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Traditional Monte Carlo (MC) integration methods use point samples to
numerically approximate the underlying integral. This approximation intro-
duces variance in the integrated result, and this error can depend critically
on the sampling patterns used during integration. Most of the well-known
samplers used for MC integration in graphics—e.g. jittered, Latin-hypercube
(N-rooks), multijittered—are anisotropic in nature. However, there are cur-
rently no tools available to analyze the impact of such anisotropic samplers
on the variance convergence behavior of Monte Carlo integration. In this
work, we develop a Fourier-domain mathematical tool to analyze the vari-
ance, and subsequently the convergence rate, of Monte Carlo integration
using any arbitrary (anisotropic) sampling power spectrum. We also validate
and leverage our theoretical analysis, demonstrating that judicious align-
ment of anisotropic sampling and integrand spectra can improve variance
and convergence rates in MC rendering, and that similar improvements can
apply to (anisotropic) deterministic samplers.
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1 INTRODUCTION

Since being introduced to graphics by Cook et al. [1984], Monte
Carlo (MC) integration has become the cornerstone of most modern
rendering algorithms. Historically, MC integration in rendering has
involved sampling a function at various stochastically placed points
to approximate an integral, e.g. the radiance through a pixel. This
estimation is error-prone, however, and many researchers [Durand
2011; Oztireli 2016; Pilleboue et al. 2015; Subr and Kautz 2013; Subr
et al. 2014] have therefore investigated how the properties of the in-
tegrand and sample points impact the error and convergence rate of
this estimation. These analyses have provided important theoretical
insights and have lead to tangible improvements in rendering. Many
of these analyses have leveraged the Fourier domain to better under-
stand the underlying characteristics of different sampling patterns.
The radially averaged Fourier power spectrum [Ulichney 1987] has
been perhaps the most widely used tool to analyze point samples,
characterizing various stochastic sampling patterns ranging from
white noise to blue noise, and more recently being used to derive
variance convergence rates of various stochastic samplers [Pilleboue
et al. 2015].
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Fig. 1. The expected power spectrum of N-rooks with N = 256 samples is
highly anisotropic, with drastically different radial behavior along different
directions (blue vs. red arrows). Radial averaging (radial mean) masks the
good anisotropic properties of the sampler along the canonical axes.

While radial averaging is appropriate for analyzing isotropic
Fourier power spectra, many of the stochastic point sampling strate-
gies used in rendering—such as N-rooks [Shirley 1991] or even jit-
tered sampling [Cook 1986]—are in fact anisotropic. For anisotropic
sampling power spectra, radial averaging can be less informative, or
worse, misleading. For example, in Fig. 1, the 2D N-rooks sampling
pattern has radial behavior of a jittered sampling power spectrum
along the canonical axes, but a flat, white noise radial behavior in
other directions. This information is lost in the radially averaged
power spectrum shown at the top of the radial plots.

Most of the signals that we encounter in light transport are also
anisotropic in nature, with their spectra having most of their en-
ergy confined to a wedge shape [Durand et al. 2005]. Existing sam-
pling patterns, including quasi-random samples (e.g. Halton, Sobol),
have not been able to exploit this knowledge despite having strong
anisotropic properties in most projections. In this work, we estab-
lish a direct relation between the anisotropy of the sampler and
the integrand under study, generalizing and extending the reach of
prior analyses [Pilleboue et al. 2015] that relied on radial averaging.

We first study the anisotropic sampling processes in Monte Carlo
integration and the impact they have on variance and convergence
rate. Our primary contribution is a mathematical derivation of vari-
ance which enables Monte Carlo convergence rate analysis of arbi-
trary (isotropic or anisotropic) sampling power spectra. Based on
our analysis, we propose a novel approach to transform samples so
their power spectrum aligns with the high energy regions of the
signal spectrum, resulting in improved variance and convergence
rates. Our analysis also establishes a new set of design principles
for sampling patterns which can be tailored according to the lo-
cal light field interactions in a scene. Even though our theoretical
framework is developed for stochastic samplers, we demonstrate
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that similar improvements can be obtained for deterministic quasi-
Monte Carlo (QMC) samplers. We validate all our theoretical results
in a depth-of-field setup.

2 RELATED WORK

Point sampling, variance, & convergence. Since the introduction
of Monte Carlo to graphics [Cook et al. 1984], researchers have
noted that a careful arrangement of samples can impact the spectral
distribution and dramatically reduce the overall magnitude of error
in numerical integration [Cook 1986; Dippé and Wold 1985; Mitchell
1991]. This has lead to extensive work on generating sample patterns
which are stochastic, yet still maintain a low discrepancy [Shirley
1991] or which exhibit so-called blue noise frequency spectra [Cook
1986; Lagae and Dutré 2008]. Subr et al. [2016] summarized re-
cent efforts establishing a firm mathematical connection between
the spectral properties of the sampling pattern and the magnitude
of Monte Carlo integration error, and Oztireli [2016] established
connections to random point processes. Moreover, careful sample
placement—such as jittered [Cook 1986] and certain flavors of blue-
noise sampling [Balzer et al. 2009; Heck et al. 2013]—have now
been shown to actually lead to asymptotically faster convergence
rates [Mitchell 1996; Pilleboue et al. 2015; Ramamoorthi et al. 2012;
Subr and Kautz 2013; Subr et al. 2014]. We derive similar mathemat-
ical expressions governing variance and convergence rate, but for
the case of stochastic placement and evaluation of point samples
that might have an arbitrary anisotropic expected power spectrum.

Generation/analysis of anisotropic sampling patterns. Most sam-
pling methods used in graphics are inherently anisotropic (e.g. jit-
tered, N-rooks, multijittered), and anisotropic variants [Feng et al.
2008; Li et al. 2010; Wachtel et al. 2014] of popular isotropic sampling
patterns also exist. Such approaches have been shown to be more
suitable for certain geometry processing applications [Alliez et al.
2003; Lévy and Liu 2010], or for instancing anisotropic geometric
primitives [Li et al. 2010]. Projective relaxation [Reinert et al. 2016]
and low-discrepancy blue noise sampling [Ahmed et al. 2016] en-
force blue noise properties under multiple planar projections of a
point sampling pattern, resulting in anisotropic sampling spectra.
Isotropic Fourier tools are ill-equipped to analyze the error arising
from Monte Carlo integration using such sampling patterns.

A few analyses have been developed to handle specific forms of
anisotropy outside the context of Monte Carlo variance analysis. For
anisotropic distributions that arise from a global, invertible warp, it
is possible to perform isotropic spectral analysis [Li et al. 2010] after
warping the samples back to the uniform domain. Wei and Wang
[2011] proposed a more general framework that operates on the
inter-sample distances in order to analyze non-uniform/adaptive
sampling. With knowledge of the warping function’s Jacobian, they
can approximately eliminate differential anisotropy (i.e. local non-
uniform scaling or sheering) of the samples for analysis. While these
approaches were concerned with spectral analysis, they do not seek
to establish how such anisotropy affects variance and convergence
rate in Monte Carlo integration.

Light field reconstruction. Multi-dimensional light field recon-
struction has been studied extensively in the past decade. Unlike tra-
ditional image-based adaptive sampling techniques [Whitted 1980],
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Hachisuka et al. [2008] proposed to adaptively sample edges in the
original multi-dimensional integration domain, before subsequently
projecting these samples onto image space for reconstruction. This
work, combined with Durand et al.’s [2005] frequency analysis of
light transport instigated much of the subsequent work [Zwicker
et al. 2015] on sparse sampling and reconstruction. Some algo-
rithms were developed independently for certain effects [Egan et al.
2009; Mehta et al. 2012; Soler et al. 2009; Vaidyanathan et al. 2015],
whereas, others handle many distribution effects in a unified man-
ner [Belcour et al. 2013; Lehtinen et al. 2011; Mehta et al. 2014]. While
we leverage the insights from these prior analyses, we investigate
the problem of integration, instead of reconstruction, which roughly
corresponds to error introduced within a pixel vs. across pixels. We
establish a direct relation between the anisotropy present in the
integrand and the sampling power spectrum, and we demonstrate
our results in a depth-of-field setup by leveraging insights from light
field analysis [Mehta et al. 2014; Soler et al. 2009; Vaidyanathan et al.
2015] to warp samples prior to MC integration.

3 PRELIMINARIES

We are interested in computing integrals of the form:

1= [ rwax 0
D
where D is the d-dimensional Euclidean space.

Monte Carlo integration. Monte Carlo integration forms an ap-
proximation, Iy, of I by evaluating the integrand f at N sample
locations s; uniformly distributed over the domain D. This sam-
pling process can be expressed in continuous form by multiplying
the original integrand f with a normalized sampling function S
consisting of delta responses:

1 N
Iy = fD SO dx, with Se=1 > 8(x = sjl). ()
=

In the frequency domain @, this integral takes the form:

N
_ . 1Y _omi(ves,
INzﬁﬁ(V)ﬁ(V) dv, with ‘FS(V)zﬁZe ritvs) - (3)

Jj=1

where ?f is the complex conjugate of the integrand’s Fourier spec-
trum, and Fg is the spectrum of the normalized sampling function
where each summand is the Fourier transform of a single point.

Variance formulation. Prior work [Durand 2011; Pilleboue et al.
2015] has shown that the variance of Iy depends on the power
spectrum, P(v) = ||F(v) ||, of the integrand and the expected power
spectrum of the homogenized! sampling pattern:

Var (Iy) = f@ (Ps(r) Pr(v)dv, @

! Homogenization of sampling patterns ensures that the sampling Fourier coefficients
are uniformly distributed in the complex plane resulting in an unbiased estimator [Subr
and Kautz 2013]. In the point processes literature [Illian et al. 2008], homogenization
refers to stationary point processes for which the average number of points per some
unit of extent such as length, area, or volume remains constant across the domain.
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Fig. 2. Dragon scene rendered with strong defocus blur. The underlying integral is 4D (x, y, u, v) but the in-focus pixels (A & B) are still 2D, thereby
converging much faster than out-of-focus pixel (C). Multijittered has O(N’Z) convergence in Pixel A compared to O(N’I'S) for stratified2d, showing that if
anisotropic samplers are aware of the anisotropic structures present in the integrand (Fig. 3), both variance and convergence rate improve substantially.

Fig. 3. Variance is the product integral of the integrand’s power spectrum
Pr(v) (left column) and expected sampling power spectrum (Ps(v)) (top
row), visualized here for the combination of jittered (s1) and multi-jittered
(s2) sampling and the step (red) and Perlin noise (blue) integrands from
Pixels A and B of Fig. 2, respectively.

where © includes all frequencies except DC, and (Ps(v)) is the
expected power spectrum of the normalized? sampling function. We
visualize the integrand, sampling spectra, and their product in Fig. 3.

Prior work [Dippé and Wold 1985, 1992; Leneman 1966] has de-
rived analytic expected power spectra for common point sampling

ZPilleboue et al. [2015] use an unnormalized sampling function, so their expression for
variance includes an additional 1/ N normalization factor. We instead fold this factor
directly into the normalized sampling function.

patterns, for instance [Gabrielli and Torquato 2004]:

L for random, and

—JN

Pstvhr = {% (1 - H? Sinc(ﬂvi)z) for jittered )
where v; is the i-th dimension of frequency vector v.

To analyze the variance and convergence rate of specific sampling
patterns, Pilleboue et al. [2015] further simplify Eq. (4) by going to
polar coordinates and collapsing the integrand’s power spectrum
# and the expected sampling power spectrum (Ps(-))—under the
assumption of isotropic sampling power spectra—into their radial

averages P(-), arriving at:

var(in) = [ ")) b, ©)

With this simplification, their primary contribution was showing
that if the radially averaged sampling power spectra can be ex-
pressed analytically, then the corresponding variance convergence
rates can be derived for a given class of functions. To more easily ap-
ply this idea to complex radial power spectra, they showed that it is
often sufficient to piecewise bound the radial mean power spectrum
using a monomial in the low-frequency region and a constant for
high frequencies, with the degree of the low-frequency monomial
bound ultimately determining the convergence rate (refer to Sec. 1
of the supplemental for more details). Unfortunately, by relying on
radially averaged power spectra, Pilleboue et al.’s analysis only truly
applies to isotropic point sampling spectra. This also restricts the
scope of their convergence tools since the radial mean would not
take into account the anisotropy present within the integrand and
therefore, cannot exploit it to improve convergence rates.

In this work, we generalize the variance formulation to anisotropic
sampling power spectra while simultaneously coupling it more inti-
mately to the anisotropic structures present in the integrand under
study. Our analysis shows that, if the anisotropic structure of the in-
tegrand is known, then the anisotropy present within the sampling
power spectrum can be exploited to improve convergence rates
(Fig. 3, the dark cross region in the multijittered spectrum cancels
out the step spectrum resulting in improved convergence for Pixel
A in Fig. 2). We explore this idea in detail for the problem of depth-
of-field rendering (Sec. 6 & Sec. 7) which has integrand spectra with
anisotropic structures that are oriented (sheared) according to the
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occluder depths within a pixel. To this end, we theoretically derive
convergence tools that do not depend on radial averaging, allowing
us to predict correct convergence rates for anisotropic samplers.

4 GENERALIZED VARIANCE FORMULATION

In order to obtain a variance formulation that works for anisotropic
sampling spectra, we avoid relying on the radially averaged power
spectra Eq. (6), and instead seek a formulation that allows analyzing
the radial behavior along any direction. We first rewrite Eq. (4) in
polar coordinates:

varti) = [0 [ pstonromands 0

where p represents the radial component and n is a unit-length
vector residing on the (d—1)-dimensional sphere S?~! representing
the angular component of the frequency vector v = pn.

Generalization. By swapping the order of integration in Eq. (7):

variin) = [ [ s om) Py omdpdn, )

variance becomes an integral over a hypersphere where the outer
integral is over all directions and the inner integral is over all ra-
dial frequencies for a given direction n. We consider f(-) to be
Lebesgue integrable, which renders the inner integral bounded. If
we restrict our formulation to only well-behaved ¢ and Ps—having
finite bounded discontinuities [Apostol 1974]—the variance integral
from Eq. (8) can be written as a limit of sums which corresponds
to subdividing the hypersphere into similar-sized (not necessarily
equal-sized) cones of any base shape. These cones can be used to ap-
proximate the volume of this hypersphere by rewriting Eq. (8) in the
following form (see intermediate steps in Sec. 2 of the supplemental):

Var(in) = Jim " [ 591 (P (pni) Py (omdp im0
k=1

This is a valid representation in the context of true infinitesimal
calculus [Keisler 2012]. In the above formulation, Any, is the differ-
ential volume of the k-th cone. In the limit, we assume no angular
variation within the k-th differential cone, which allows us to con-
sider a single direction corresponding to each cone. Here, Any is a
constant that becomes infinitesimally small as m tends to infinity.

From Eq. (9), variance of Monte Carlo integration can be obtained
by summing the radially integrated terms along each individual
direction ng. This implies that, irrespective of whether our expected
sampling power spectrum (Ps(-)) is isotropic or not, we can analyze
each direction n independently to know the overall behavior of the
underlying sampler. Doing this in practice is difficult, however, since
1) there are infinitely many possible directions, and 2) computing
variance along any direction would require solving the integral
analytically which is only possible if we know the analytical form
of our sampling and integrand power spectra along each ny.

Since we are only interested in asymptotic convergence rates, it
is sufficient for us to analytically bound the radial sampling power
spectrum for any direction ny. Like prior work [Pilleboue et al.
2015], we bound the radial behavior, along each direction ng, with
a monomial of degree by > 0 in the low-frequency region (0, pi],
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Fig. 4. Radial power spectra for common samplers can be approximated
(bounded) by simple monomial profiles. Here, monomials of degree (a) b = 2
(quadratic), (b) b = 0 (constant), (c) b = 3 (cubic), and (d) b = 0 (constant)
bound the radial power spectra.

up to a certain radial frequency py. (see Fig. 4), and a flat spectrum
beyond. Instead of doing this for the radially averaged power spec-
trum, however, we consider this independently for each angular
direction ng. Assuming a highly anisotropic sampling power spec-
trum ((Ps(png))), we may require a monomial of different degree
by along each direction n; to bound the radial behavior.

In Sec. 5, we first develop our convergence tools for anisotropic
sampling power spectra and show that in the limit, convergence
rates can be deduced from a single particular direction of a sampling
power spectrum. Later, we use our variance formulation to theoreti-
cally derive the convergence rates for some well-known samplers
(multijittered, Latin-hypercube, randomly shuffled jitter) using the
tools we develop along the way.

5 THEORETICAL CONVERGENCE ANALYSIS

Preliminaries. To perform the theoretical analysis, we first restrict
our integrands to integrable functions of the form f(x) yq (x) where
f(x) is defined in Q, a bounded domain with smooth boundary
(where yq(x) is the characteristic function of Q) [Brandolini et al.
2001]. This can, however, be extended to arbitrary bounded convex
regions [Brandolini et al. 2003]. The worst case from this class of
functions exhibits the power fall-off of order ()(p—(d+1)) where
p > 0 is a radial frequency and d is the dimensionality of the signal.

In contrast to Pilleboue et al. [2015], we consider this class of
functions for each particular direction ng. As a result, we will have
a best and a worst case convergence rate along each direction ny of
the sampling power spectrum. To obtain best and worse case con-
vergence rates for various samplers, we first restrict our integrand
power spectra P (pny ), along each direction ny, to have the form:

c p < pos B ¢ p < po,
PW (png)=1F and PB(pn;)= > (10)
£ ¢ppd1 p s g P10 p s po

where P35 refers to the best and SD]W refers to the worst case inte-

I

grands, g >0 is a constant and py € R*/0 is finite. Note that, in
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the rest of the paper we may drop the superscripts for brevity and
refer implicitly to the specific case (best or worst) we are studying.

5.1 Anisotropic convergence tool

To derive a convergence tool that does not depend on radial averag-
ing, we start from Eq. (9) and split the radial integral into separate
regions (0, pg) and (pg, ©0):

m Pk
varti) = Jim )~ | (o4 Pstom) Ppiomdo
k=1Lv0

[ Pstomn Pr(omidip | an.
P

k

where py = apNi. Here, @ € R*/0 is used to quantify the low-
frequency region with little or no energy along each k-th direction.
Ny represents the effective number of samples along the direction
ng. For samplers that rely on stratification (e.g. jittered, multijittered,
N-rooks), N would correspond to the effective number of strata
along the k-th direction.

We now characterize sampling power spectra that have monomial
behavior (with degree by > 0) in the low-frequency region (Fig. 4),
along each k-th direction in terms of this effective sample count Nj.:

b
Y—k( p )k p<0{ka
(Ps(png)y = § N NNk (12)
Yﬁk otherwise

where y; > 0. In Fig. 4, we illustrate some sampling patterns with
their corresponding monomial bounds (proposed by Pilleboue et al.
[2015]) in the low-frequency region. After plugging Eq. (12) back
into Eq. (11), we obtain our anisotropic convergence tool. Note that,
contrary to Pilleboue et al. [2015], our convergence tool establishes
a direct link between the anisotropic structures present within the
sampler and the integrand under study, due to its dependence on the
radial behavior of their product along each direction ng. Isotropic
sampling power spectra become a special case in our formulation
where all directions behave exactly the same, thereby ignoring the
anisotropic structures present within #r. As a result, to obtain con-
vergence rates for stochastic samplers with isotropic power spectra,
we can simply use Ni = 4N in Eq. (12) and get the convergence
rates shown by Pilleboue et al. [2015].

Since variance convergence rate directly depends on the degree of
the monomial [Pilleboue et al. 2015] used to bound the radial curve,
we can derive convergence rates along each direction ny separately
in terms of the order O(-) of the effective number of samples along
ng. Asymptotically, the summand from Eq. (11) showing the worst
convergence rate among all would dominate the overall conver-
gence rate of the underlying anisotropic samples. This implies that,
ultimately, the convergence rate would be dictated by the direction
ny that exhibits the worst convergence behavior. A mathematically
more rigorous proof of this statement is given in Appendix A. This
also establishes a direct relation between the anisotropic structures
present within the sampler and the integrand under study.

XY uv ) XU YV

Fig. 5. Expected power spectra computed using N = 4096 samples for
randomly shuffled multijitter in 4D. Power spectra for other stratification
strategies is shown in Fig. 4 of the supplemental.

5.2 Anisotropic point sampling power spectra

While our convergence tool is valid for arbitrarily spectra, leveraging
this in the abstract case would require immense knowledge about the
anisotropy present within the sampling and integrand power spectra.
Luckily, anisotropic samplers are typically designed while keeping in
mind the target spectra. Even though existing techniques [Wachtel
et al. 2014; Zhou et al. 2012] assume complicated targets, we later
show that (Sec. 7), in practice for MC integration, it is beneficial to
introduce anisotropy in the directions where the behavior of the
integrand is known. In this section, we derive the convergence rates
for some well-known stratified samplers (with anisotropic power
spectra) as well as the samplers that combine these low-dimensional
stratified samplers to higher dimensions.

5.2.1 Randomly shuffled stratification. Generating jittered sam-
ples in 2D (or 1D) subspaces and then randomly shuffling these
subspaces to form a high dimensional sampler is a common tech-
nique in rendering [Pharr et al. 2016]. Cook [1986] first proposed
this idea to create 5D samples for depth of field and motion blur
(randomly coupling a 1D jittered point set with two 2D jittered sets).

We consider a d-dimensional randomly shuffled multijittered pat-
tern with N samples, where we generate multijittered samples
within 2D subspaces which are then randomly permuted to form a
d-dimensional tuple. In Fig. 5, we show the expected power spectra
of different 2D projections of a 4D multijittered sampler which is
created by first generating two 2D multijittered point sets in the XY
& UV subspaces. The samples are then randomly shuffled between
the original subspaces XY & UV, which results in a power spectrum
with a dark cross around the DC in the mixed projections (XU, YV).

Canonical axes. From Fig. 5, we observe that the original sub-
spaces XY and UV have N strata along the 1D canonical axes due to
the multijittered sampling pattern, which implies that the effective
number of samples along the canonical axes is N = N. In the mixed
projections, the stratification is only preserved along the canoni-
cal axes after the random shuffling between XY & UV. Therefore,
overall the canonical axes would behave exactly the same in all
projections. To obtain the convergence rate along the canonical
axes (with d = 1), we substitute Egs. (10) and (12) into Eq. (11). As a
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result, the worst case convergence rate can be derived as:

Noay (P Y ® Y d-1
Var(IN)<f0 piﬁ(ﬁ) cfdp+Lprﬁcfp77dp,

oy 0N, Y (T -2
- dp+ L dp=0(N?), (13
a2N3f0 pldp o | p T (N7?), (3

and the best case convergence along the canonical axes is given by:

Po 2
Var (In) < fo pd_l% (%) ¢crdp=O(N3).  (19)
Arbitrary directions in XY & UV. In all other arbitrary directions
(except the canonical axes) in the original subspaces, the samples
have 2D stratification. This implies that the effective number of
samples along these directions would be N} = VN, for which the
worst and best case convergence rates have been already derived as
O(N_1'5) and O(N_z), respectively [Pilleboue et al. 2015].

Arbitrary direction and mixed projections. In the mixed projec-
tions (e.g. XV, XU, YV, YU), or any directions not satisfying the
above special cases, the power spectrum is flat. This is because after
the random shuffling between the original (XY & UV) subspaces,
only the stratification along the canonical axes is preserved. As a
result, we would obtain a convergence rate of O(N _1) in all these
directions for best or worst case integrands.

We can summarize the convergence rates for randomly shuffled
multijittered sampling from all these regions in the following form:

w1DN_2 + WZDN_I'S + wdDN_1 worst-case

Var(In) < {

wipN2 +wypN~2 + wdDN_1 best-case ,

where wip, wop and wyp are weighting constants based on the
amount of energy in the integrand spectrum in the 1D, 2D and d-
dimensional subspaces discussed above. If the integrand varies only
along the canonical axes (i.e. wop = 0, wgp = 0) we will obtain 1D
convergence rates due to Ny = N effective samples. If the integrand
has only 2D variation and lies completely within one of the original
2D stratified subspaces (XY or UV), both w;p and wyp are 0 and we
get 2D jittered convergence rates. If the integrand spectrum has en-
ergy varying in more than two dimensions (i.e. wyp # 0), we should
observe an overall convergence rate of O(N _1) in the limit. How-
ever, because Eq. (15) is a polynomial, the weighting constants will
impact the behavior of variance at finite samples counts, allowing
the variance to follow different slopes before settling on this asymp-
totic behavior. For instance, if w;p > wyp and/or wop > wyp,
we may initially observe good variance reduction following the 1D
or 2D rates for small N, before ultimately deteriorating to O(N _1)
in the limit. While the primary motivation of our formulation was on
asymptotic convergence rates, it also provide (to our knowledge) the
first principled explanation for the multi-slope convergence behaviors
of certain sampler-integrand combinations.

Latin-hypercubes. A Latin-hypercube sampler (also called N-rooks
[Shirley 1991] in 2D), generates N jittered samples along each di-
mension which are then randomly shuffled to form a d-dimensional
tuple. The number of strata along each canonical axis is N, resulting
in N = N effective samples. This resembles the behavior of XU
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Fig. 6. Stretching blue noise (BNOT) [de Goes et al. 2012] samples produces
an anisotropic sampling spectrum (left), but this only influences the effective
number of samples in any given direction (right) by a constant factor.

& YV (mixed projections) in Fig. 5 which results in the following
convergence behaviour:

wlDN_2 + WdDN_l worst-case

Var (In) < { (16)

wipN3 +wypN~!  best-case .

Randomly shuffled jitter. For randomly shuffled 2D jittered sam-
ples (aka uncorrelated jitter [Cook 1986]), the effective number
of samples along all directions within the original subspaces is
Nj. = VN. In the mixed projections it would also have Ny = VN ef-
fective samples along the canonical axes, which results in an overall
convergence rate of:

wlDN_l'5 + WZDN_l‘5 + w,,lDN_1 worst-case
Var(In) < { _ _ 1 (17)

wipN™“+wypN™“ + wypN best-case ,
If we compare Eq. (17) with Eq. (15), we can see that for integrands
with 1D variations along the canonical axes, randomly shuffled mul-
tijitter outperforms randomly shuffled jitter. This can be explained
by the fact that the effective number of strata present along the
canonical axes for jitter is Ni. = VN (see supplemental Fig. 4). This
indicates that it is better to use multijittered samples instead of jittered
samples (which are common in rendering) to obtain randomly shuffled
high-dimensional stratified samples.

Anisotropic blue noise samplers. There exist many blue noise sam-
plers that allow generating anisotropic blue noise power spectra.
Fig. 6 shows an example of an anisotropic blue noise (BNOT [de Goes
et al. 2012]) sampling power spectrum generated using AA pat-
terns [Ahmed et al. 2015]. Note that this kind of anisotropy only
scales the radial behavior by a constant, and would therefore not
affect the asymptotic convergence rate in any direction. This is dif-
ferent from what we have seen in the case of stratification methods
(Latin-hypercube, multijitter and randomly shuffled jitter) where the
anisotropy introduces different convergence rates along different di-
rections. This difference stems from the fact that these stratification
methods change the effective number of samples (strata) along some
particular directions, whereas anisotropic blue noise samplers that
are generated by applying a Jacobian to match some characteristics
of the underlying density function [Li et al. 2010; Wei and Wang
2011] change Ni by at most a constant factor.
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Fig. 7. Top row illustrates an integrand with spectrum energy only along
the horizontal direction. Existing anisotropic samplers can be directly used
to integrate this function. However, for an integrand with an arbitrarily
oriented power spectrum (bottom row), we propose to shear the samples
to match the low energy region of the sampling power specrum with the
high energy regions of the integrand spectrum.

If anisotropic blue noise samplers would somehow change the
effective number of samples by more than a constant factor in a
particular direction or region while keeping the underlying blue
noise characteristics, the convergence rate along that set of direc-
tions would change. This is the case with the recent low-discrepancy
blue noise [Ahmed et al. 2016] and projective blue noise [Reinert
et al. 2016] sampling approaches which ensure that point samples
maintain a denser stratification along 1-dimensional projections.

6 SHEARING SAMPLES FOR INTEGRAND SPECTRA

Our theoretical convergence analysis has shown that most well-
known (randomly shuffled) stratification methods with anisotropic
power spectra can have different convergence rates in different
directions, depending on the behavior of the integrand along that
direction. Exploiting this for variance reduction, however, requires
alignment between the low energy regions of the sampling power
spectrum and the high energy regions of the integrand spectrum
(recall Fig. 3). This is unlikely to happen automatically because
existing anisotropic samplers have anisotropy mainly along the
canonical axes, whereas the integrands that we encounter in render-
ing can have power spectra with arbitrary orientation. To overcome
this problem, we propose to shear the samples according to the
anisotropic structures present in the integrand. Fig. 7 illustrates our
approach using two different 2D integrands, one with a spectrum
lying entirely along the horizontal axis and the other in an arbi-
trary orientation. By simply shearing the multijittered samples, the
corresponding sampling power spectrum also gets sheared, which
aligns the low energy regions of the sampling spectra with high
energy regions of the integrand spectra. In the spatial domain, the
corresponding sampling strata are also sheared, as shown in Fig. 7.
To extend our approach to real scenarios, we leverage prior light
transport frequency analyses [Durand et al. 2005] which shows that
when light travels in free space it undergoes a shear in ray space.
This knowledge has been leveraged to craft sheared reconstruction
filters for different distribution effects like defocus [Soler et al. 2009]

virtual image plane /| 5

Aperture
u focal plane

Fig. 8. The depth of field setup used in our implementation is shown here
with an object O placed at a depth d from the lens. The shear due to the
finite size of the aperture can be computed at the focal plane.

and motion blur [Egan et al. 2009]. We, however, propose to shear
the samples prior to MC integration using the following algorithm:

(1) Use frequency analysis to develop an oracle that can predict
shear parameters of the integrand spectrum, per pixel.

(2) Depending on the pixel frequency characteristics, choose an
existing sampler or design a new sampler (potential future work)
to obtain maximum benefits.

(3) For each pixel, use oracle from step 1 to shear the samples.

(4) Perform Monte Carlo integration with these sheared samples.

The proposed algorithm can be applied to any light transport ef-
fect for which Fourier analysis could provide the warping (shearing)
parameters. In this paper, we demonstrate one realization of this
algorithm for the case of depth-of-field rendering.

In the next section, we first briefly analyze depth of field in flat-
land, both in the spatial and Fourier domains and later show that
it is possible to get 2D convergence rates for a 4D depth-of-field
integral by simply shearing existing anisotropic samplers. However,
for the cases where the anisotropy within the light field cannot be
known before hand, it is safer to stick to samplers like 4D jitter
which can give convergence rates of O(N ’1'25), which is better

than Monte Carlo O (N -1 )

6.1 Defocus blur in flatland

To simplify exposition, we analyze depth of field in flatland, but this
can be directly extended to 4D without loss of generality. We follow
a standard setup and parameterize rays using two parallel planes: a
virtual image plane (focal plane) with x-coordinate and an aperture
along the u-coordinate, as shown in Fig. 8. We assume a Lambertian
object O positioned at a distance d which is visible from the entire
aperture. As a result, the outgoing radiance from O would be the
same when viewed from different locations on the aperture (e.g. the
red ray (ug, xo) and the blue ray (u1, x1)). The radiance from this set
of rays would be smeared over multiple pixels on the image/focal
plane at distance F, rendering O out of focus. From the geometry of
our setup, we see the x-axis is sheared w.r.t. u as follows:

d
Here, cr(d) is the circle of confusion on the focal plane. The corre-
sponding shear in the Fourier domain would be: v, = vy, — cp(d)vx
for pixels with no occluders (we handle occluders directly in Sec. 7).

X0 = x1 + u1 = x1 + cp(d)u; , on the focal plane . (18)
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Fig. 9. The setup from Fig. 8 is modified to illustrate the distance range
(di < d < dy) where an object (O1, 02, O3) can have a significant overlap
in the ray space when seen either from the aperture (a and b) or the focal
plane (p and q). This could help decide whether to shear the samples along
the x-axis or the u-axis.

This implies that, a horizontal shear in the primal domain would
result in a vertical shear in the Fourier domain. This knowledge is
sufficient for our purposes. For a more in-depth study of depth of
field please refer to the work by Vaidyanathan et al. [2015].

6.1.1 Shearing the samples. From Eq. (18) we can see that a
finite aperture shears the light field in the mixed projections (XU &
YV shears in a similar fashion). We propose to shear the samples
by the same amount in these mixed projections while toroidally
wrapping them to keep them within the original integration domain.
Consequently, the sheared samples would have a power spectrum
that is sheared according to the light field. Note that this is equivalent
to inverse shearing the light field to align the integrand spectrum
with the original sampling spectrum (inversely sheared light fields
shown in Fig. 10).

Shearing x w.r.t. u vs. u w.r.t. x. All well-known anisotropic sam-
plers used in practice have anisotropy along the canonical axes (see
Fig. 4 & 5 in the supplemental). Since the Fourier power spectrum is
symmetric (Hermitian), it is possible to shear either the horizontal
or the vertical axis to align the spectra (see Fig. 13, bottom row).
Mathematically, these two shears can be summarized as follows:
x=x+cp(duandu =u+ #M)x.

To analyze what these two shears correspond to in the flatland
light field, we rearrange the depth-of-field setup as shown in Fig. 9,
where we have now three objects (01, O2 and O3) placed around
the focal plane. Depending on the distance of these objects from the
focal plane, we might want to shear the samples (or inverse shear
the light field) along the horizontal or the vertical axis. In Fig. 10,
we demonstrate two XU slices that correspond to O2 (top row) and
03 (bottom row) object locations alongside their power spectra
(second column) and the inversely sheared light fields (third and
fourth columns, respectively). Since the XU slice for O2 location
has power spectrum oriented at < 45° from the x-axis, inverse
shearing the light field along the x-axis appears to introduce only
one discontinuity (due to the toroidal wrapping). If we inverse shear
along the u-axis, however, the toroidal wrapping introduces many
discontinuities. In the spatial domain, this can be explained by the
distance of the object from the focal plane. If the object (O2) is within
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Fig. 10. Inverse shearing the light field (XU slices) could drastically change
the original slice content if the shearing is not performed along the proper
axis. In the top row, an XU slice corresponding to object location O2 main-
tains most of the original content with only one discontinuity when sheared
along x-axis, whereas, shear along the u-axis seems to work well for O3
(bottom row, more details in the text).

di < d < dy, there will always be an overlapping region on O2 as
seen from any two locations on the aperture (shown for a and b
in Fig. 9). The inverse shearing along the x-axis doesn’t change the
underlying slice content drastically as long as there is a non-zero
overlapping region (top row, Fig. 10).

For objects O1 and O3 where di > d > dj, there will instead be
an overlapping region (R1, R3) on each of them when they are seen
from two different locations p and g on the focal plane (see Fig. 9).
An XU slice corresponding to an object at O3 is shown in Fig. 10
(bottom row), which suggests that in this case, inverse shearing
along the u-axis will work better.

We can easily derive this depth range, d; < d < dz, in terms of
the radius R of the aperture (lens) and the width 2W of the (pixel)
focal plane which is given by: d; = % ,da = %. This implies
that, depending on the distance from the focal plane, we might want
to shear the aperture u-coordinate samples or the focal plane x-
coordinate samples. In the next section, we will show the impact of
shearing these two coordinates on the variance convergence rates.

7 EXPERIMENTS

We now validate our theory with a set of depth-of-field rendering ex-
periments, analyzing variance when employing various anisotropic
samplers commonly used in rendering. We also demonstrate that
our approach of shearing samples is not only limited to stochas-
tic samplers, but can lead to similar benefits with common de-
terministic low-discrepancy sequences such as Halton [1960] and
Sobol [1967]. We perform our light field and variance analysis using
PBRT-v3 [Pharr et al. 2016] and will release our PBRT plugins.

Implementation. We use a square (finite size) aperture for all the
scenes rendered in this paper and a box pixel filter throughout our
analysis to avoid any impact of filtering on the variance. To restrict
the dimensionality of the integration to 4D, all the scenes contain
one point light source. We use eight different anisotropic samplers
in our experimental analysis. We include some standard samplers
included in PBRT like the Latin hypercube sampler and stratified2d,



Convergence Analysis for Anisotropic Monte Carlo Sampling Spectra « 137:9

1
.13 4 /
X
11
7 : 7
1

ll

Fig. 11. Fourier content of different pixels is analyzed for this Cornell Box scene which is rendered with a defocus blur. The XU light field slice corresponding
to each pixel is shown with the corresponding expected power spectrum of that slice. On the Cornell Box image, the green dots refer to single depth pixels,
red dots refer to two depth pixels, blue dot refer to a pixel with three depths whereas the black dots refer to the pixels with continously varying depth.

which is a form of randomly shuffled jitter that stratifies the XY
and UV planes with jittered samples and then randomly permutes
the samples in between the two subspaces to form a 4D sample. On
top of that, we have added randomly shuffled multijitter, randomly
shuffled correlated-multijiter [Kensler 2013], and a 4D stratified
sampler (stratified4d) which directly stratifies in 4D. We include
independent random samples for reference. We also include PBRT’s
Halton (non-scrambled) and Sobol (non-scrambled) samplers in our
analysis. All samplers are homogenized in the random number space.
We show the power spectra of all these samplers (for different XY,
XU, YV, UV projections) in the supplemental (Fig. 4 & 5).

We compute the power spectra of all the signals for validation
and visualization purposes (shown in Fig. 11) by first sampling
the underlying signal with N = 16384 regular samples in the XU
space and then applying the continuous Fourier transform on these
samples (all in PBRT). For Pixels 3,5, 6,7, 8, a few parallel bright
streaks are visible alongside the central replica. These are the aliases
of the central replica due to the lower sampling count. Pixels 9 &
10 show a strong high energy cross (Sinc(-)) around the DC. Any
filter that goes to zero at the boundaries (e.g. truncated Gaussian or
a triangle filter) can be used to reduce the impact of this Sinc(-). In
other pixels, this high energy cross is not visible due to no sudden
change in the signal amplitude across the boundaries of the domain.

7.1 Convergence analysis of in-focus pixels

Dragons. We start with in-focus pixels (Pixels A & B) from Fig. 2.
Even though we are solving a 4D (x, y, 4, v) integral here, the in-
focus pixels (at the focal plane) have variations only within the 2D

XY subspace. As a result, only the samples in the image plane (XY
projection) would impact the convergence rate, which explains the
2D convergence rate of O(N _1'5) with stratified2d for Pixels A &
B.

For samplers like multijitter and Latin-hypercube, there is a strong
hairline anisotropy present along the canonical axes. Since the fre-
quency content of the step function in Pixel A lies completely along
the horizontal axis (Fig. 3), the resultant spectral product drops down
readily, resulting in an improved convergence rate of O(N _2)4 For
the Perlin noise texture (Pixel B, Fig. 2 and 3), since the integrand has
energy spread in all the directions, we fall back to the 2D worst case
convergence of O (N _1'5) with multijitter. This also validates our
theory that regardless of the good (low energy) directions present
in the sampling spectra, which can give good convergence rates, the
true convergence rate stems from the direction with worst behavior.

The correlated-multijittered power spectrum has wider anisotropy
along the canonical axes (see supplemental Fig. 4) compared to Latin-
hypercube and multijitter, which would indicate further improve-
ment in variance and convergence for Pixel B (Fig. 2). However, due
to the high energy streaks in the correlated-multijitter spectrum,
the expected improvement is hindered.

7.2 Convergence analysis of out-of-focus pixels

Cornell box setup. In Fig. 11, we create a scene to analyze pixels
that are affected by both XY and UV samples and show how shearing
the samples can improve convergence rate. The scene contains some
constant depth objects (disks and planes) that are textured with
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Fig. 12. Variance convergence plots are shown for all the pixels marked in the Cornell Box scene from Fig. 11. Pixels numbered from 2 to 7 are single depth
pixels, whereas, Pixels ranging from 11 to 14 (in the bottom row) have continuously varying depth. Pixel 8 has one occluder (two depths) whereas Pixel 10 has
two occluders (three depths). Shearing shows (asymptotic) improvement in almost all the scenarios with some pixels showing remarkable improvement in the
convergence rates (Pixel 3, 4, 6, 7, 14). Note that, LHC correspond to Latin-hypercube sampler in the plots. Better illustration of these plots is shown in the

accompanied supplemental.

a very high frequency Perlin noise texture, except the walls and
the floor which have an image texture on it (no texture on the
ceiling). We visualize the underlying textures for each object in Fig.
9 of the supplementary material. We follow the steps proposed in
Sec. 6 to analyze this setup. We first leverage the light transport
frequency analysis from Sec. 6.1 that gives the shear parameters
(focal distance & depth) for different pixels (step 1). To obtain these
shear parameters, we use an oracle (a depth map), that uses N = 64
regular grid samples per pixel and returns the depth for a hit point
having maximum luminance. We use this depth information to shear
the samples (step 3). The frequency power spectra computed for
each pixel (shown in Fig. 11) show how the shear in the spatial
domain also shears the frequency content in the mixed dimensions
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(XU & YV subspaces). We study each pixel using several existing
samplers, though it would also be possible to choose or design a
sampler depending on the underlying pixel frequency footprint
(step 2). Fig. 12 shows all the variance plots (please consult the
supplemental for better visualizations of these plots).

7.2.1  Single depth pixels. In Fig. 11, pixels marked from 1 to 7 are
constant depth pixels (with no occluder), with the depth increasing
in the given order. Let us start by looking at the variance plots for
Pixels 2 & 7 in Fig. 12. Pixel 2 shows a 10X reduction in variance
from shearing Halton and Sobol samples at high sample counts,
whereas Pixel 7, which has stronger defocus blur, shows remark-
able improvement in convergence: multijitter and stratified2d give
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Fig. 13. Pixels 2 & 7: Variance convergence due to shearing the samples depends on the angle of the integrand power specturm from the horizontal v axis,

which is directly correlated to the depth of the objects underneath each pixel.

Pixel 2 from Fig. 11, which is very close to the focal plane directly benefits from

shearing xy samples, whereas, Pixel 7 which is far from the focal plane shows improvement in convergence only for the uv samples.

2D convergence of O(N 5) whereas correlated-multijitter gives

O(N _1'6) convergence for this 4D (x, y, u, v) integral. Halton and
Sobol also show similar improvements in convergence for Pixel 7.
As expected, shearing stratified4d does not show improvement in
convergence and we obtain the 4D convergence rate of O(N _1'25).
This happens because there is no strong anisotropy present in any
of the projections in the power spectrum of stratified4d (Fig. 4 in
the supplemental).

Shearing xy w.r.t. uv vs. shearing uv w.r.t. xy. We now analyze
the Fourier content of Pixels 2 & 7. From Fig. 11, we observe that
Pixel 2 has a spectrum with orientation of < 45° from vy, whereas
Pixel 7°s spectrum is oriented at an angle > 45° from vy. To analyze
the impact of these two orientations we study the variance plots for
these two pixels separately in Fig. 13. Pixel 2 shows better variance

reduction when xy sample coordinates are sheared w.r.t. uv, whereas
Pixel 7 shows 2D convergence when uv-coordinates are sheared
w.r.t. xy (see Fig. 13) for the underlying 4D integral®.

To understand this change in convergence, we take a closer look
at the power spectra of stratified2d and correlated-multijitter for
Pixel 7 in Fig. 13 (bottom row). After shearing xy-coordinates w.r.t.
uv, the only dominant low energy region left is the vertical axis (first
sub-column in the bottom row), whereas, the sheared horizontal
axis has almost lost its low energy properties (black dots can be seen
instead of a dark line). However, shearing uv w.r.t. xy maintains
the low energy profile vertically even after shearing (second sub-
column in the bottom row), which results in better convergence.
In Sec. 6.1.1, we analyzed these two shears in the primal domain

3Note that, since x is parallel to u and y is parallel to v in our setup, shearing xy w.r.t.
uw simplifies to shearing x w.rt. to u and y w.rt. v, and likewise for uv w.rt. xy.
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Fig. 14. Pixel 9 has two depths which are visible as two high energy
streaks forked from the DC (center of the image) in the spectrum (as shown
in Fig. 11) with each line correspond to each depth. In (a) convergence
is plotted by shearing the samples to align the sampling spectrum with
the high energy orientation (> 45°), whereas in (b), sampling spectrum is
aligned to the other orientation (< 45°).

where we obtained the depth range (d; < d < d2) that is suitable
for shearing the x-coordinates w.r.t. u. We observe similar behavior
for Halton and Sobol samplers. In Fig. 12, all the variance plots are
computed by shearing the most optimal axis.

Pixel 3 & Pixel 5 show nominal improvements in the convergence.
This is because the energy content of these relatively bright pixels
is spread across higher frequencies compared to other pixels and
therefore, the hairline anisotropic structures of the sampling spectra
are not significantly improving the convergence even after 10°
samples. In Sec. 8, we discuss future samplers with wider little or no
energy anisotropic structures that could be more beneficial in these
scenarios. Pixel 4 gets remarkable improvement in convergence rate
of O(N _1'7) with Halton and Sobol after shearing, Pixel 6 shows

convergence rates ofO(N_l'ZS) with multijitter, O(N_l'35) with

correlated-multijitter and O(N -15 ) with Halton and Sobol after
shearing for this 4D integral, as shown in Fig. 12.

7.2.2  Two and three depth pixels. Pixels with one or more oc-
cluders in Fig. 11 have multiple depths. We start with Pixel 9 which
has one occluder (two depths) and therefore, its power spectrum
in Fig. 11 has a bright streak passing through the DC (at the cen-
ter) for each depth (ignore axis-aligned streaks which represents
the Sinc function). The front occluder orients the spectrum at an
angle < 45° from v, whereas, the object behind orients at an angle
> 45°. Following the analysis for Pixels 2 & 7 (Fig. 13), we know
that the front occluder requires shearing xy w.r.t. uv and vice-versa
for the object behind. In Fig. 14, however, we analyze the impact
of shearing the samples w.r.t. to either depth separately (uv w.r.t.
xy Fig. 14 (a) and xy w.r.t. uv 14 (b)). Since Halton and Sobol have
wider anisotropic structure in the mixed dimensions compared to
stochastic samplers (see supplemental Fig. 4 & 5), we observe a
slight improvement in convergence while shearing uv w.r.t. to xy
(Fig. 14 (a)).

Pixel 10 in Fig. 11 has two occluders in front, one of which is
brighter than the others. The spectrum of this pixel is very simi-
lar to Pixel 9, where one central line in the spectrum is due to the
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depth/shear of the brighter surface and the second is due to the
sudden change in intensity while going from the dark occluder to
the bright one. For variance analysis, we align the sampling spectra
with the frequency content of the occluder which is brighter (our
oracle chooses depth based on the luminance value to automatically
handle these scenarios). Pixels with two depths can be better han-
dled by performing a 2D shear which could align both the hairline
anisotropic structures of the sampler to the integrand spectrum
(future work).

7.2.3  Pixels with varying depth. One of the challenging aspect of
pixels with continuously varying depth is the accurate estimation
of depth. Pixel 11 shows no major improvement despite having a
very narrow wedge. Note that, in real scenarios it is common to
find pixels with a wedge shaped spectrum due to multiple occluders
or continuously varying depth (Pixel 13). Existing samplers cannot
show any noticeable improvement for these pixels due to the hairline
anisotropy in the mixed projections (XU, YV). Our analysis suggests
that new sampling patterns with little or no energy in a wedge of
directions might be able to handle such common scenarios more
robustly. Pixels 12 and 14 in Fig. 11 also represent regions with
continuously varying depth. However, since these pixels are far
from the focal plane and have an image texture underneath, the
power spectra of these pixels have their frequency content fully
packed within a very slim wedge (that looks like a line). If we look
at the variance convergence plots in Fig. 12 for these pixels, all
samplers (except stratified4d and LHC) show 10X improvement in
variance for Pixel 12 at higher sample counts, whereas for Pixel 14
not only Sobol, multijitter, correlated-multijitter but also stratified2d
show 10X improvement in variance (see supplemental material for
better visualization of these variance plots). Halton’s convergence
improves from O(N_1'35) to O(N_1'7) due to shearing in Pixel 14.

In Fig. 15, we visualize the variance (for N = 100489 correlated-
multijittered samples) across different pixels with (right) and with-
out (left) shearing the samples (bright pixels correspond to high
variance). We generate 2D correlated-multijittered samples in XY

(a) Correlated-multjitter with no shear

(b) Correlated-multijitter with shear

Fig. 15. Following our algorithm of shearing samples prior to MC integra-
tion, we observe modest improvement in variance (b) at depth discontinu-
ities, and dramatic improvement in variance at other regions when rendered
using N = 100489 sheared correlated-multijittered samples at each pixel.
Brighter pixels correspond to relatively high variance value.
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& UV subspaces which are then randomly permuted to solve the
4D (x,y, u,v) defocus integral. Our shearing algorithm reliably de-
creases variance across the whole image. Constant depth regions
(e.g. the background wall) show dramatic improvements whereas
depth discontinuities have modest improvement in variance.

8 CONCLUSIONS AND FUTURE WORK

We proposed a generalized variance formulation that works for any
stochastic sampling power spectrum (isotropic or anisotropic) and
developed convergence tools that directly take into account the
anisotropy present within the sampler and the integrand spectra.
We show that, in the limit, the worst convergence rate of a sampling
pattern can be deduced from a single direction (within its spectrum)
along which the integrand has worst case radial profile. Based on our
theoretical analysis, we proposed to align the low energy regions of
the sampling spectrum with the high energy regions of the integrand
spectrum to reduce variance.

To demonstrate the applicability of our theory, we presented a
comprehensive analysis of existing anisotropic samplers for depth
of field, showing that the variance convergence rate of existing
samplers can be improved during Monte Carlo integration if we have
prior knowledge about the anisotropic structures present within
the integrand. Since a finite aperture causes a shear in ray space
(mixed projections XU, YV) for objects that are not at the focal
plane, we propose to shear samples by the same amount to achieve
convergence improvements for depth-of-field rendering. This can
equivalently be viewed as inverse shearing the light field, to restrict
its variation to axes-aligned projections in random number space.

Our analysis reveals that we should not expect major improve-
ments in variance reduction at low sample counts with current
samplers (even after shearing), and any variance improvement may
be sensitive to the robustness/accuracy of the oracle. This makes
our approach less practical compared to existing reconstruction
algorithms [Mehta et al. 2014; Vaidyanathan et al. 2015]. However,
our approach is unbiased which could eventually converge to the
correct result despite the inaccuracies present in the oracle (in pre-
dicting the spectrum or the depth). By shearing the samples, we
intuitively orient the sampling strata without changing the density
of the samples (see Fig. 7) which results in improved convergence
rate. This is in contrast to methods like MDAS [Hachisuka et al.
2008], which adaptively increases the sampling density across edges
(without increasing the effective stratification). Unlike these recon-
struction approaches and the recent work by Georgiev and Fajardo
[2016]—which exploits inter-pixel correlation to improve the spec-
tral distribution of noise without reducing total error—our analysis
does not take into account neighboring pixels.

Future work. It is common practice to randomly shuffle 2D or 1D
stratified samplers [Pharr et al. 2016] to create a high-dimensional
sampler for Monte Carlo rendering. However, this random shuf-
fling introduces a hairline anisotropy in the mixed dimensions
(projections) for most existing stochastic samplers. These hairline
anisotropic structures are not very helpful in reducing variance for
pixels with wider or wedge-shaped anisotropic structures, which are
common in many distribution effects [Durand et al. 2005; Egan et al.
2011, 2009; Mehta et al. 2012]. Our analysis suggests new design
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principles for anisotropic samplers that can have wider or wedge
shaped anisotropies in their spectra in most of their projections.
Halton and Sobol samplers, which already have good anisotropic
structures, could, perhaps, be optimized to obtain wider low energy
regions in different projections. This could also help in light field
camera sample designs [Wei et al. 2015]. Lastly, our design principles
are inline with Pilleboue et al. [2015], which have emphasized on
obtaining isotropic zero energy region in the low frequencies (e.g.
step noise). Our analysis, however, proposes to obtain zero energy
regions along the directions/projections that matter the most, since
a large range of directions would not have any impact on variance
reduction during Monte Carlo integration.
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A CONVERGENCE RATE FROM SINGLE DIRECTION

For brevity, we show only the crucial steps of the proof here. For
a detailed version, please refer to the supplemental Sec. 4. We first
represent the radial integral from Eq. (9) in the following form:

b
R (ny) = f PP (o)) Promiddp,  (19)

For m — oo, we can rewrite Eq. (9) by separating one direction with
the rest of the directions as follows:

Var(In) < R (m1) + Y R (). (20)
k=0

Lets assume that we have a constant radial profile along direction
n; and a monomial behaviour of degree by > 0 along all other
directions. This would allow us to approximate R’ (ny) as O(N _1)
irrespective of the integrand. The second part R’ (ny) can be ex-
panded similar to Eq. (11) as follows:
m
-1 : Pk 0

Var(Iy) < O(N7!) + lim H(RO (ng) + RSy (ng))  (21)
For a worse case, the radial integrals can be solved with a monomial
sampling profile, resulting in:

51, 0w )+ O(F) 0<bi <1
b =1

m 1 1
i, 0(wag) +O(%)
In a similar fashion, we can obtain the variance convergence rates
for the best case, in all ng /{k = 1} directions:

Var(In) < éo(ﬁ) +0(%). (23)

Since, the sum of O(:) notations is asymptotically dominated by
the worst O(-) behaviour (proof in Sec. 3 of the supplemental),
the overall convergence rate (for both the worst (Eq. (22)) and the
best (Eq. (23)) case) would be: Var(In) < O(ﬁ)

Var (Iy) < (22)
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However, from Eq. (23), if none of the directions has a constant
profile behaviour, the overall convergence rate would be dominated
by the k-th direction having the minimum value of by, and can be
written in the following form:

infimum

1
Var(Iy) < O ———| v bx>0 24
(In) (NNkbk) (24)
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