Analysis of Sample Correlations for Monte Carlo Rendering

Gurprit Singh Cengiz Oztireli Abdalla G. Ahmed David Coeurjolly

_ UNIVERSITE
DE LYON

Ct" @ alllaac Ellal] aeala
l ' l p I I %-. %lsNEP Research -LLCM'JI‘) m %

King Abdullah University of
Science and Technology

Kartic Subr  Oliver Deussen  Victor Ostromoukhov Ravi Ramamoorthi Wojciech Jarosz

Universitat oree \ UCSan Diego /
' ) E= Dartmouth

JACOBS SCHOOL OF ENGINEERING

Konstanz







Cengiz Oztireli Abdalla G. Ahmed David Coeurjolly

-
S =

Pt 4

Kartic Subr Oliver Deussen Victor Ostromoukhov Ravi Ramamoorthi Woijciech Jarosz



Gurprit Singh Cengiz Oztirel



Rendering = Geometry + Radiometry

Geometry / Projection

for pin-hole model is known since 400BC
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Rendering = Geometry + Radiometry

Geometry / Projection Radiometrically accurate simulation

for pin-hole model is known since 400BC IS Importance of realism
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Rendering = Geometry + Radiometry

Geometry / Projection Radiometrically accurate simulation

for pin-hole model is known since 400BC IS Importance of realism

OpenGL ~ Raytracing
[Stachowiaky2010] [Whitted 1980]




Radiometric fidelity improves photorealism

Papas et al. [2013]




Radiometric fidelity improves photorealism

K_rivanek et al. [2014]
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Reconstruction: Estimate iImage samples



Nalve method: sample image at grid locations

Ground truth (high-res) image Reconstruct on (low-res) pixel grid
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Nalve method: sample image at grid locations
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Nalve method: sample image at grid locations

Ground truth (high-res) image Reconstruct on (low-res) pixel grid

Average




Antialiasing using general reconstruction filters

Ground truth (high-res) image Reconstruct on (low-res) pixel grid
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Nalve method: sample image at grid locations




Rendering: reconstructing integrals




Rendering: reconstructing integrals




Rendering: reconstructing integrals




Rendering: reconstructing integrals

—ach path has an
assoclated radiance value




Global lllumination: Participating media

—ach path has an
assoclated radiance value



s-dimensional path space

Pixel sensor



s-dimensional path space

Pixel sensor



s-dimensional path space

Path-space integration

(orojection)
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Pixel sensor



s-dimensional path space

Rendering = integration + reconstruction

Path-space integration

Reconstruction using
INntegrated radiance

Pixel radiance value

Pixel sensor Pixel sensor



Frequency analysis of light fields in rendering

Local variation of the integrand Reconstruction filter

Pixel radiance value

s-dimensional path space

Pixel sensor Pixel sensor



A Frequency Analysis of Light Transport

Frangois X. Sillion

Frédo Durand Nicolas Holzschuch Cyril Soler Eric Chan

MIT-CSAIL ARTIS" GRAVIR/IMAG-INRIA MIT-CSAIL ARTIS" GRAVIR/IMAG-INRIA
Abstract 1. Spectrum of the source 2. Spectrum after first blocker 3. Spectrum after 2nd blocker
We present a signal-processing framework for light transport. We g ' g - “E, —_—
study the frequency content of radiance and how it is altered by ! ! [

5D Covariance Tracing for Efficient Defocus and Motion Blur

LAURENT BELCOUR', CYRIL SOLER?, KARTIC SUBR?, NICOLAS HOLZSCHUCH?, and FREDO DURAND*

To appear in the ACM SIGGRAPH conference proceedings

Frequency Analysis and Sheared Reconstruction for Rendering Motion Blur

Kevin Egan * Yu-Ting Tseng Nicolas Holzschuch Frédo Durand Ravi Ramamoorthi

Columbia University Columbia University INRIA — LJK MIT CSAIL UC Berkeley
(a) Our Method (b) Stratified Sampling () Multidimensional (d) Our Method (e) Ground Truth
4 samples per pixel Adaptive Sampling
o : 4 samples/pixel 4 samples/pixel 256 samples/pixel

Practical Filtering for Efficient Ray-Traced Directional Occlusion

Ravi Ramamoorthi
University of California, Berkeley

Frédo Durand
MIT CSAIL

Kevin Egan *
Columbia University

e) Relighting output from (a)
30 seconds each

a) Our Method b) Monte Carlo ¢) Our Method d) Monte Carlo
32rays/ shading pt, 1 hr 48 min 40 rays, 1 hr42 min 32 rays, 1 hr48 min 256 rays, 7 hrs 4 min

Equal Time Equal Quality

4D Frequency Analysis of Computational Cameras for Depth of Field Extension

Anat Levin'?  Samuel W. Hasinoff! Paul Green! Frédo Durand! William T. Freeman!
IMIT CSAIL 2Weizmann Institute

Standard lens image Our lattice-focal lens: input Lattice-focal lens: all-focused output

Figure 1: Left: Image from a standard lens showing limited depth of field, with only the rightmost subject in focus. Center: Input from our
lattice-focal lens. The defocus kernel of this lens is designed to preserve high frequencies over a wide depth range. Right: An all-focused
tmeaoe nrocecced from the latticetocal lene innnt Since the defocnce Fernel nrecervece hioh freanenciesc we rachieve 11 oond vectoration over the

Temporal Light Field Reconstruction for Rendering Distribution Effects

Frédo Durand
MIT CSAIL

Samuli Laine
NVIDIA Research

Jiawen Chen
MIT CSAIL

Jaakko Lehtinen Timo Aila
NVIDIA Research NVIDIA Research

Our result, 16 spp, 403 + 10 s (+2,5%)

PBRT, 16 spp, 403 s PBRT, 256 spp, 6426 s

Figure 1: A scene with complex occlusion rendered with depth of field. Left: Images rendered by PBRT [Pharr and Humphreys 2010] using
16 and 256 low-discrepancy samples per pixel (spp) and traditional axis-aligned filtering. Right: Image reconstructed by our algorithm in
10 seconds from the same 16 samples per pixel. We obtain defocus quality similar to the 256 spp result in approximately 1/16th of the time.

Abstract dramatic reductions in sampling rate, they rely on fairly simple re-
construction that suffers from a number of limitations. First, be-

Tl”cldlll()l]il“y. effects that require CVillUillll]g multidimensional in- cause [hcy use linear reconstruction kernels and a sin]p:c model of
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s-dimensional path space

This STAR: Analyze sample correlations for
MC sampling

Assessing MSE, bias, variance and convergence
of Monte Carlo estimators using
spatial and spectral tools

Pixel sensor



This STAR: Analyze sample correlations for
MC sampling

Pilleboue et al.

Fredo Durand Subrand Kautz  Georgiev & Fajardo  Singh & Jarosz [2017a])
[2011] [2013] [2013] Singh et al. [2017b]

Ramamoorthi et al. Subr et al. Cengiz Oztirel Singh et al. [2019]
[2012] 2014] [2016]



Sample correlations affect light transport / appearance

Jarabo et al. [2018] Guo et al. [2019]

Spatially-correlated media

Uncorrelated media

Bitterli et al. [2018]



Theoretical Tools Samples Quality Assessment Error Analysis

Pair Correlation Function

Fourier Transform / Series Stratification Strategies

Point Processes
Low Discrepancy Samplers

Fourier transform / Series Error Formulations

Stochastic Samplers

Spatial Domain Formulations

Fourier Domain Formulations




