
From microfacets to participating media: A unified theory of light
transport with stochastic geometry – Supplemental
DARIO SEYB, Dartmouth College, USA
EUGENE D’EON, NVIDIA, New Zealand
BENEDIKT BITTERLI, NVIDIA, USA
WOJCIECH JAROSZ, Dartmouth College, USA

1 DERIVING RECURSIVE ENSEMBLE AVERAGE LIGHT
TRANSPORT

The step from Eq. (12) to Eq. (14) in the main document is not
immediately obvious. It does not require any deep insights, but
a thorough reproduction of the intermediate steps, while lengthy,
provides extra intuition for our method. We provide this here in a
slightly more general form that should apply to any quantity that
can be estimated with a recursive Monte Carlo estimator.

1.1 Expectations over realizations of a Gaussian Process
We will often want to compute expectations “over realizations of a
Gaussian Process”, that is, functional integrals of the form

⟨L 𝑓 ⟩GP(𝜇,𝑘) =
∫
GP(𝜇,𝑘)

L 𝑓 d𝛾𝜇,𝑘 (𝑓), (1)

where 𝑓 is a realization of the Gaussian process GP(𝜇, 𝑘), L an
operator acting on 𝑓 , and 𝛾𝜇,𝑘 (𝑓) the classical Wiener measure of
𝑓 with respect to GP(𝜇, 𝑘), i.e. the probability density of sampling
𝑓 ∼ GP(𝜇, 𝑘). If the operator L is linear in 𝑓 , we can resolve this in
the following straightforward fashion∫

GP(𝜇,𝑘)
L 𝑓 d𝛾𝜇,𝑘 (𝑓) = L

∫
GP(𝜇,𝑘)

𝑓 d𝛾𝜇,𝑘 (𝑓) = L𝜇, (2)

but many operators, in particular light transport, which we study in
this paper, are not linear in 𝑓 , and the above simplification does not
hold. In the following, wewill drop themean 𝜇 and covariance kernel
𝑘 for notational convenience. A rigorous treatment of functional
integrals of this form is out of the scope of this work. Instead, we
can provide intuition for our results by restricting ourselves to
Gaussian processes over a finite index set 𝑋 with |𝑋 | = 𝑛, and
discrete operators L𝑛 . In that case, the Gaussian process is simply a
multivariate normal distribution in 𝑛 dimensions, and we can write∫

GP𝑋
L𝑛 𝑓 d𝛾 (𝑓) =∫
R
· · ·

∫
R
L𝑛 [𝑓1, . . . , 𝑓𝑛]⊤ d𝛾𝑛 ([𝑓1, . . . , 𝑓𝑛]⊤) =∫

R𝑛
L𝑛𝐹 d𝛾𝑛 (𝐹), (3)

where 𝛾𝑛 is 𝑛 dimensional Gaussian measure over 𝑋 with the same
mean and covariance as the given Gaussian process. Informally, we

Authors’ addresses: Dario Seyb, dario.r.seyb.gr@dartmouth.edu, Dartmouth College,
USA; Eugene d’Eon, edeon@nvidia.com, NVIDIA, New Zealand; Benedikt Bitterli,
bbitterli@nvidia.com, NVIDIA, USA; Wojciech Jarosz, wojciech.k.jarosz@dartmouth.
edu, Dartmouth College, USA.

write ∫
GP
L 𝑓 d𝛾 (𝑓) B lim

𝑛→∞

∫
R𝑛
L𝑛𝐹 d𝛾𝑛 (𝐹) . (4)

Of course, there is no immediate reason to believe that this limit is
well defined in any meaningful sense. That said, this technique, also
known as “time slicing” [Grosche and Steiner 1998], is commonly
used to make sense of functional integrals, and for the purposes
of our work and the domains we consider, the time slicing view is
sufficient.

In particular, it lets us treat Gaussian processes like we treat finite-
dimensional distributions in many situations. For example, we can
write∫
GP
L 𝑓 d𝛾 (𝑓) =

∫
GP
L[𝑓𝐴, 𝑓𝐴c] d𝛾 ([𝑓𝐴, 𝑓𝐴c])

=

∫
GP𝐴

∫
GP𝐴c | 𝑓𝐴

L[𝑓𝐴, 𝑓𝐴c] d𝛾𝐴c (𝑓𝐴c | 𝑓𝐴) d𝛾𝐴 (𝑓𝐴)

=

∫
GP𝐴

∫
GP | 𝑓𝐴

L 𝑓 d𝛾 (𝑓 | 𝑓𝐴) d𝛾𝐴 (𝑓𝐴),

(5)

where𝐴 is a subdomain of the domain of GP,𝐴c its complement, 𝑓𝐴
and 𝑓𝐴c realizations of GP over 𝐴 and 𝐴c respectively and [𝑓𝐴, 𝑓𝐴c]
the “concatenation” of the individual realizations. The first equality
simply decomposes 𝑓 into 𝑓𝐴 and 𝑓𝐴c . Going to the second line, we
apply the law of conditional expectations. That is, we can sample
𝑓 “all at once” or first sample a part of 𝑓 (𝑓𝐴) and then the rest
(𝑓𝐴c) conditioned on the part that we sampled first. The last line
simply says that we don’t have to restrict the inner process to 𝐴c

and can instead “resample” over the whole domain. For the part of
the domain covered by the “conditioning region” 𝐴, we will simply
get back the same values that we conditioned on.

1.1.1 Conditioned Expectations. Additionally, we can write condi-
tional expectations as usual:

⟨L 𝑓 ⟩GP | 𝑓 (𝐴)=a =
⟨L[𝑓𝐴c , a]⟩GP𝐴c

𝛾𝐴 (a)
. (6)

1.1.2 Expectations of delta functions. We can write an expectation
containing a delta function over some subset of the domain 𝐴 as

⟨𝛿 (𝑓 (𝐴) − a)L 𝑓 ⟩GP =

∫
GP
𝛿 (𝑓 (𝐴) − a)L 𝑓 d𝛾 (𝑓)

=

∫
GP𝐴

𝛿 (𝑓𝐴 − a)
∫
GP | 𝑓𝐴

L 𝑓 d𝛾 (𝑓 | 𝑓𝐴) d𝛾𝐴 (𝑓𝐴)

= 𝛾𝐴 (a)⟨L 𝑓 ⟩GP |a

(7)

In the first step, we simply expand the ensemble average. Next, we
apply the decomposition in Eq. (5) and pull out 𝛿 (𝑓 (𝐴) −a) from the

HTTPS://ORCID.ORG/0000-0002-0234-8401
HTTPS://ORCID.ORG/0000-0002-3761-2989
HTTPS://ORCID.ORG/0000-0002-8799-7119
HTTPS://ORCID.ORG/0000-0002-1652-0954
https://orcid.org/0000-0002-0234-8401
https://orcid.org/0000-0002-3761-2989
https://orcid.org/0000-0002-8799-7119
https://orcid.org/0000-0002-1652-0954

2 • Dario Seyb, Eugene d’Eon, Benedikt Bitterli, and Wojciech Jarosz

inner integral. We can then apply the definition of the delta function
and drop the outer integral, replacing the integration variable 𝑓𝐴
with a and evaluating the measure 𝛾𝐴 (𝑓𝐴) at a.

1.1.3 Expectations of indicator functions. We can write an expec-
tation containing an indicator function over some subset of the
domain 𝐴 as

⟨I (𝑓 (𝐴) > 0) L 𝑓 ⟩GP =

∫
GP

I (𝑓 (𝐴) > 0) L 𝑓 d𝛾 (𝑓)

=

∫
GP𝐴

I (𝑓 (𝐴) > 0)
∫
GP𝐴c | 𝑓𝐴

L 𝑓 d𝛾 (𝑓 | 𝑓𝐴) d𝛾𝐴 (𝑓𝐴)

=

∫
GP+

𝐴

∫
GP | 𝑓𝐴

L 𝑓 d𝛾 (𝑓 | 𝑓𝐴) d𝛾𝐴 (𝑓𝐴)

= ⟨⟨L 𝑓 ⟩GP | 𝑓𝐴 ⟩GP+𝐴 ,

(8)

where GP+
𝐴
is the process restricted to all positive realizations over

the index set 𝐴. Note that 𝐴 can be a manifold in the domain of the
GP (e.g. a 1D line segment in a 3D domain).

1.2 Application to light transport
With all of the puzzle pieces in place, we can apply them to Eq. (12)
from the main paper, letting L 𝑓 B 𝐿

𝑓

𝑖
(x,𝝎), we are particularly

interested in the inner integral∫ ∞

0

∬
𝜌 (x𝑡)

∫
GP |𝜁

𝛿 𝑓 (x𝑡 , n)I𝑓(0, 𝑡) 𝐿𝑓𝑖 (x𝑡 ,𝝎𝑡) d𝛾𝜁 (𝑓)︸ ︷︷ ︸
⟨𝛿 𝑓 (x𝑡 ,n)I𝑓(0,𝑡)𝐿𝑓𝑖 (x𝑡 ,𝝎𝑡) ⟩𝜁

d𝝎𝑡 dn d𝑡,

(9)

and pull it out for more compact derivations, treating n and 𝑡 as free
variables. We first apply Eq. (7)

⟨𝛿 (𝑓 (x𝑡) − 0) · 𝛿 (∇𝑓 (x𝑡) − n) · I𝑓(0, 𝑡) · 𝐿𝑓𝑖 (x𝑡 ,𝝎𝑡)⟩𝜁
= 𝛾x𝑡 |𝜁 (0, n)⟨I

𝑓(0, 𝑡) · 𝐿𝑓
𝑖
(x𝑡 ,𝝎𝑡)⟩𝜁∧𝑓 (x𝑡)=0∧∇𝑓 (x𝑡)=n,

(10)

and then Eq. (8) and arrive at

𝛾x𝑡 |𝜁 (0, n)⟨⟨𝐿
𝑓

𝑖
(x𝑡 ,𝝎𝑡)⟩𝑓(0,x𝑡) ⟩GP+(0,x𝑡) |𝜁∧𝑓 (x𝑡)=0∧∇𝑓 (x𝑡)=n

. (11)

Since 𝑓(0,x𝑡) is already conditioned on 𝜁∧𝑓 (x𝑡) = 0∧∇𝑓 (x𝑡) = n, we
can add these to the inner condition without changing the expected
value.

𝛾x𝑡 |𝜁 (0, n)⟨⟨𝐿
𝑓

𝑖
(x𝑡 ,𝝎𝑡)⟩𝜁∧𝜁 ′

𝛿
∧𝑓(0,x𝑡) ⟩GP+(0,x𝑡) |𝜁∧𝜁

′
𝛿
, (12)

where 𝜁 ′
𝛿
= 𝑓 (x𝑡) = 0 ∧ ∇𝑓 (x𝑡) = n. Plugging this back into Eq. (9)

and expanding the outer ensemble average into its integral form,
we get Eq. (14) from the main text.

1.3 Deriving the GPIS density in the Renewal and
Renewal+ models

In Section 5 of the main document, we use the GPIS density to make
connections to microfacet and participatingmedia theory.We briefly
want to give the full derivation that connects Eq. (14) and Eq. (17).

Recall that for the Renewal and Renewal+ models, we only con-
dition on values at path vertices, not values along path segments.

That means that 𝜁 ′
𝑅/𝑅+ does not contain 𝑓(0,x𝑡) and hence does not

depend on the integration variable in the innermost integral. This
allows us to pull the recursive ensemble average out of the inner
integral in Eq. (14) of the main text as

⟨𝐿𝑖 (xu,𝝎)⟩𝜁

≈
∫ ∞

0

∬
𝜌 (x𝑡)𝛾x𝑡 (0, n | 𝜁)∫

GP+(x,x𝑡) |𝜁
⟨𝐿𝑖 (x𝑡 ,𝝎𝑡)⟩𝜁∧𝜁 ′

𝑅/𝑅+
d𝛾 (𝑓(x,x𝑡) |𝜁 ∧ 𝜁𝛿) d𝝎𝑡 dn d𝑡 (13)

=

∫ ∞

0

∬
𝜌 (x𝑡)𝛾x𝑡 (0, n | 𝜁)∫

GP+(x,x𝑡) |𝜁
d𝛾 (𝑓(x,x𝑡) |𝜁 ∧ 𝜁𝛿)︸ ︷︷ ︸

T(x𝑡 |𝜁)

⟨𝐿𝑖 (x𝑡 ,𝝎𝑡)⟩𝜁∧𝜁 ′
𝑅/𝑅+

d𝝎𝑡 dn d𝑡 . (14)

Replacing the now “empty” inner integral with T(x𝑡 | 𝜁) gives us
⟨𝐿𝑖 (xu,𝝎)⟩𝜁

≈
∫ ∞

0

∬
𝜌 (x𝑡)𝛾x𝑡 (0, n | 𝜁)T(x𝑡 | 𝜁)⟨𝐿𝑖 (x𝑡 ,𝝎𝑡)⟩𝜁∧𝜁 ′

𝑅/𝑅+
d𝝎𝑡 dn d𝑡 .

(15)

And finally, defining Γ(𝑡, n | 𝜁) B 𝛾x𝑡 (0, n | 𝜁)T(x𝑡 | 𝜁), we get
Eq. (17) in the main text.

2 GAUSSIAN PROCESS DETAILS

2.1 Kernel Functions
We give analytic forms of a set of kernels and their spectral densities.
Note that our method is not restricted to only these kernels since
we support any smooth kernel. We pick these kernels in particular
because they cover a range of different fundamental properties, such
as non-locality and non-positiveness, which have the potential to
strongly affect the results of our method. We give their most simple
forms and denote the common parameters standard deviation and
length scale with 𝜎 and 𝑙 , respectively. Deriving the spectral density,
and especially sampling from it, is often non-trivial and depends
on the number of dimensions. We give spectral densities for 𝑑 = 3
where we can, and 𝑑 = 2 otherwise. While theoretically, one does
not have to sample basis functions proportional to the spectral den-
sity (one could choose a set using some proposal distribution and
re-weight, like in any other Monte Carlo estimator), sampling pro-
portional to the spectral density drastically reduces the number of
basis functions required. For a visual overview of the listed kernels,
see Fig. 3.

Squared Exponential. This is probably themost widely used kernel
in Gaussian process literature.

𝑘SE (𝑥,𝑦) = 𝜎2 exp− ∥𝑥 − 𝑦∥
2

𝑙2
(16)

𝑝SE (𝜔) = 𝜎2e−
1
2 𝑙

2𝜔2√︃
1
𝑙2

(17)

We use this as the “default” kernel for our method. It produces
smooth realizations and computations with it are very numerically

From microfacets to participating media: A unified theory of light transport with stochastic geometry – Supplemental • 3

stable. It also induces the most “exponential” first-passage times
and is a great choice when the aim is to represent close-to-classical
participating media.

ALGORITHM 1: Sample 𝑝SE

𝜉 ∼ U(0, 1)
𝑟 ←

√︁
2 − log(𝜉)

𝜙 ∼ U(0, 2𝜋)
return [sin(𝜙), cos(𝜙)]⊤ · 𝑟

Rational Quadratic. The rational quadratic kernel is a superposi-
tion of infinitely many squared exponential kernels with different
length scales. The weighting of these length scales is determined by
the additional parameter 𝑎.

𝑘
RQ
𝑎 (𝑥,𝑦) = 𝜎2

(
1 + ∥𝑥 − 𝑦∥

2

2𝑎𝑙2

)−𝑎
(18)

𝑝
RQ
𝑎 (𝜔) =

2
5
4 −

𝑎
2 𝜎2

(
1
𝑎𝑙2

)− 𝑎
2 −

1
4 |𝜔 |𝑎−

1
2𝐾 1

2 −𝑎

(√
2 |𝜔 |√︃

1
𝑎𝑙2

)
Γ(𝑎) (19)

In particular, lim𝑎→∞ 𝑘
rq
𝑎 (𝑥,𝑦) = 𝑘se (𝑥,𝑦). For small 𝑎, the realiza-

tions of the rational quadratic kernel have “fractal” properties.

ALGORITHM 2: Sample 𝑝RQ𝑎
𝜏 ∼ Γ (𝑎, 𝑙−2)
return Sample 𝑝SE with 𝑙 = 𝜏−2

Periodic. Periodic kernels produce periodic realizations. This strongly
affects the light transport in the scene and is a very challenging case
for our algorithm. Any limit to the memory will produce drastically
different results. Additionally, this shows that the covariance matrix
is not sparse in general.

𝑘Per
𝜆
(𝑥,𝑦) = 𝜎2 exp

(
−2 sin

2 (𝜋 ∥𝑥 − 𝑦∥𝜆)
𝑙2

)
(20)

(21)

Locally Periodic. To ease some of the difficulties that come with
the periodic kernel, while still preserving its interesting properties
locally, we make use of kernel composition to construct a “locally
periodic” kernel.

𝑘LocPer (𝑥,𝑦) = 𝑘Per
𝜆
(𝑥,𝑦) · 𝑘SE (𝑥,𝑦) (22)

𝑝LocPer (𝜔) = (𝑝Per
𝜆
∗ 𝑝SE) (𝜔), (23)

where ∗ denotes convolution. This kernel is “locally periodic” in the
sense that in realizations new each “repetition” is allowed to deviate
slightly from the previous one. The length scale of the squared
exponential kernel controls how quickly disorder settles in.

Fig. 1. We can use weight-space sampling to directly estimate the naive
form of the ensemble average light transport in Eq. (8) for stationary kernels.
We first sample a collection of basis functions based on the kernel and then
a realization by choosing weights for each basis function (left). This gives us
a fixed global realization that we can evaluate at arbitrary points in constant
time. We then use affine arithmetic-based ray tracing [Sharp and Jacobson
2022] to find ray-surface intersection (right).

Thin-plate. Williams and Rasmussen [2006] suggest the “thin-
plate” covariance. It is motivated by the fact that posterior GPISes
should not “return to zero” for locations far away from the condi-
tioning points. Instead, it is a more reasonable assumption that the
magnitude of the sampled realizations should increase as you move
away from the surface sample.

𝑘TP (𝑥,𝑦) = 𝜎2 (2∥𝑥 − 𝑦∥3 + 3𝑅∥𝑥 − 𝑦∥2 + 𝑅3) (24)

𝑝TP (𝜔) = 3𝜎2

𝜋4𝜔6 (25)

Note that this covariance is only p.s.d. for ∥𝑥 − 𝑦∥ ≤ 𝑅, so 𝑅 has to
be chosen to be at least as large as the size of the domain.

3 ALGORITHMS
In this section, we discuss the rendering algorithms we use to vi-
sualize Gaussian process implicit surfaces in more detail. These
algorithms are, essentially, direct Monte Carlo estimators of Eq. (8)
and Eq. (14). In particular, we formulate them in such a way that we
avoid ever having to evaluate the GPIS Γ(𝑡, n) density directly.

3.1 Global realization sampling via weight-space GPs
We first describe a method to directly compute Eq. (9). Recall that
there, we require realizations that span the whole space we want to
trace paths through at once, and sampling from high dimensional
multivariate Gaussian distribution quickly becomes expensive, as
discussed in Section 3. If we limit ourselves to stationary kernels, we
can apply the weight space decomposition to the Gaussian process
instead [Wilson et al. 2020]. Here we approximate realizations as a
weighted sum of a finite number 𝑀 of basis functions, e.g. random
Fourier features 𝜙𝑖 (𝑥) =

√︁
2/𝑀 cos(𝜃⊤

𝑖
x + 𝜏𝑖) where 𝜃𝑖 are chosen

according to the spectral density 𝑆 (𝑠) =
∫
𝑘 (𝑟) 𝐽𝑑/2−1 (2𝜋𝑟𝑠)𝑟𝑑/2 d𝑟

of the covariance function, with 𝐽𝑑/2−1 being a Bessel function of
order 𝑑/2 − 1. Additionally, 𝜏𝑖 ∼ Uniform(0, 2𝜋) and 𝑑 is the dimen-
sionality of the domain. Sampling a realization is then equivalent
to sampling the weights for the basis function, and for an uncondi-
tioned process, the weights are independently Gaussian distributed.
The realization can then be evaluated at any set of points𝑋 in O(𝑁)
time as

𝑓 (𝑋) ≈
𝑀∑︁
𝑖=1

𝑤𝑖𝜙𝑖 (𝑋), 𝑤𝑖 ∼ N(0, 1) . (26)

4 • Dario Seyb, Eugene d’Eon, Benedikt Bitterli, and Wojciech Jarosz

This lets us draw correlated samples at a cost only dependent on
the chosen number of basis functions instead of on the number of
correlated samples.

3.1.1 Practical considerations. In particular, once we have sampled
weights for the basis functions, we can treat the resulting linear
combination like any other implicit function and trace against it
by finding the first zero crossing along each ray. Unfortunately, we
can’t use a fast root-finding method like sphere tracing because
the Lipschitz constant of our basis grows linearly with the number
of basis functions, forcing sphere tracing to take very small steps.
Instead, we rely on the slower but more general method of root-
finding via affine arithmetic [Sharp and Jacobson 2022]. Because the
basis functions use a limited number of operations, implementing
them in affine arithmetic is relatively straightforward. When we
have found an intersection, we can analytically compute the nor-
mal at that point and do shading as for any other implicit surface.
We illustrate this in Fig. 1. Note that because the basis functions
use non-linear operations (cosines), the bounds produced by affine
arithmetic are not tight. Nonetheless, we are guaranteed not to miss
intersections. Weight-space GPIS rendering makes it practical to
get results equivalent to the Global ∞ model, assuming that the
number of basis functions is chosen to be large enough. This means
that this method is mainly useful for verifying more general ones,
such as the function-space algorithms we will discuss next, in sim-
plified scenarios. There are several practical concerns when using
weight-space GPs for GPIS rendering. The most obvious one is that
the standard weight-space formulation can only support stationary
covariance kernels. The mean can still vary arbitrarily, allowing us
to model interesting scenes, but we can not vary properties such
as the roughness of surface-type GPIS or include surface-type and
volume-type GPIS in the same scene. Choosing the correct number
of basis functions is critical, and the exact number depends on the
covariance kernel. When choosing a low number of basis functions,
the underlying kernel is approximated poorly, which leads to sig-
nificantly different realizations (see Fig. 2). Empirically, we observe
that kernels with longer-than-exponential tails, such as the rational
quadratic kernel, require a much larger number of basis functions

SE
R

Q

M = 10 M = 100 M = 1000 function-space

Fig. 2. When we choose the number of basis functions we need to take the
roughness of the covariance kernel into account (top: smooth SE kernel,
bottom: rough RQ kernel). For rougher processes, too few basis functions
result in biased realization samples that do not predict the ground truth
kernel well. (left to right,𝑀 = 10, 100, 1000, ground truth).

than, for example, the squared exponential kernel. Finally, one has to
be able to sample from the spectral density of the chosen covariance
kernel. This is not always trivial to do, and we provide procedures
for the stationary kernels used in this work in Section 2.1 of the
supplemental.

3.2 Practical function-space sampling strategies
In Section 4.2 of the main text we discussed our function-space
sampling strategy and left off with two practical issues to solve
in an implementation: Determining scene bounds along rays and
limiting the number of correlated values that have to be sampled
jointly. Here we go into more detail on how we handle both of these
issues.

Determining scene bounds. One simple and practical solution to
define scene bounds is to prescribe them a priori. For example, we
can simply intersect the ray with a box or a sphere that we define
as the limits of the scene, resulting in only having to sample a
realization over a finite ray segment. A more principled option is to
consider that many scenes are naturally finite in extent. In our case,
this occurs when 𝜇 (x) → ∞ for large x, e.g. when the mean surface
is modeled using an SDF. Then, for large x, 𝑃 (𝑓 (x) ≤ 0) → 0, i.e. the
probability of sampling a value that we see as “inside” a GPIS goes
towards 0. We can define the bounds of the scene as the region for
which 𝑃 (𝑓 (x) ≤ 0) > 𝜖 for some small epsilon. That is, we discard
regions of space for which we are very unlikely to sample a zero
crossing. Evaluating this “point-wise occupancy” is cheap as it is
just the CDF of a mono-variate normal distribution. We can intersect
the ray with the level set {x | 𝑃 (𝑓 (x) ≤ 0) = 𝜖} using ray marching.
Accuracy here is not critical as long as we are conservative. This
gives us a finite ray segment to work with as long as our scene is
finite. The only case this does not cover is if we have an infinite
scene. The most common example of this would be a scene filled
with an infinite volume-type GPIS. Here we will have to rely fully
on the second level of our strategy.

Progressive ray segment sampling. There are two cases where we
can’t simply distribute sample points along a ray segment: We have
an infinitely large scene, or the ray segment is long compared to the
length scale of the covariance kernel (in which case the O(𝑛3) scal-
ing of function-space sampling would make sampling a sufficiently
dense set of points too slow). In practice, we found that taking
anything more than 256 correlated samples at a time significantly
impacts render times. To overcome this, we apply the same strategy
we applied in Section 4 to path segments to ray segments. That is,
we sample realizations 𝑓(x𝑡𝑖 ,x𝑡𝑖+1) ∼ GP(x𝑡𝑖 ,x𝑡𝑖+1) |𝜁∧𝜁 ′ with 𝑡0 = 0
and 𝑡𝑖+1 = 𝑡𝑖 + 𝑛 · Δ𝑡 , where Δ𝑡 is a step size chosen based on the
covariance kernel, and 𝜁 ′ the condition based on the chosen mem-
ory model. We repeat this until I

(
𝑓(x𝑡𝑖 ,x𝑡𝑖+1)

)
= 0, i.e. 𝑓(x𝑡𝑖 ,x𝑡𝑖+1)

contains a zero crossing. We then proceed as before, sampling a
normal followed by an outgoing direction. This process is illustrated
in Fig. 8.

From microfacets to participating media: A unified theory of light transport with stochastic geometry – Supplemental • 5

3.3 Thoughts on next-event estimation
Our function-space sampling approach enables us to employ next-
event estimation to a much greater degree than the global weight-
space sampling approach. When determining a global realization
before tracing a path, we fix not only the realization’s values but
also its gradients and, hence, normals. Then, during tracing, there is
exactly one possible normal at each intersection point. This means
that, when using a mirror micro-BSDF, we cannot perform next-
event estimation since, with the normal at the intersection point
being deterministic, the outgoing ray direction is completely deter-
mined. In function-space sampling, the normal at an intersection
is not determined ahead of time. Instead, we sample it from a dis-
tribution conditioned on the realization values we saw along the
incoming ray. This realization only fixes the directional derivative of
the GP at the intersection point but leaves us two additional degrees
of freedom to choose a gradient and, hence, a normal. Assuming
non-degenerate covariance kernels (i.e. volume-type GPISes, that
do not assume perfect correlation along any axis), the resulting
gradient distribution is non-degenerate and assigns some density to
the whole hemisphere of normals facing the ray. Hence, even when
using a mirror micro-BSDF, we can always find a normal such that
the reflected ray points into the desired NEE direction. Computing
the density of this distribution for a given normal is not trivial. The
conditioned distribution of gradients is a 3D multivariate Gaussian
distribution (no matter how complex the conditioning is). To com-
pute the (unnormalized) density of sampling a given normal, we
simply need to integrate over all possible gradients that normalize
to that normal as

𝑝 (n) =
∫ ∞

0
𝑓 (n ∗ 𝑡) d𝑡, (27)

where 𝑓 is the pdf of the conditioned gradient distribution at the
intersection point. Our preliminary investigation has shown that
the integral in Eq. (27) is tractable analytically, and we should be
able to compute the normalization constant to turn 𝑝 (n) into a true
pdf. This would then allow us to evaluate the conditioned visible
normal distribution, enabling (single scattering) NEE for mirror
micro-BSDFs. We leave this for future work but still apply classical
NEE after sampling a normal when the micro-BSDF is diffuse.

3.4 Implementation
We implemented the sampling strategies described in this section
in the Tungsten renderer [Bitterli 2018] with a focus on correctness
over performance. A GPIS is treated as a participating medium that
allows for sampling free-flight distances and computing transmit-
tance, and provides a phase function at scattering locations. Light
and camera positions are uncorrelated from the GPIS and we often
place uncorrelated, non-GPIS surfaces in the scene alongside the
GPIS we are investigating. We could, of course, represent these as
uncorrelated GPIS as well, but that would unnecessarily increase
rendering times without aiding in the validation or understanding
of our method. We use standard data structures such as OpenVDB
grids to store volumetric scene data (variance, length scale, and
mean). For the mean, we also support using a mesh directly and
computing SDFs on the fly.

4 UNCERTAINTY QUANTIFICATION USING DOUBLE
MONTE CARLO SAMPLING

We have a model 𝑀Φ (𝑥) with uncertain parameters Φ ∼ 𝑝Φ. We
would like to compute the moments of the distribution of model
outputs 𝑞𝑥 (𝑦𝑥 = 𝑀Φ (𝑥)). This problem is known as uncertainty
quantification. If we have access to a deterministic method of evalu-
ation𝑀Φ (𝑥), we can compute

EΦ∼𝑝Φ
[
𝑀Φ (𝑥)

]
=

∫
𝑀Φ (𝑥) d𝑝Φ (Φ) (28)

VΦ∼𝑝Φ
[
𝑀Φ (𝑥)

]
= EΦ∼𝑝Φ

[
𝑀Φ (𝑥)2

]
− EΦ∼𝑝Φ

[
𝑀Φ (𝑥)

]2
(29)

=

∫
𝑀Φ (𝑥)2 d𝑝Φ (Φ) −

(∫
𝑀Φ (𝑥) d𝑝Φ (Φ)

)2
(30)

and use Monte Carlo integration and sample variance to compute
an estimate of the mean and variance, respectively as

�EΦ∼𝑝Φ
[
𝑀Φ (𝑥)

]
𝑁

=
1
𝑁

𝑁∑︁
𝑖=0

𝑀Φ𝑖 (𝑥) Φ𝑖 ∼ 𝑝Φ (31)

�VΦ∼𝑝Φ
[
𝑀Φ (𝑥)

]
𝑁

=
1
𝑁

𝑁∑︁
𝑖=0

𝑀Φ𝑖 (𝑥)2 − (1
𝑁

𝑁∑︁
𝑖=0

𝑀Φ𝑖 (𝑥))2 Φ𝑖 ∼ 𝑝Φ

(32)

Note that due to the square in the second term and Jensen’s inequal-
ity, we need a relatively large number of samples to get an unbiased
estimate of variance. In practice, this is not a big issue since we
tend to have the samples available anyway if we want to compute
a relatively converged estimate of the mean. That is, if we have
enough samples to estimate the mean, we tend also to have enough
samples to estimate variance.

Unfortunately, in many graphics applications like rendering, the
model itself is often in the form of a complex integral equation, such
as

𝑀Φ (𝑥) =
∫

𝑚Φ (𝑥,𝑦) d𝑦 (33)

and has to be estimated using Monte Carlo techniques. That is, we
only have access to an estimate

�𝑀Φ (𝑥)𝑁 =

𝑁∑︁
𝑖=0

𝑚Φ (𝑥,𝑦𝑖)
𝑝𝑦 (𝑦𝑖)

𝑦𝑖 ∼ 𝑝𝑦 . (34)

This is not an issue when computing the mean of our model predic-
tions. Since a one-sample Monte Carlo estimator is unbiased, that
is

𝑀Φ (𝑥) = E
[�𝑀Φ (𝑥)1

]
= E𝑦∼𝑝𝑦

[
𝑚Φ (𝑥,𝑦)
𝑝𝑦 (𝑦)

]
, (35)

we can write

EΦ∼𝑝Φ
[
𝑀Φ (𝑥)

]
= EΦ∼𝑝Φ

[
E

[�𝑀Φ (𝑥)1 | Φ
]]

(36)

= EΦ∼𝑝Φ

[
E𝑦∼𝑝𝑦

[
𝑚Φ (𝑥,𝑦)
𝑝𝑦 (𝑦)

| Φ
]]

(37)

= EΦ∼𝑝Φ,𝑦∼𝑝𝑦

[
𝑚Φ (𝑥,𝑦)
𝑝𝑦 (𝑦)

]
(38)

6 • Dario Seyb, Eugene d’Eon, Benedikt Bitterli, and Wojciech Jarosz

and then use Monte Carlo integration to estimate the expectation as

EΦ∼𝑝Φ,𝑦∼𝑝𝑦

[
𝑚Φ (𝑥,𝑦)
𝑝𝑦 (𝑦)

]
≈ 1
𝑁

𝑁∑︁
𝑖=0

𝑚Φ𝑖 (𝑥,𝑦𝑖)
𝑝𝑦 (𝑦𝑖)

Φ𝑖 ∼ 𝑝Φ, 𝑦𝑖 ∼ 𝑝𝑦

(39)

Note that even though we are sampling two random variables now,
we can still just average 𝑁 independent evaluations of𝑚Φ𝑖 (𝑥,𝑦𝑖).
This is one of the central benefits of Monte Carlo integration; its
convergence does not depend on the dimensionality of the problem.
But for the variance, we have

VΦ∼𝑝Φ
[
𝑀Φ (𝑥)

]
≠ VΦ∼𝑝Φ,𝑦∼𝑝𝑦

[
𝑚Φ (𝑥,𝑦)
𝑝𝑦 (𝑦)

]
(40)

Intuitively, this is because V
[�𝑀Φ (𝑥)𝑁 | Φ

]
≠ 0 for 𝑁 < ∞ and we

have, according to the law of total variance

VΦ∼𝑝Φ
[�𝑀Φ (𝑥)𝑁

]
=

E𝑦1,· · · ,𝑦𝑁 ∼𝑝𝑦
[
VΦ∼𝑝Φ

[�𝑀Φ (𝑥)𝑁 | 𝑦1, · · · , 𝑦𝑁
]]

+ V𝑦1,· · · ,𝑦𝑁 ∼𝑝𝑦
[
EΦ∼𝑝Φ

[�𝑀Φ (𝑥)𝑁 | 𝑦1, · · · , 𝑦𝑁
]]
. (41)

Here, we can see that for finite 𝑁 , the total variance is comprised
of the expected value of the variance of our model due to model
parameters and the variance due to the Monte Carlo estimation of
our model.
We only recover the ground variance of the model due to the

model parameters as 𝑁 →∞:

lim
𝑁→∞

E𝑦1,· · · ,𝑦𝑁 ∼𝑝𝑦
[
VΦ∼𝑝Φ

[�𝑀Φ (𝑥)𝑁 | 𝑦1, · · · , 𝑦𝑁
]]

= VΦ∼𝑝Φ
[
𝑀Φ (𝑥)

]
(42)

lim
𝑁→∞

V𝑦1,· · · ,𝑦𝑁 ∼𝑝𝑦
[
EΦ∼𝑝Φ

[�𝑀Φ (𝑥)𝑁 | 𝑦1, · · · , 𝑦𝑁
]]

= 0 (43)

Intuitively, now that means that if we want to compute the sample
variance of our model due to the model parameters unaffected by
variance due to Monte Carlo estimation of the model, we need to
sample many 𝑦 𝑗 ∼ 𝑝𝑦 for each Φ𝑖 ∼ 𝑝Φ. Even if we reuse the same
set of 𝑦s, we still need to evaluate �𝑀Φ𝑖 (𝑥)𝑁 separately for each Φ𝑖
and compute sample variance as

�VΦ∼𝑝Φ
[
𝑀Φ (𝑥)

]
𝑁,𝐾

=
1
𝑁

𝑁∑︁
𝑖=0
(1
𝐾

𝐾∑︁
𝑗=0

𝑚Φ𝑖 (𝑥,𝑦 𝑗)
𝑝𝑦 (𝑦 𝑗)

)2

− (1
𝑁𝐾

𝑁∑︁
𝑖=0

𝐾∑︁
𝑗=0

𝑚Φ𝑖 (𝑥,𝑦 𝑗)
𝑝𝑦 (𝑦 𝑗)

))2 Φ𝑖 ∼ 𝑝Φ, 𝑦 𝑗 ∼ 𝑝𝑦 . (44)

This now results in quadratic complexity O(𝑁𝐾) where 𝑁 controls
the bias due to the limited number of parameter samples and 𝐾
controls the bias due to the additional variance in the Monte Carlo
estimator. Hence, while it is certainly possible to do uncertainty
quantification via Monte Carlo rendering of GPISes, it is not trivial
to do so efficiently and we leave this for future work.

REFERENCES
Benedikt Bitterli. 2018. Tungsten Renderer. https://github.com/tunabrain/tungsten/
Christian Grosche and Frank Steiner. 1998. Handbook of Feynman path integrals (1998

ed.). Springer, Berlin, Germany. https://doi.org/10.1007/bfb0109520
Nicholas Sharp and Alec Jacobson. 2022. Spelunking the Deep: Guaranteed Queries on

General Neural Implicit Surfaces via Range Analysis. ACM Transactions on Graphics
(Proceedings of SIGGRAPH) 41, 4 (July 2022), 107:1–107:16. https://doi.org/10/grnsz3

Christopher KI Williams and Carl Edward Rasmussen. 2006. Gaussian processes for
machine learning. Vol. 2. MIT press Cambridge, MA.

James Wilson, Viacheslav Borovitskiy, Alexander Terenin, Peter Mostowsky, and Marc
Deisenroth. 2020. Efficiently Sampling Functions from Gaussian Process Posteriors.
In Proceedings of the 37th International Conference on Machine Learning. PMLR,
10292–10302. https://proceedings.mlr.press/v119/wilson20a.html

https://github.com/tunabrain/tungsten/
https://doi.org/10.1007/bfb0109520
https://doi.org/10/grnsz3
https://proceedings.mlr.press/v119/wilson20a.html

From microfacets to participating media: A unified theory of light transport with stochastic geometry – Supplemental • 7

−20

−10

0

10

20

k
P

E
R

5

kernel & derivatives

k(0, t)

ky(0, t)

kx,y(0, t)

f.s. realization

not implemented

w.s. realization posterior occupancy

−2.5

0.0

2.5

5.0

7.5

10.0

k
R

Q
0
.2

5

−2.5

0.0

2.5

5.0

7.5

10.0

k
R

Q
1

−5

0

5

10

k
S
E

0.0 0.5 1.0 1.5 2.0

t

−2.5

0.0

2.5

5.0

7.5

10.0

k
T

P
5 not implemented

Fig. 3. We show an overview of some of the kernels that we implemented for our method. To give an intuition for the family of GPISes each kernel produces,
we show samples from the prior (produced via both function-space and, where applicable, weight-space methods) and posterior occupancy.

	1 Deriving recursive ensemble average light transport
	1.1 Expectations over realizations of a Gaussian Process
	1.2 Application to light transport
	1.3 Deriving the GPIS density in the Renewal and Renewal+ models

	2 Gaussian Process Details
	2.1 Kernel Functions

	3 Algorithms
	3.1 Global realization sampling via weight-space GPs
	3.2 Practical function-space sampling strategies
	3.3 Thoughts on next-event estimation
	3.4 Implementation

	4 Uncertainty Quantification using Double Monte Carlo Sampling
	References

