is especially true if
there are texels affected by many light sets

Evolution. While developing the first game, artists were instructed
to keep the number of DLS in the single digits and try and have no
more than 3 overlaps. We created specialized shaders for copying
the backing data (all zeros), and 1-3 overlaps. Additionally, there
was a fallback shader that was used for texels with more overlaps,
or in case a dispatch was too small. This shader copied into a full
float_32 scratch buffer (which can always do read-modify-write
operations on our target hardware) and looped though the overlaps,
sorting them to minimize the number of indices. The fallback shader
was not particularly fast, but it was not needed often – a common
scenario was a room where the lights might flicker or be shut off (all
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Fig. 5. The number of DLS overlaps (shown here for Estate) per texel grew
in the last production. Still, most receivers are only influenced by a small
number of light sets.

in the same DLS), which connected to tunnels that had a single DLS
and could similarly flicker/turn off. This resulted in large regions
with a single set, and 2 DLS overlaps where a tunnel met a room.

The second game had some levels like the first game, but we
knew we were going to have to handle much larger numbers of
overlaps. Several of the levels were based on stealth gameplay, and
individual lights had to be shot out, or turned off at control panels,
forcing players to wear night vision goggles and making non-player
characters (NPCs) not see the player (radiance was sampled at the
player to see if they were visible to NPCs or not). In the hard level,
almost every light in a large building is its own set, there are large
floodlights from outside that come in through the windows and can
be shot out, and there is a fire in the end of the level that adds more
sets. This resulted in higher numbers of overlaps that needed to be
handled efficiently. Finally, we knew that the multi-state geometry
discussed in the next section would also cause additional overlaps
As a first step we increase the number of specialized shaders to

handle texels affected by up to 8 dynamic light sets. To eliminate
the fallback shader, we introduced two less specialized shaders:
(1) Every texel in a dispatch has the same number of overlaps, but

the DLSs could be different. These cannot be “demoted”, if any
DLS in the dispatch changed, the entire set has to run. This was
done for DLS combinations of less than a fixed size (up to 128
texels), allowing us to pack them together, have fewer overall
dispatches, but doing some amount of unnecessary work. All
overlaps of fewer than 5 DLSs were handled in these shaders.

(2) Two last resort shaders, one for 5-8 overlaps, and one for 9-16.
These interleave the data for a single texel, and to compute the
“starting address relative to that cluster start (uint16_t)”, they
store a base index for every batch of 16/8 texels (so amortized
to 1/2 bits), and a 2/3 bit per texel with the “count” relative to
the base (5,9 so it fits in 2/3 bits). We then just need to compute
a prefixsum on the 2/3 bit numbers before the base index used.
This has an overhead of 3/5 bits per texel, and causes minimal
divergence of data and code. When clustering overlaps for these
dispatches, we aimed to minimize the total number of DLSs in a
dispatch, since the whole dispatch has to execute if any of the
DLSs change.

Both class (1) and class (2) dispatches represent a small percentage
of the total number of pixels (see Fig. 5), and the ancillary data is
very small relative to anything else (roughly 132KB for the largest
map.) Measuring the impact of these optimization shows a 13×
speed up, with the lighting in our most challenging map taking just
under 20ms to update using the old shaders, while taking 1.47ms
using the new implementation.

4 MULTI-STATE GEOMETRY
The dynamic lighting system described in the previous section
shipped without any further modifications. Motivated by its success
we sought to extend it to more complex interactions. Following the
same game design driven methodology as before, we decided to
tackle the specific issue of opening and closing doors. For context,
doors often act as a way to control player progress in first-person
shooter campaigns. By letting non-player characters unlock doors,
game designers can set the pace of the story and guide the player
through complex levels. This means that the player’s attention is
quite often directed towards an opening door. In levels with dark
indoor rooms and bright sun-lit exteriors this poses a challenge for
lighting artists as the light flowing through the door is significant
(see Fig. 6). Up to now artists had to decide whether to keep the door
closed in the baking process (leaving the room dark even when the
door is opened during gameplay), or remove it (and ending up with
light leaking through the closed door). They could add scripted run-
time lights to “cheat” the bounce, but this is both time consuming
and expensive. In the following we will describe how we extended
the dynamic light set system to allow for dynamic doors without
excessively impacting bake-time performance.

Fig. 6. Left: Only base bake. Right: Lighting flowing through door. The
indoor lighting can be dominated by the light flowing through the door
when opened, making it an important effect to compute. ©Activision Pub-
lishing, Inc.

4.1 Doors as dynamic light sets
One of our goals (G.3) is to keep the run-time implementation as
simple as possible. Since we invested in an efficient implementation
of dynamic light sets, we wanted doors to reuse this as much as
possible. The challenge was to express the lighting change that
happens when opening a door as an additive component of the base
lighting. We would like to arrive at one set of contributions per
door, SP, that can be controlled linearly by a weight ωP which is
computed at run-time based on the current “opening angle” of the
door.

Preliminary assumptions. To achieve this we make several sim-
plifying assumptions. We reduce the complex non-linear lighting
change that happens when the door moves through the scene to two
states: “closed” and “open”. In the “closed” state, the door model is
placed in its completely closed position, while in the “open” state we
completely ignore the model. Another option would be to place it in
some “open” position, but many of the doors in our levels open both
outwards as well as inwards and do not have a well defined “open”
position. We additionally disregard any light bouncing off the door
in its closed state. Computing it would necessitate removing light as
the door opens, which is not directly compatible with our dynamic
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(b) (c)(a)
Fig. 7. For each receiver (red), we compute the lighting flowing through the
door directly (a) by sampling points on its bounding box and casting rays
towards it, and one bounce of indirect door lighting by steering final gather
rays (b) towards regions of the room that receive strong direct lighting
through the door (c).

light set system. While there are ways to achieve this relatively
easily, we did not find the missing bounce light to be significant.
Finally, while baking dynamic lighting in a level with multiple doors
or dynamic light sets we have to make a choice about the state of
every other interactive element in the scene. This was not a problem
with dynamic light sets themselves. There, lighting is linearly addi-
tive and the contribution of any individual light set is not affected
by whether another light is enabled or not. But in the case of doors,
whether a door is open or not non-linearly affects light propagation
from both dynamic light sets as well as other doors. To get correct
results for n DLSs andm doors, we would have to bake all (1+n)2m
combinations of states, but this quickly becomes intractable. Doors
are often relatively far apart. So at the point of shipping the last
game using this technology we assumed that for each dynamic light
set and door bake, that all other doors are closed. This brings down
the number of combinations to just (n +m + 1). Of course, all of
these simplifications lead to artifacts in some situations, which we
will discuss in Section 6.2 along with possible solutions.

Describing door paths. To reason about our problemwe extend the
path notation introduced in Section 2 and we will use P to indicate
a door in its closed state. As a first step, we identify all the paths
that interact with the door at any point. That is, paths of the form

LD∗︸︷︷︸
emitter side

door interactions︷  ︸︸  ︷
(PD∗)+ D∗R︸︷︷︸

receiver side

. (3)

To separate out any light contributions that the door might have,
we give it an albedo of 0 in the base bake, removing any paths that
interact with it. This allows us to run the base bake as usual, com-
puting any lighting which does not interact with the door efficiently.
We are now left with the task of handling the remaining paths.

4.2 Efficient sampling techniques
In the last section we were able to very narrowly define which
parts of path space we would like to compute lighting for. The
naive approach to do so would be to trace paths starting at each
receiver in the level and only count contributions from paths that
interact with the door. This would give us the correct result, but
doors are usually small compared to the size of the level and the
probability of any given path hitting a particular door is low. To
efficiently compute the paths that do interact with the door we have
to guide them towards it. While general path guiding methods [Hey

and Purgathofer 2002; Jensen 1995; Müller et al. 2017; Vorba et al.
2014] could be used and we even use the technique by Silvennoinen
and Sloan [2019] during the base bake, there is an opportunity
to take advantage of the more constrained structure of the door
paths. To reduce bake times, we limit ourselves to a certain subset
of paths which we observed to have the highest contribution to the
overall lighting and we show these in Fig. 7. Namely, we compute
any lighting flowing directly through the door and its first bounce.
Hence, we want to both guide gather rays towards the door directly
and towards areas that are illuminated strongly through the door.
Note that here directly through the door is not equivalent to direct
lighting. That is, in addition to connecting to light sources, we also
want to take bounce lighting from geometry on the other side of
the door into account. Luckily we can use much of the information
computed during the base bake to do so. For example, when a ray
shot through the door hits a lightmapped model on the other side,
we can simply sample the stored indirect lighting.

The door as an area light source. For receivers close to the door,
many contributing paths are of the form LD+PR. Arriving directly
from the emitter side, with no bounce on the receiver side as shown
in Fig. 7 (a). For receivers on the floor close to the frame, the door
subtends a large solid angle. In these cases the door opening forms
a (complex) area light source. To compute this contribution we use
a stratified sampler to draw points on the door’s oriented bounding
box and cast rays towards them. The larger the subtended solid
angle of the door, the more rays we allocate towards this part of
the integral. This is similar to portal sampling strategies used in
offline rendering [Bitterli et al. 2015], but in addition to guiding
rays towards the portal, these methods also take into account the
directional distribution of illumination flowing through the portal.
Unfortunately that is very complex in our scenario. As opposed
to sampling environment maps, the illumination arriving at the
receiver depends not only on the direction but also on its position
relative to the portal. We tried using light field importance sampling
strategies [Lu et al. 2014] to better distribute samples on the door’s
bounding box, but found the difference in variance to be minimal.

Clustered shadow photons for path guiding. The other major part
of the integral is one-bounce indirect lighting flowing through the
door. That is, paths of the form LPDR, shown in Fig. 7 (b). In par-
ticular we noticed that we had many scenarios where opening the
door would reveal a bright patch of sunlight inside the room and
the bounce lighting off this patch would dominate the door light-
ing. To effectively sample this lighting, we employ a technique
inspired by shadow photons [Jensen 1996]. In a preprocess step we
uniformly sample points (violet
dots) on the bounding box of
the door (violet box). For each
sample point we send a shadow
ray towards a randomly chosen
light source (solid arrows). If the
shadow test succeeds we know
that this light contributes to the light flowing through the door
and will hit a surface inside the room. We can then cast into the
opposite direction (dashed lines), find the corresponding hit point
inside the room, and deposit a shadow photon (green, yellow, and
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blue dots). This, effectively, gives us a “photon map” of direct light
occluded by the door.
During the gather step we want to send rays towards regions

where the density of photons is high, but we additionally need to
send out a general gather ray to not miss any part of the integral.
To apply multiple importance sampling (MIS) [Veach and Guibas
1995], or even just basic integral splitting, we need to be able to
tell whether a uniform gather ray could have been generated by
our guiding strategy. This is difficult and expensive if we represent
illuminated regions with photon points. To simplify the problem
we cluster the shadow photons at the end of the preprocess step
into oriented bounding boxes
(colored areas). This means that
we can send out thousands of
photons to get a good approxi-
mation of the light falling into
the room and then reduce that
information down to a few (12 in
our implementation) bounding boxes that roughly cover areas with
strong direct light.

We can now treat these bounding boxes as “area light sources” for
the purpose of ray guiding. That is, we do not use them to compute
lighting directly, as is done in some many-light methods [Luksch
et al. 2013], but rather as a proxy to guide gather rays in directions of
high contribution. This allows us to accurately combine the guided
directions (red) with the uniform hemisphere sampled ones (teal) by
computing an intersection with
the bounding boxes. If a uni-
formly sampled ray intersects
one of the bounding boxes (red-
teal striped) we know that we
could have generated it with the
guiding technique and we can
compute the corresponding MIS weight. Since we have a small
set of boxes, this is fast, even without an acceleration structure. Of
course, using the bounding boxes means that the approximation of
importance is fairly rough and wemight miss some features of direct
light. We also do not take visibility into account, and in large rooms
containing a lot of models, many of the importance-sampled rays
might not reach the patches of light. In practice, we have not found
this to be a big concern, especially in combination with computing
influence regions. Since we combine our guiding strategy via MIS
with uniform hemisphere sampling, these issues do not bias our
estimator and only increases variance in failure cases.

Direct light culling. To further speed up the baking process we use
the bounding boxes computed from shadow photons in an additional
way. For direct lighting through the door, we need to evaluate all
lights in the scene, in theory. Most of them will not contribute and
in the general case, culling them is a difficult problem [Dachsbacher
et al. 2014]. Keeping track from which light the shadow photons
in each bounding box originated, we construct a list of lights per
bounding box. When evaluating
shading, we find the bounding
box the shade point (yellow dots)
is in and only use the lights asso-
ciated with that box. This might
mean that we miss some lights if
the bounding boxes are too tight.
We artificially inflate the bounding boxes to alleviate this. Addi-
tionally, artifacts won’t be as visible since we only use this lighting
contribution while computing bounce light.

5 EVALUATION AND RESULTS
We evaluate our system by thoroughly documenting its performance
characteristics in a variety of conditions. Figures 1 and 8 show typi-
cal uses of dynamic light sets to enhance gameplay. For a larger set
of images and a video showing our system in practice, we refer the
reader to our supplemental material. Our intention is to show how
the system behaves in practice and hence all the timings and mem-
ory statics we show are taken from production content that shipped
in a recent game. Table 1 gives an overview of the performance of
our system. Note that many levels contain tens of dynamic light sets,
while doors are used less often. This is because artists had multiple
production cycles to explore DLSs while the door technology came
in late during the last production and was only used in the specific
situations it was requested for.

Bake-time performance evaluation. Our levels typically cover mul-
tiple square miles of terrain and are filled with buildings and props.
Multi-hour bake times are not uncommon for environments of this
scale, even in our previous static baking system. These times are for
the maximum quality setting, as used in the shipping game. During
iteration, artists use a lower setting that still produces representative,
if somewhat noisy, results with a correspondingly faster bake.

Run-time performance evaluation. The run-time optimizations we
presented in Section 3 had a large impact on how many light sets
artists could use per level. While on the first game that used the
dynamic light baking system, they were instructed to keep light
set counts in the single digits for each map, by the time the last

Table 1. Performance and memory statistics for the levels shown in this paper. Run-time performance was measured on a PlayStation 4, while the bakes were
performed on a workstation with a recent 18-core CPU. Bake times are for fast / high quality.

Level Statistics Performance Statistics

Level # LM Texels # LLG Probes # GLG Probes # DLS # Doors Memory (no DLS) Memory (DLS) Bake (no DLS) Bake (DLS) Run Time (sync)

Estate 2,637,824 50,805 229,725 132 0 28MB 77MB 10 / 20min 33 / 133min 1.47ms
Consulate 3,276,800 32,783 229,250 61 0 32MB 61MB 9 / 18min 19 / 46min 0.61ms

Townhoused 4,194,304 16,524 151,408 24 1 37MB 50MB 6 / 14min 11 / 31min 0.43ms
Safehouse 2,363,392 77,110 232,617 14 3 27MB 41MB 9 / 18min 12 / 34min 0.42ms

Yard 2,097,152 32,183 135,209 6 0 12MB 27MB 5 / 9min 6 / 11min 0.21ms
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Fig. 8. Our system enables a variety of gameplay scenarios. The player shoots out a light (left), turning off the corresponding DLS, removing its indirect lighting
(middle). While making enemies less accurate, the player has access to night vision goggles (right), allowing them to progress. ©Activision Publishing, Inc.

game shipped we were able to support hundreds of DLSs with little
impact on run-time performance. We measured the performance
overhead of our system on multiple maps and show the results
in Table 1. Under normal gameplay conditions, we observed that
dynamic lighting had no impact on overall frame time. This is due
to the fact that the workload is small and performed on the GPU
asynchronously, filling gaps in utilization left by other tasks. Unfor-
tunately, this also makes it impossible to accurately measure their
overhead. There is, however, a special debug mode that performs
the update synchronously. It also updates all the light sets (not only
the ones that have had their state changed since the previous frame,
like the regular mode). The numbers in the last column of Table 1
are measured using this debug mode. We show, that even when
forcing all light sets to update every frame (which does not happen
in practice) and forcing synchronous execution (poorly utilizing the
GPU), dynamic lighting updates take at most 1.47ms on our largest
production map.

6 DISCUSSION, LIMITATIONS, AND FUTURE WORK
The system we have described performs well, fulfills the criteria we
laid out in the introduction and is used in several released as well
as upcoming AAA games. In the following we will discuss some
historical perspective on the system, its current limitations, how
they restrict our use cases, and finally, howwe plan to further evolve
the system in the future.

6.1 Historical evolution.
Prior to LLGs, we used to store directional lighting information at
every vertex of the non-lightmapped meshes. For detailed, finely
tessellated meshes, this provided great quality, but the memory
footprint and baking time was significant, since the lighting data
was unique for each instance. Alternatively, a single directional
radiance sample could be used for the entire mesh, but since no
self-shadowing information was available, the resulting quality was
poor. LLGs, with their dramatically reduced memory footprint, were
the first change we made explicitly to support dynamic lighting
elements in future games. We initially implemented LLGs under the
hood, in our baking code, to accelerate the baking of the per-vertex
lighting, which was used in the first game we shipped (2014). For
our second game (2016), we moved LLGs to the run-time, and in
our third game (2017)—the first to support dynamic updates—we
eliminated vertex baking all together. While artists were initially
worried about a potential quality loss, we were able to optimize

our LLG implementation to the point where we could match visual
quality at a fraction of the memory cost.

6.2 Limitations
There are several limitations to our system, some inherent in the
design and some due to choices in our particular implementation.
Many of the design-caused limitations are common in light baking
systems, and we already had to keep them in mind even before
introducing any dynamic elements. Most restricting is of course the
fact that level designers have to manually label certain interactive el-
ements and dynamic lights. Adding an interactive element requires
re-baking the whole map, which can take multiple hours (see Ta-
ble 1). In practice, this is not a significant additional restriction, since
re-baking is common and is caused by many types of changes to
the map. While we touched on implementation specific limitations
throughout the paper, we recapitulate the most important ones here
and provide thoughts on how to lift them.

Fig. 9. Light leaking through the open door due to ignoring the door geom-
etry in the “open” state. ©Activision Publishing, Inc.

Door states and bounce lighting off the door. As discussed in Sec-
tion 4, we make several simplifying assumptions about the states a
door can be in and the states in which it is blocking light. Particu-
larly, we do not compute intersections with the door geometry in its
open state at all. This can lead to light leaks like the one shown in
Fig. 9. Fixing this is not hard and was simply deemed less important
than other tasks at the time. By choosing an “open” state for the
door we can include the model in the bake for the open door in the
chosen state. This will correctly compute occlusion.
An artifact that is harder to resolve is the missing bounce light

off the door when it is closed. This is because currently each door
adds exactly one set of lighting contributions. When it is closed, we
do not add any light, hence, no bounce light. We cannot naively
include it in the base bake either since then it would always be
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individual states combination state

Fig. 10. When we compute individual lighting contributions for doors (left)
we can miss important effects that result from combination states (right).

present, even when the door is open. One solution we consider is to
let doors contribute an additional set of lighting. Then we could bake
the bounce light as one contribution and the light flowing through
the door as another and interpolate between them. For exactly two
states we can even simplify this back to one set of contributions.
Consider SC as the light bouncing off a closed door, SO as the light
flowing through it when it is open and ωC, ωO their corresponding
blend weights. Since we linearly interpolate between the two states
we know that ωC = 1 − ωO and we can express the overall lighting
contribution by the door as SP = (1−ωC) ·SC+ωO ·SO = SC+ωO ·

(SO −SC). Since SC is independent of the door’s run-time state, we
can add it into the base lighting and we are back to a single set of
light contributions per door. Unfortunately this optimization does
not generalize to more than two states per door.

Interactions between doors and dynamic light sets. In our system
as described in Section 4 each dynamic element stands by itself
and light interactions between them as necessitated by geometry
changes (e.g., due to doors opening) are not considered. This pro-
hibits correctly computing lighting in situations such as the one
shown in Fig. 10 where using the current method, we will never
compute the light that reaches the back wall of the second room.
Luckily there is a small set of extensions, which we have already
implemented since the last game shipped, that allows us to lift this
limitations. For each combination state that we want to include we
run another baking pass with the given combination of doors open
and dynamic light sets enabled.When the combination includes mul-
tiple open doors we have to make sure that any contributing path
interacts with all of them. We can use the techniques introduced in
Section 4.2 as they are to improve baking performance. Note that
we do not address the combinatorial explosion directly. Instead we
allow artists to select individual light sets and doors that should
participate in combinatorial effects and only include combinations
where the participating elements’ influence radii overlap.

6.3 Future work and outlook
We have only addressed diffuse lighting in this paper. Non-diffuse
interactions are handled by reflection probes, where low gloss ma-
terials directly integrate against the low frequency incident lighting
as an optimization. We use normalized reflection probes [Lazarov
2013] which are divided by irradiance when computing them off-
line, and multiplied back after sampling environment maps. Just
updating the baked lighting data generates plausible specular re-
sults, particularly for lighting changes. For geometry changes, we
should investigate other ways to update reflection probes in the fu-
ture. In future productions, we will likely extend the existing system
to handle more complex lighting changes. After lifting some of the
current limitations as described in the previous section, a simple

next step would be to generalize the technique we use for dynamic
doors to other similar scenarios. Events such as walls and ceilings
getting destroyed will be straightforward and have a large impact
on our ability to support a wide variety of level-design needs.
Finally, there is exciting progress being made on real-time ray

tracing by academia and industry alike and on the highest end hard-
ware there are scenarios where it could replace baked lighting even
now. For wider adoption, the main issue real-time ray tracing tech-
niques will have to face is that the run-time overhead requirements
presented here are by no means extravagant or unusually restrictive.
AAA games in particular typically require extremely performant
techniques and overhead is often measured in microseconds. To
achieve this with real-time ray tracing in the near future we see
many of the ideas presented here coming in useful. For example,
doing updates on data structures decoupled from the frame and final
resolution, as well as not being completely general (focusing on spe-
cific effects) can yield increased fidelity at much lower performance
cost. This is why we are interested in exploring the Pareto frontier
across the many available axes - speed, memory, precompute time,
general vs. specialized techniques, etc. We would expect there are
some sub dimensions where ray tracing will win and some contexts
where it will take a very long time to replace baked lighting. That
being said, lower-end platforms like mobile phones will continue
to have difficulty ray tracing complex scenes and as AAA games
seek to extend their target audience, we see methods relying on
precomputation being useful in the foreseeable future.
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