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Motivation for analysis

* assess, compare existing methods for Monte Carlo rendering

* provide insight, inspire improvement



[Subr et al 2014]



Error vs cost plots of rendering methods
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Error vs cost plots of rendering methods
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Error vs cost plots of rendering methods

method 4 is best
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Rendering = geometry + radiometry

geometry/projection

for pin-hole model known since 400BC
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radiometrically accurate simulation
is important for photorealism

[photo credit: videomaker.com June 2015]



Rendering = geometry + radiometry

geometry/projection radiometrically accurate simulation
for pin-hole model known since 400BC is important forﬂ_phot_orealism
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Radiometric fidelity improves photorealism

photograph manually painted computer generated
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Simulating the physics of light is challenging

materials




Light transport

virtual S
light emitter o~ P camera

estimate incident
radiance at all pixels
on the virtual sensor

exitant radiance
W
m?2 Sr
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Each reflection is modeled by an integration

HQ
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Each reflection is modeled by an integration

radiance: LO — /Lz ;O(ZC,C%,UJO) d,u(wz’)
742
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Each reflection is modeled by an integration

radiance: LO —
®
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Recursive integrals
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Recursive integrals
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Light transport: recursive integral equation

/radiance \
L=FE+ KL

emitted radiance integral operator

The Rendering equation [Kajiya 86]
Light Transport Operators [Arvo 94]
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L is a sum of high-dimensional integrals

% radiance
L=F+ KL

\\ integral operator
emitted radiance

—F+KFE+ K?E+ KE + ...

One bounce Three bounces
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Reconstruction and integration in rendering



Reconstruction: estimate image samples

ground truth (high-res) image reconstruct on (low-res) pixel grid
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Naive method: sample image at grid locations

ground truth (high-res) image
-

Y A

reconstruct on (low-res) pixel grid
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average

YA

Antialiasing: assuming square’ pixels



Antialiasing is costly due to multi-sampling
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multi-sampling

Antialiasing using general reconstruction filter




Rendering: Reconstructing integrals
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Rendering: Reconstructing integrals
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Function-space view: Sampling in path space

each sample represents a path
and has an associated radiance value

n-dimensional path space

light paths

camera
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Sample locations shown in path-pixel space
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Rendering = integration + reconstruction
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path-space integration
(projection)

reconstruction using
integrated radiance

n-dimensional path space
pixel value (radiance)
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Frequency analysis of lightfields in rendering

[Ramamoorthi et al. 04]
[Durand et al. 05]

[Soler et al. 2009]
[Overbeck et al. 2009]
[Egan et al. 2009, 2011]
[Ramamoorthi et al. 2012]

local variation of integrand
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reconstruction filter
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Freq. analysis of MC sampling: This course!

Assessing MSE, bias, variance and convergence
of Monte Carlo estimators as a function of the
Fourier spectrum of the sampling function.

[Durand 2011]
[Ramamoorthi et al. 12]
[Subr and Kautz 2013]
[Pilleboue et al. 2015]
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Freq. analysis of MC sampling: This course!

Assessing MSE, bias, variance and convergence
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Rendering = integration + reconstruction

I

Shiny ball in mot?in.y ball, out of focus
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image
location multi-dim integral

Integrand: radiance (W m= Sr1)
Domain: shutter time x aperture area x 15t bounce x 2"4 bounce ...



f(x)

The problem in 1D
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the sampling function

integrand .
] , — > sampled integrand
sampling function

multiply
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sampling function decides integration
aualitv

sampling function

i
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strategies to improve estimators
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1. modify weights

|

1

eg. quadrature rules, importance sampling, jittered sampling, etc.

2. modify locations

LA
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insight into impact: Fourier domain

I

1. modify weights

2. modify locations

I r

analyse sampling function in Fourier domain

L
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Fourier analysis: origin and intuition

* Eigenfunction of the differential operator

d
@6)\.@ _ )\6)\:13

scaling

e Turns differential equations into algebraic equations



Fourier analysis: origin and intuition

* Eigenfunction of the differential operator
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The Fourier domain

Image credit: Wikipedia



The continuous Fourier transform

/ f —27T7J<.uat:daj

primal
(space time, etc.)
domain

Fourier
domain



The Fourier transform: frequency’ domain

/ f —27m<.uxdaj

/ f(x) cos(2mwzx)dx + 1 / f(x)sin(2rwz)dx
frequency

frequency
domain

projection onto sin and cos



A single sample: f(x) = 0(x — xx)

flw) = em2mane

. phase

amplitude =1

flw)=  cos(2mxrw) +1 sin(2mxiw)



Fourier series: replace integral with sum

approximating a square wave using 4 sinusoids
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Fourier spectrum of the sampling function

_ _ amplitude (sampling spectrum)
sampling function

frequency
phase (sampling spectrum)
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sampling function = sum of Dirac deltas

AL




Dirac delta

In the Fourier domain ...

Fourier transform
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Review: in the Fourier domain ...

Dirac delta

Fourier transform
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amplitude spectrum is not flat
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sample contributions at a given frequency
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At a given frequency
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the sampling spectrum at a given frequency

sampling spectrum

VN vV Complex plane

given frequency
© centroid




the sampling spectrum at a given frequency

sampling spectrum realizations
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expected sampling spectrum and variance

expected amplitude of sampling spectrum variance of sampling spectrum

DC

frequency



Abstracting sampling strategy using spectra

eg

o |

sampling function in the Fourier domain

amplitude (sampling spectrum)
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stochastic sampling & instances of spectra

realizations of sampling functions realizations of sampling spectra
| |

| |
draw Fourier
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assessing estimators using sampling spectra

Instances of sampling functions
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frequency

accuracy (bias) and precision (variance)

Estimator 2 is unbiased but has higher variance

Estimator 1

estimated value (bins)

Estimator 2

reference
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Variance and bias

. .
‘ integrand
High variance High bias

64



Monte Carlo integration: summary and error
N
S(x) = 25(:13 —xk), xk~ [0,1]
k=1

* Error

 MSE, bias, variance
e convergence rate: error as N is increased



Bird’s-eye view of analysis

* Rewrite I\/IC estlmator in terms of sampling function

_Zf (zk) /f x) dz where S(z Z(Sx Tp,)



Bird’s-eye view of analysis

* Rewrite I\/IC estlmator in terms of sampling function

—Zf (k) /f x) dx where S(z Z5$—xk

 Fourier transform preserves inner products, so

jf(x)s(w) dz = 7f(W)§(—w dw
0 oo



Bird’s-eye view of analysis

* Rewrite I\/IC estlmator in terms of sampling function

—Zf (k) /f x) dx where S(z Z5$—xk

 Fourier transform preserves inner products, so

j f(2)S(x) dz = 7f<w>é<—w dw
0 — 00

* Analyse MSE error, bias and convergence in terms of ,SA*(w)



Summary



Summary
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light transport & integration high-dimensional sampling sampling function & spectrum error prediction
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light transport & integration
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high-dimensional sampling

sampling function & spectrum

error prediction
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Local variation is useful for adaptive sampling
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