
Eurographics Symposium on Rendering 2025
B. Wang and A. Wilkie
(Guest Editors)

COMPUTER GRAPHICS forum
Volume 44 (2025), Number 4

A wave-optics BSDF for correlated scatterers
Ruomai Yang Juhyeon Kim Adithya Pediredla Wojciech Jarosz

Dartmouth College

Photograph Rendered

Photograph RenderedCondensation on Glass

Fabric

Holes

Droplets

Interference Diffraction

Corona 

Effect

Figure 1: The corona effect (left) occurs when the diffraction patterns from disordered scatterers interfere with one another. In the real world,
this occurs when certain fabrics or condensation on glass (middle-left) are held against bright light sources (middle-right). We propose a novel
BSDF that accurately reproduces (right) this wave phenomenon using ray tracing.

Abstract
We present a wave-optics-based BSDF for simulating the corona effect observed when viewing strong light sources through
materials such as certain fabrics or glass surfaces with condensation. These visual phenomena arise from the interference of
diffraction patterns caused by correlated, disordered arrangements of droplets or pores. Our method leverages the pair correlation
function (PCF) to decouple the spatial relationships between scatterers from the diffraction behavior of individual scatterers.
This two-level decomposition allows us to derive a physically based BSDF that provides explicit control over both scatterer shape
and spatial correlation. We also introduce a practical importance sampling strategy for integrating our BSDF within a Monte
Carlo renderer. Our simulation results and real-world comparisons demonstrate that the method can reliably reproduce the
characteristics of the corona effects in various real-world diffractive materials.
CCS Concepts
• Computing methodologies → Reflectance modeling; Ray tracing; • Mathematics of computing → Stochastic processes;

1. Introduction

Many optical effects observed in everyday life—such as the colorful
glints in animal fur and surface scratches, or the multi-colored
reflections on thin films and periodic microstructures—cannot be
explained by geometric optics alone. Instead, these phenomena arise
from the wave nature of light. Over the years, numerous wave-optics
appearance models have been developed to simulate such materials,
and significant progress has been made in modeling light transport
that accounts for wave effects. Together, these advances have enabled
impressively realistic renderings.

Despite this progress, rendering materials with disordered yet
correlated microstructures remains challenging—particularly for ma-

terials composed of randomly positioned, non-overlapping scatterers.
Examples include (Fig. 1) glass or mirrors with water condensation,
and fabrics or cloth, where complex fiber crossings form random
pores. When illuminated by strong directional light, these materials
exhibit a characteristic corona effect: concentric diffraction rings
surrounding the light source. This effect results from the interference
of light diffracted by spatially correlated scatterers, as illustrated on
the left side of Fig. 1. While the term “corona” typically refers to
the diffraction of sunlight by atmospheric particles, similar optical
behavior occurs when disordered scatterers—such as apertures or
droplets—form a monolayer on a surface.

Such materials fall outside the scope of existing models, which
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generally assume regular or uncorrelated microstructures. This high-
lights the need for new approaches to render materials composed
of correlated but disordered scatterers. Among prior works, Stam
[Sta99] and Dhillon et al. [DTS*14] are most relevant, as they simu-
late diffraction from structured microsurfaces with repeated bumps.
Their formulations, however, are based on height-field representa-
tions and assume either periodic or simple Poisson distributions,
making them unsuitable for modeling dense, non-overlapping aper-
tures or droplets.

In this work, we present a BSDF model for materials characterized
by a layer of disordered, non-overlapping scatterers that produce the
corona effect. Our approach builds on prior work in optics [GGB12;
LC94; LML20], extending it in several important ways to make
it practical for visual simulation. We model the scatterers as a
non-overlapping hard-disk system, with their spatial distribution
described analytically using pair correlation functions (PCFs). This
formulation decouples the spatial relationships between scatterers
from the diffraction behavior of individual ones, enabling indepen-
dent control over both scatterer shape and spatial correlation. We
further extend the model to support mixtures of different scatterer
types, allowing for more realistic and general representations of
natural materials. Additionally, we factorize these effects in a way
that makes importance sampling (and multiple importance sam-
pling [VG95]) practical, improving both rendering efficiency and
visual quality. Finally, we validate our method against real-world
photographs, demonstrating the effectiveness and reliability of our
BSDF model in reproducing the corona effect.

2. Previous work

Wave optics in rendering. Wave-optics theory has been widely
used in computer graphics to develop analytical appearance models
for a variety of materials. Pioneering works by He et al. [HTSG91]
and Nayar [Nay91] applied Kirchhoff theory to model light reflection
from rough, isotropic surfaces. Stam [Sta99] extended this framework
to anisotropic surfaces, accounting for both randomly distributed and
periodic height bumps. Later, Oh et al. [OKG*10] and Cuypers et al.
[CHB*12] introduced deferred diffraction models using negative
radiance, which allowed interference effects to be handled even
after multiple bounces. Subsequent research has produced more
accurate and efficient appearance models for various microstruc-
tures, including structural color from periodic surfaces [DTS*14;
TG17], iridescene in thin films [BB17; IA00], and diffraction from
surface scratches [VWH18; WVJH17; YHW*18], fur [XWH*23;
XWM*20], and feathers [YWW*24]. Yu et al. [YXW*23] recently
introduced a full-wave solver to model diffraction from explicit micro-
geometry, while Steinberg et al. [SRB*24] presented a technique for
capturing diffraction effects from macroscopic mesh structures. Wave
optics-based scattering models have also been used for volumetric
media, from rainbows [SML*12], to Lorenz-Mie scattering [FCJ07]
and beyond [GJZ21]. More recently, Xia et al. [XWM23] simu-
lated Quetelet patterns by considering how path differences from
discrete particles like dust lead to colorful effects via diffraction and
interference.

All of these methods, however, are limited in their ability to
simulate the corona effect caused by disordered, non-overlapping
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Figure 2: Our BSDF models scattering from a collection of apertures
(top left). In the spatial domain (top row), this collection can be
viewed as an aggregate aperture formed by convolving a single
aperture shape 𝐴 with a set of center positions 𝑠. Diffraction from
this aggregate is computed via a Fourier transform. In the frequency
domain (second row), this convolution becomes the product of the
single-aperture diffraction pattern 𝐼𝑎 and the structure factor 𝑆.
When 𝑠 is drawn from a stochastic point process, 𝑆 is equivalent to
the expected power spectrum.

apertures or droplets, such as those found in fabric or in water
condensation on glass.

Corona effect studied in optics. To address this challenge, we
draw inspiration from the optics literature, where corona effects have
been studied extensively in the context of disordered monolayers of
scatterers [GGB12; LC94; LDI00; LML20]. These studies model
the phenomenon as a collection of basic scatterers that generate
diffraction patterns, and use pair correlation functions to capture
the statistical interference between multiple scatterers. Babinet’s
principle [CLV05; vdHul81] is often employed to relate diffraction
from apertures to that from particles, while some works use more
accurate models based on Lorentz-Mie theory.

Our contribution lies in translating and extending these physical
insights into a practical BSDF model suitable for rendering. While
prior BSDF models have addressed diffraction from surfaces with
random, periodic, or explicitly structured microgeometry, our work
considers a unique class of materials formed by a layer of disordered,
non-overlapping scatterers.

3. Overview

Our goal is to express the aggregate BSDF for a layer of disordered
non-overlapping scatterers. The key point of our method is the
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decomposition of the BSDF 𝑓𝑟 (𝝎i,𝝎o) into two parts, the diffraction
pattern from a single scatterer 𝐼𝑎, and a term that accounts for
the correlation/interference within the distribution of scatterers,
sometimes called the structure factor 𝑆,

𝑓𝑟 (𝝎i,𝝎o) ∝ 𝐼𝑎 (𝝎i,𝝎o)𝑆(𝝎i,𝝎o) (1)

where 𝝎i,𝝎o are the incident and outgoing directions. We visualize
this decomposition in Fig. 2, and summarize our notation in Table 1
and Fig. 3. In the following sections, we will derive this relationship
by combining concepts from Fourier optics (Secs. 4.1 and 4.2)
and stochastic point processes (Sec. 4.3) to consider the ensemble-
averaged diffraction through a stochastic arrangement of apertures
(Sec. 5). We then form a complete BSDF model (Sec. 6) with
appropriate handling of the bright delta term in Fig. 2 and scattering
from the substrate material, and then propose a practical tabulation
approach to evaluate and importance sample the BSDF in a Monte
Carlo renderer (Sec. 7).

4. Preliminaries

4.1. Diffraction from a single elementary aperture

In our model, the surface consists of a collection of scatterers. For
now, we assume each scatterer is an aperture, and that scattering
arises due to diffraction (in Sec. 6.2 we discuss how this can be
generalized to particle-like scatterers).

The Fraunhofer diffraction formula [Goo17] allows us to express
the far-field electric field [Vm−1] from a single elementary aperture
in terms of the two-dimensional Fourier transform, F , of the aperture
function 𝐴(x):

E𝑎 (k) = 𝛼

∫
R2

𝐴(x)e−𝚤k̃·x dx = 𝛼F {𝐴(x)}(k̃), (2)

where k ≔ ko − ki = (k𝑥 ,k𝑦 ,k𝑧) is the difference between the

Table 1: Notation used throughout the paper. See also Fig. 3

Symbol Definition
𝐴 Aperture function
𝑎 Radius of aperture or scatterer

𝐹𝑎 , 𝐹r Area fraction of bounding aperture or real scatterer

𝝎i,𝝎o Unit-length incident and outgoing directions
𝜃i, 𝜃o Incident and outgoing angles

d Outgoing-incident direction difference (𝝎o −𝝎i)
𝑑 = |d| Length of a vector quantity

ki,ko Incident (𝑘i𝝎i) and outgoing (𝑘o𝝎o) wave vectors
k; k̃ Wave vector difference (ko −ki); k projected onto 𝑥𝑦

𝜆,𝜆0, 𝜆̂ Incident, reference, and relative (𝜆0/𝜆) wavelengths
𝜂 Refractive index

E𝑎 (k), 𝐼𝑎 (k) Electric field and irradiance at k from an aperture 𝑎

𝑠(x) Stochastic point process realization evaluated at x
ρ0 First-order density of 𝑠

F {𝐴(x)}(k̃) Fourier transform of 𝐴 evaluated at k̃
⟨P𝑠 (k̃)⟩ Ensemble-averaged power spectrum of 𝑠

𝑔(r), 𝑔(𝑟) 2D and 1D radial pair correlation function of 𝑠(x)
𝑆(k), 𝑆( 𝑘̃), 𝑆( 𝑘̃)′ Structure factor: 2D, 1D radial (with, without) delta

𝐽𝑛 Bessel functions of the first kind
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Figure 3: The primary quantities of our BSDF model in the local
coordinate system of a shade point. Refer also to Table 1.

outgoing wave vector ko = 𝑘o𝝎o and the incident wave vector
ki = −𝑘i𝝎i, and k̃ ≔ (k𝑥 ,k𝑦) is the projection of k onto the 𝑥𝑦 plane
(Fig. 3). Here, 𝚤 is the imaginary unit, and 𝛼 =

𝜂𝐸0 cos 𝜃ie𝚤𝑘o𝑅o

𝚤𝜆𝑅o
is a

scaling factor that depends on the wavelength 𝜆, refractive index 𝜂,
incident angle 𝜃i and the distance 𝑅o to the observer.

Up to a scale factor dependent on the material’s permittivity, the
irradiance [Wm−2] is proportional to the squared amplitude of the
electric field:

𝐼𝑎 (k) ∝ E𝑎 (k)E𝑎 (k) = |𝛼 |2 |F {𝐴(x)}(k̃) |2, (3)

where E denotes the complex conjugate. A well-known example is
the Airy-disk pattern from a circular aperture with radius 𝑎, which
gives 𝐼𝑎 (k) ∝ (2𝐽1 (𝑥)/𝑥)2, where 𝑥 = 𝑎 |k̃| and 𝐽1 is the Bessel
function of the first kind.

4.2. Diffraction and interference from a collection of apertures

If we have a discrete collection of 𝑁 apertures, their diffracted fields
interfere with each other via the complex-valued sum [LC94]:

E(k) =
𝑁∑︁
𝑖=1

E𝑖 (k) e−𝚤k̃·r𝑖 , (4)

where E𝑖 is the electric field (3) from the 𝑖-th aperture (located at
r𝑖 , assumed to be in the 𝑥𝑦 plane). The irradiance of this electric
field is proportional to its squared magnitude, 𝐼 (k) ∝ E(k)E(k). If
we assume the apertures are identical, expanding the product and
rearranging terms gives

𝐼 (k) ∝ 𝑁𝐼𝑎 (k)

𝑆 (k̃)(
1+ 1

𝑁

∑︁
𝑗≠𝑖

e𝚤k̃· (r 𝑗−r𝑖 )
)
, (5)

which shows that the irradiance factors into a term due to the single-
aperture diffraction 𝐼𝑎 and a structure factor term 𝑆 that accounts
for the arrangement of the apertures.

4.3. Stochastic Point Processes

We proceed by assuming that the positions of the apertures are
determined by a stochastic point process, and we then reason about
the ensemble-averaged scattered irradiance.

The computer graphics community has a long history [DW85;
LD08; SÖA*19; Uli87] of working with stochastic point processes,
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for tasks ranging from Monte Carlo integration to random placement
of objects. We restrict ourselves to stationary point processes—that
is, processes whose statistics are translation-invariant.

We can denote a realization of a stochastic point process as the
sum of Dirac delta functions centered at random point locations x𝑖 :

𝑠(x) ≔
∑︁
𝑖

𝛿(x−x𝑖). (6)

The statistics of such a point process can be analyzed in the
spatial domain via its product densities. For stationary processes,
the first-order density function ρ(1) (x) = ⟨𝑠(x)⟩, where ⟨·⟩ denotes
the ensemble average over all possible point realizations, becomes
a constant ρ0. The second-order density ρ(2) (x,y)—the joint prob-
ability density of finding points around both x and y—becomes a
function of the difference ρ(2) (x− y) = ρ(2) (r). This is typically
given via the pair correlation function (PCF):

𝑔(r) ≔ ρ(2) (r)
ρ(1) (x)ρ(1) (y) =

1
ρ2

0

〈∑︁
𝑗≠𝑖

𝛿(r− (r𝑖 − r 𝑗 ))
〉
, (7)

which is the second-order density of the process relative to that of
the independent (Poisson) point process.

Alternatively, the point process 𝑠 can be characterized in the
frequency domain by its expected power spectrum [HSD13]:

⟨P𝑠 (k̃)⟩ ≔ 1
ρ0

⟨F {𝑠(r)}F {𝑠(r)}⟩ = 1
ρ0

〈���∑︁
𝑖

e−𝚤k̃·r𝑖
���2〉 (8)

=
1
ρ0

〈∑︁
𝑖, 𝑗

e𝚤k̃· (r 𝑗−r𝑖 )
〉
= 1+ 1

ρ0

〈∑︁
𝑗≠𝑖

e𝚤k̃· (r 𝑗−r𝑖 )
〉

(9)

= 1+ρ0

∫
R2

e−𝚤k̃·r𝑔(r) dr (10)

Equation (10) links the power spectrum of 𝑠 to the Fourier transform
of the PCF 𝑔. If we equate the first-order point density ρ0 with 𝑁 ,
then this is equivalent to the ensemble average of 𝑆(k̃) in Eq. (5).

5. Diffraction from a stochastic aperture process

Having all the pieces in place, we can now reason about the ensemble
averaged diffraction from a stochastic collection of apertures.

Comparing Eq. (9) and the structure factor 𝑆 in Eq. (5) shows that
we can obtain the ensemble averaged scattering from a collection of
apertures (whose centers are driven by the stochastic point process
𝑠) by multiplying the aperture’s power spectrum (3) by the expected
power spectrum of the point process ⟨P𝑠⟩:

⟨𝐼 (k)⟩ ∝ ρ0𝐼𝑎 (k)⟨P𝑠 (k̃)⟩. (11)

For notational simplicity, we will omit explicitly writing the ensemble
average ⟨·⟩ from now on, which simplifies Eq. (11) back to Eq. (5).

We can also interpret the stochastic collection of apertures as a
convolution 𝐴 ∗ 𝑠 of a single aperture 𝐴 with the point distribution 𝑠
(see Fig. 2), since, by the Fourier convolution theorem, we have:

𝐼 (k̃) ∝ |F {𝐴∗ 𝑠}(k̃) |2= |F {𝐴}(k̃) |2 |F {𝑠}(k̃) |2= 𝐼𝑎 (k̃)𝑆(k̃). (12)

This reveals that interference across elementary apertures is nothing
more than diffraction from an aggregate aperture.

5.1. Separating the delta component

At k̃ = 0 we have the DC peak (see Fig. 2) of the expected power
spectrum (equivalently, the integral in Eq. (10) diverges because
the process has an infinite number of points and 𝑔(r) → 1 as
|r| → ∞). For numerical calculations, we subtract the delta (DC)
component and redefine the structure factor to focus on the scattering
contribution, which captures the interference effects,

𝑆(k̃)′ = 𝑆(k̃) −ρ0𝛿(k̃) = 1+ρ0

∫
R2

e𝚤k̃·r (𝑔(r) −1)dr. (13)

Using this, we can rewrite Eq. (11) as the sum of scattered 𝐼∗ and
delta 𝐼 𝛿 parts:

𝐼 (k) ∝ ρ0𝐼𝑎 (k)𝑆(k̃)′
𝐼∗ (k)

+ρ2
0𝐼𝑎 (k)𝛿(k̃)

𝐼 𝛿 (k)
. (14)

5.2. Analytic evaluation of the structure factor

Closed-form parametric expressions for the structure factor are
known for some common point processes (sometimes exact, and
sometimes approximate). Though the apertures in our model can
be arbitrarily shaped, our implementation assumes that the centers
of the apertures are distributed according to an isotropic hard
disk process [AKV08; HM13; Ros90] with a bounding circle of
radius 𝑎 to ensure scatterers do not overlap (see Fig. 4). In graphics
this is more commonly referred to as the “blue-noise” Poisson-
disk process [LD08]. We leverage the well-known Percus-Yevick
approximation [PY58], which provides an analytic expression for
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Figure 4: Sample realizations (left), PCFs (middle), and corre-
sponding structure factors 𝑆( 𝑘̃)′ (right) for a hard disk process with
increasing area fraction 𝐹𝑎 moving from top to bottom. We plot the
PCFs as functions of 𝑟/𝑎, where 𝑟 is distance and 𝑎 is the disk radius
(hence, the PCFs are zero for 𝑟/𝑎 < 2 since disks cannot overlap).
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the power spectrum of this process [Ros90, eqns. 4.4–4.6]:

𝑆( 𝑘̃ | 𝐹𝑎)′ = [1+𝐶 ( 𝑘̃ | 𝐹𝑎)]−1, with (15)

𝐶 ( 𝑘̃ | 𝐹𝑎) = 4𝐹𝑎
1−𝐹𝑎

2𝐽1 (2𝑘̃𝑎)
2𝑘̃𝑎

+ 4𝐹2
𝑎 𝐽0 ( 𝑘̃𝑎)

(1−𝐹𝑎)2
2𝐽1 ( 𝑘̃𝑎)

𝑘̃𝑎
(16)

+
[

𝐹2
𝑎

(1−𝐹𝑎)2
+ 2𝐹3

𝑎

(1−𝐹𝑎)3

] [
2𝐽1 ( 𝑘̃𝑎)

𝑘̃𝑎

]2

,

where 𝐽𝑛 are Bessel functions of the first kind, 𝐹𝑎 = ρ0𝜋𝑎
2 is the

area fraction, and we use 𝑘̃ ≔ |k̃| because the process is isotropic.

In Fig. 4, we provide an illustrative example of the PCF and
structure factor in a hard disk system to show how the system behaves
under different area fractions 𝐹𝑎, over different relative distances
(𝑟/𝑎) where 𝑟 ≔ |r|. The first column shows one realization of circle
distributions, while the second and the third column plot the PCF and
structure factor respectively, showing increasing oscillatory nature
for larger 𝐹𝑎. Note that the PCF remains zero for 𝑟/𝑎 ≤ 2 as the
particles cannot overlap.

6. A BSDF for correlated apertures

To derive the BSDF, we will first consider a system where all the
apertures have the same shape, and later generalize to the case of
multiple aperture shapes in the same system.

We decompose the BSDF into three main components (see Fig. 5):

• 𝑓 𝛿𝑟 (𝝎i,𝝎o,𝜆): The delta component, whose irradiance we denoted
with 𝐼 𝛿 (k). This captures the specular (or coherent) transmission,
where the incident and outgoing directions are identical.

• 𝑓 ∗𝑟 (𝝎i,𝝎o,𝜆): The diffraction component caused by scatterers,
whose irradiance we denoted with 𝐼∗ (k).

• 𝑓 ◦𝑟 (𝝎i,𝝎o,𝜆): The substrate BSDF for light that misses the aper-
tures. We ignore any secondary effects of diffracted light interact-
ing with the substrate BSDF component and assume that these
light rays do not interfere.

If we assume each component is normalized, the net BSDF will be

𝑤∗ 𝑓 ∗𝑟 (𝝎i,𝝎o,𝜆) +𝑤 𝛿 𝑓 𝛿𝑟 (𝝎i,𝝎o,𝜆) +𝑤◦ 𝑓 ◦𝑟 (𝝎i,𝝎o,𝜆), (17)

with weights 𝑤∗ +𝑤 𝛿 +𝑤◦ = 1 for energy conservation. Our goal is
to determine the ratio of the weights 𝑤∗ : 𝑤 𝛿 : 𝑤◦.

If we define the real area fraction covered by the apertures as
𝐹r ≔ ρ0 |𝐴| where |𝐴| is the area of the elementary aperture, then
the amount of light that does not interact with apertures is simply
𝑤◦ = 1−𝐹r.

For the delta component, we had 𝐼 𝛿 (k) = ρ2
0𝐼𝑎 (0)𝛿(k̃) from

Eq. (13) with 𝐼𝑎 (0) = 𝛼2 |𝐴|2 according to Eq. (3), which gives:

𝐼 𝛿 (k) = 𝛼2𝐹2
r 𝛿(k̃). (18)

Converting to radiance further removes the remaining terms, giving:

𝑤 𝛿 𝑓 𝛿𝑟 (𝝎i,𝝎o,𝜆) = 𝐹2
r 𝛿(𝝎o,𝝎i). (19)

Combining this 𝑤 𝛿 with our previously defined 𝑤◦, energy con-
servation gives the ratio of the components as

𝑤∗ : 𝑤 𝛿 : 𝑤◦ = 𝐹r −𝐹2
r : 𝐹2

r : 1−𝐹r. (20)
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𝛿
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Figure 5: BSDF components for a layer of apertures (left) and
spheres (right). The delta component 𝑓 𝛿𝑟 corresponding to specular
transmission (or reflection for spheres), which exists only in specific
directions. The diffraction component 𝑓 ∗𝑟 is given by the product of the
single-scatterer diffraction 𝐼𝑎—computed using either Fraunhofer
diffraction (for apertures) or Mie scattering (for spheres)—and the
non-delta structure factor 𝑆( 𝑘̃)′. Finally, 𝑓 ◦𝑟 is the BSDF of the
substrate material, which is not considered in the sphere case. The
weights of each component are indicated in orange: for apertures,
they are given by Eq. (20); for spheres, they follow the method of
García-Valenzuela et al. [GGB12].

Note that this only describes the ratio of total energy, while each
component’s directional distribution should be further evaluated.
For 𝑓 𝛿𝑟 (𝝎i,𝝎o,𝜆), only the specular transmission component exists,
𝑓 ∗𝑟 (𝝎i,𝝎o,𝜆) should follow Eq. (14)—multiplication of 𝐼𝑎 and 𝑆′,
and 𝑓 ◦𝑟 (𝝎i,𝝎o,𝜆) is determined by the underlying surface material.

6.1. Mixture of Apertures

We now derive the BSDF for a system with multiple aperture shapes.
For simplicity, we assume all apertures share the same bounding
circle radius. We consider 𝑀 different aperture types, with ρ𝑚 = 𝑁𝑚

apertures of shape 𝐴𝑚 distributed per unit area. The total number of
apertures is 𝑁 =

∑𝑀
𝑚=1 𝑁𝑚. We can then define 𝑃(𝑚) = 𝑁𝑚/𝑁 as

the fraction of type 𝑚 apertures. We can define two types of PCFs.

The same-type PCF for the 𝑚-th aperture type, and the cross-type
PCF for two different types 𝑚 and 𝑙, are defined similarly to Eq. (7):

𝑔𝑚𝑚 (r) = 1
ρ2
𝑚

〈∑︁
𝑗≠𝑖

𝛿(r− (r𝑚𝑖 − r𝑚𝑗 ))
〉
, (21)

𝑔𝑚𝑙 (r) =
1

ρ𝑙ρ𝑚

〈∑︁
𝑖, 𝑗

𝛿(r− (r𝑚𝑖 − r𝑙𝑗 ))
〉
. (22)
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Note that 𝑗 ≠ 𝑖 is unnecessary for the cross-type PCF summation
since the particles are already of different types.

The corresponding structure factors (which can be written in
terms of the original structure factor 𝑆(k̃)) are

𝑆𝑚𝑚 (k̃)=1+ρ𝑚
∫
R2

e−𝚤k̃·r𝑔𝑚𝑚 (r) dr = (𝑆(k̃) −1)𝑃(𝑚) +1, (23)

𝑆𝑚𝑙 (k̃)=
√
ρ𝑚ρ𝑙

∫
R2

e−𝚤k̃·r𝑔𝑚𝑙 (r) dr = (𝑆(k̃) −1)
√︁
𝑃(𝑚)𝑃(𝑙). (24)

The electric field for a mixture of aperture types can be written as

E(k̃) =
𝑀∑︁
𝑚=1

𝑁𝑚∑︁
𝑖=1

E𝑚 (k̃)e𝚤k̃·r𝑚𝑖 (25)

where E𝑚 (k̃) is the electric field from a type-𝑚 aperture. The
irradiance is then

𝐼 (k̃) =
𝑀∑︁
𝑚=1

��E𝑚 (k̃)
��2 (

𝑁𝑚∑︁
𝑖=1

𝑁𝑚∑︁
𝑗=1

e𝚤k̃· (r
𝑚
𝑗
−r𝑚

𝑖
)
)
+

𝑀∑︁
𝑚=1

𝑀∑︁
𝑙≠𝑚

��E𝑚 (k̃)E𝑙 (k̃)
�� (𝑁𝑚∑︁

𝑖=1

𝑁𝑙∑︁
𝑗=1

e𝚤k̃· (r
𝑙
𝑗
−r𝑚

𝑖
)
)

=
𝑀∑︁
𝑚=1

𝑁𝑚𝐼𝑚 (k̃)𝑆𝑚𝑚 (k̃) +
𝑀∑︁
𝑚=1

𝑀∑︁
𝑙≠𝑚

√︃
𝑁𝑚𝑁𝑙 𝐼𝑚 (k̃)𝐼𝑙 (k̃)𝑆𝑚𝑙 (k̃) (26)

Like the single-type case, 𝐼 (k̃) can be decomposed into delta and
scattered components. We omit the derivation and present only the
final result. For the delta component:

𝑤 𝛿 𝑓 𝛿𝑟 (𝝎i,𝝎o,𝜆) =
(
𝑀∑︁
𝑚=1

𝐹𝑚

)2

𝛿(𝝎o,𝝎i), (27)

which matches Eq. (19) if we redefine 𝐹r ≔
∑𝑀

𝑚=1 𝐹𝑚 with 𝐹𝑚 ≔

ρ𝑚 |𝐴𝑚 |. The ratio of components therefore remains unchanged for
the mixture case.

For the diffraction component:

𝑤∗ 𝑓 ∗𝑟 (𝝎i,𝝎o,𝜆) = 𝜂2 cos(𝜃i)
𝜆2 cos(𝜃o)

𝐹𝑎

𝜋𝑎2

(
𝑀∑︁
𝑚=1

𝑃(𝑚)F 2
𝑚

+
𝑀∑︁
𝑚=1

𝑀∑︁
𝑙=1

𝑃(𝑚)𝑃(𝑙)F𝑚F𝑙 (𝑆(k̃)′ −1)
)

(28)

where F𝑚 ≔ |F {𝐴𝑚}(k̃) |. Fig. 10 shows a visual comparison be-
tween the single and mixed aperture cases.

6.2. Spherical scatterers

In addition to apertures, we would also like to model the scattering
from scatterers like condensation droplets on glass. According to
Babinet’s principle [BH83; vdHul81], the diffraction pattern from a
flat opaque object is identical to that from a hole of the same size and
shape. Thus, by approximating particles as opaque disks [CLV05;
LC94], we can directly use the aperture-based diffraction results,
leading to the same BSDF formulation.

For greater accuracy, one can use Mie theory to model scattering

Fraunhofer

Mie

1μm 2μm

5μm 10μm

𝑓𝑟
∗

𝑓𝑟
∗

𝜃 𝜃

Figure 6: Fraunhofer diffraction vs. Mie scattering for particle radii
𝑎 = 1,2,5,10µm at wavelength 𝜆 = 0.55µm. The area fraction is
fixed at 𝐹𝑎 = 0.3, 𝝎i is set to the 𝑧 axis, and 𝜃 denotes the angle
between 𝝎i and 𝝎o. The models produce different results in general,
but converge for large radii.

from monolayers of spherical particles [LDI00; LML20; LML21].
Scattering from spheres is more complex than from flat apertures,
as multiple scattering between particles can occur. However, if the
particle size is much larger than the wavelength, forward scattering
dominates and multiple scattering can be neglected—a regime known
as the single-scattering approximation (SSA) [LDI00]. Under the
SSA, we can reuse Eq. (3) for the particle case, substituting 𝐼𝑎 from
Mie theory, and obtain an expression analogous to Eq. (5). Fig. 6
compares 𝑓 ∗𝑟 computed using Fraunhofer diffraction and Mie theory
for various particle radii at a wavelength of 𝜆 = 0.55µm. For large
particles, Mie theory converges to Fraunhofer diffraction, but in
general, the results differ. While Mie theory is more accurate, it is
computationally expensive for large particles and 𝐼𝑎 depends on
ko ·ki rather than k̃, complicating the evaluation. We allow the user
to choose between the flat approximation or Mie theory based on
their accuracy and performance needs.

Determining the ratio of the delta (specular) and diffraction
components requires more care for particles than for apertures
(Fig. 5). Using the naive area fraction 𝐹𝑎 = ρ0𝜋𝑎

2, where 𝑎 is the
sphere radius, is incorrect because a single particle effectively blocks
twice its geometric cross section—a phenomenon known as the
extinction paradox [Bri49; BSC11]. Instead, we follow the heuristic
approach of García-Valenzuela et al. [GGB12] to determine the
correct ratio between delta and diffraction components.

For simplicity, we treat the particle monolayer as a separate layer
above the substrate, setting 𝑓 ◦𝑟 = 0. Any inter-reflections between
the substrate and the particle layer are handled by the ray tracing
step, not by the BSDF itself.

7. Evaluating and sampling the BSDF

For practical Monte Carlo rendering, we require efficient evalua-
tion and sampling of our BSDF. Prior work [DTS*14; TG17] has
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Figure 7: We precompute textures 𝑇𝑎 (images 2 and 4) for the diffraction from a desired aperture shape 𝐴 (image 1: circle and 3: square).
We also precompute a single structure factor texture 𝑇𝑠 (far right) for a range of area fractions 𝐹𝑎 ∈ (0,0.7). During rendering, we evaluate
the BSDF by querying (red and blue points) the aperture and structure factor textures based on the incident 𝝎i and outgoing 𝝎o directions,
wavelength 𝜆, area fraction 𝐹𝑎 , and aperture scaling.

successfully leveraged precomputed tabulations for this purpose.
Unfortunately, our full BSDF is a function of many parameters (in-
coming 𝝎i and outgoing 𝝎o directions, wavelength 𝜆, aperture shape
𝐴 and radius 𝑎, and packing fraction 𝐹𝑎). So, while possible, naive
tabulation would be expensive, high-dimensional, and inflexible.

Instead, we leverage the separability of the scatterers and their
spatial correlations to implement an efficient BSDF for Monte Carlo
rendering that uses more modest tabulation while allowing parameter
control without retabulation. We also implemented a more naive but
higher-dimensional tabulation approach to validate our method.

7.1. BSDF evaluation

We precompute two 2D textures to allow us to efficiently evaluate
and sample the BSDF without computing Fourier transforms and
structure factors at runtime. For each aperture shape 𝐴, we tabulate
an aperture diffraction texture 𝑇𝑎 (d) := |𝐴|−1 |F {𝐴}(2𝜋/𝜆0d) |2𝜆−2

0
over the range of all possible projected difference vectors d ≔

(𝝎o −𝝎i)𝑥𝑦 ∈ (−2,2)2. For the structure factor, we perform a one-
time tabulation of Eq. (15) into a texture 𝑇𝑠 across all valid values
𝑑≔ |d| ∈ (0,2) and 𝐹𝑎 ∈ (0,0.7). We precompute both textures with
respect to a single reference wavelength 𝜆0 = 0.35µm (the shortest
in the visible spectrum) to ensure high-frequency components are
captured and remain valid for longer wavelengths during lookup. For
arbitrary 𝜆, we can reuse both textures with coordinates scaled by
𝜆̂≔ 𝜆0/𝜆. Fig. 7 shows examples of 𝑇𝑎 for a circular aperture with
a radius of 𝑎 = 2µm, a square aperture inscribed within that circle,
and the single texture 𝑇𝑠 that we use for any aperture shape.

To evaluate the diffraction component 𝑓 ∗𝑟 (𝝎i,𝝎o,𝜆), we compute
the projected difference vector d and fetch 𝑇𝑎 (𝜆̂d) (marked as
the red dot in Fig. 7). Then, given a desired area fraction (e.g.,
𝐹𝑎 = 0.5), we look up the structure factor at the corresponding
location 𝑇𝑠 (𝜆̂ |d|, 𝐹𝑎) (also marked in red). Scaling the lookup
coordinates by some additionally factor 𝑞 (blue dots in Fig. 7) allows
us to scale the entire aperture system. The final result is

𝑓 ∗𝑟 (𝝎i,𝝎o,𝜆) = cos𝜃i
cos𝜃o

𝑇𝑎 (𝜆̂ 𝑞d)𝑇𝑠 (𝜆̂ 𝑞 |d|, 𝐹𝑎) (𝜂 𝜆̂ 𝑞)
2

1−𝐹r
, (29)

where the squared factors account for index-of-refraction, wavelength,
and system-wide scaling.

7.2. Importance sampling

To importance sample 𝑓 ∗𝑟 (𝝎i,𝝎o,𝜆), we perform MIS between the
𝑇𝑎 and 𝑇𝑠 textures (e.g., the second and fifth images in Fig. 7). We
precompute a piecewise-constant 2D distribution 𝑝𝑎 (d) from 𝑇𝑎,
and 1D piecewise-constant distributions 𝑝𝑠 (𝑑 | 𝐹𝑎) for each row 𝐹𝑎
of 𝑇𝑠 . We use 𝑃𝑠 (𝑑 | 𝐹𝑎) to denote the CDF of 𝑝𝑠 .

Sampling 𝑇𝑎. Given the incident direction 𝝎i ≔ (𝑥i, 𝑦i, 𝑧i) and
wavelength 𝜆, we sample a coordinate d from 𝑝𝑎 , and compute the
outgoing direction as

𝝎o =

(
𝑥o = 𝑥i +

d𝑥

𝜆̂
, 𝑦o = 𝑦i +

d𝑦

𝜆̂
, 𝑧o =

√︃
1− 𝑥2

o − 𝑦2
o

)
. (30)

If the resulting values lead to an invalid direction, 𝑥2
o + 𝑦2

o > 1, we
discard the sample and return zero. The PDF of 𝝎o is 𝑝𝑎 (d) divided
by the Jacobian |d → 𝝎o | = 𝑧−1

o 𝜆̂−2.

Sampling 𝑇𝑠 . Given 𝝎i and 𝐹𝑎 , we choose a row of 𝑇𝑠 and sample
from its CDF 𝑃𝑠 to obtain 𝑑sample. For an arbitrary wavelength
𝜆, the valid range for sampling within the row changes. We can
still use the same precomputed 𝑃𝑠 and avoid generating invalid
samples by restricting inverse-CDF sampling to 𝑑sample < 𝑑max ≔

( | (𝝎i)𝑥𝑦 | +1)𝜆̂. Given 𝑑sample, we construct the projected difference
vector d = (sin 𝛽,cos 𝛽)𝑑 where 𝛽 ∈ (0,2𝜋) is a uniform random
angle and 𝑑 = 𝑑sample𝜆̂

−1. We then construct 𝝎o using Eq. (30). The
PDF of 𝝎o in this case is 𝑝𝑠 (𝑑sample | 𝐹𝑎)/𝑃𝑠 (𝑑max | 𝐹𝑎) divided
by the Jacobian | (𝑑sample, 𝛽) → 𝝎o | = 𝑧−1

o 𝜆̂−2𝑑sample.

7.3. Refractive index

ωi

ω′ oω′ i

η2η1
ωo

We handle the situation (see inset figure) where
the front and back sides of the plane are in
different media analogously to dielectric ma-
terials. If 𝝎i is the camera ray direction, we
first calculate a (fake) refracted direction 𝝎′

o
(blue) using Sahl-Snell’s law with the refractive
indices of the two media. We then use 𝝎′

o as
the new incident direction 𝝎′

i (orange) and sample (or evaluate the
BSDF in) outgoing direction𝝎o, with refractive index now set to that
of the second medium 𝜂 = 𝜂2. For BSDF evaluation, this means we
query the textures at d = 𝜂(𝝎o −𝝎′

i )𝑥𝑦 instead of d = (𝝎o −𝝎i)𝑥𝑦 .
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Figure 8: Comparison of real-world and simulated corona effects for Lycopodium powder. The first two columns show microscope images
which we binarize to estimate the area fraction 𝐹𝑎 (top: ≈ 0.37, bottom: ≈ 0.55). The third column shows 4.25◦ field-of-view photographs of
the powder illuminated by a small area light. The fourth column presents rendered images using our BSDF with matched parameters.

The sampling process is analogous to how we previously queried
texture values under different wavelengths. For reflection, the process
is similar to refraction, but with 𝜂 = 𝜂1. This approach allows us
to correctly account for the transition between media and ensures
consistent behavior across the surface.

7.4. Spherical scatterers

Replacing apertures with spheres requires only two key changes.
First, we replace Fraunhofer diffraction with Lorenz-Mie scattering,
which depends on (𝝎i ·𝝎o) rather than (𝝎o −𝝎i)𝑥𝑦 . This change
reduces the problem to a 1D lookup table and requires us to evaluate
additional Jacobian terms. Second, since the ratio between each
component becomes more complex [GGB12], we store it in a separate
1D lookup table indexed by (𝝎i)𝑧 .

8. Results

We built our BSDF model within Mitsuba 3 [JSR*22], and imple-
mented several versions of our approach, including the on-the-fly
product approach described in the previous section, and a baseline
that pretabulates the product for specific parameter choices.

8.1. Variance reduction

When using on-the-fly products we can importance sample the BSDF
by MISing the structure factor and aperture terms of the product.
The baseline BSDF using pretabulated products can evaluate and
importance sample according to the full product. Fig. 9 compares
our method to this baseline and to naive cosine-weighted sampling

Ground Truth (EV−1)Ground Truth (EV−1)

MIS(Cosine, Light)MIS(Cosine, Light)

265spp265spp

MIS(𝑇𝑎, 𝑇𝑠, Light)MIS(𝑇𝑎, 𝑇𝑠, Light)

250spp250spp

MIS(𝑇𝑎 × 𝑇𝑠, Light)MIS(𝑇𝑎 × 𝑇𝑠, Light)

245spp245spp

Figure 9: We compare three different sampling approaches for
our BSDF at equal time (25s) to a high-spp ground truth (top).
All methods perform MIS with emitter sampling but differ in how
they evaluate and sample the BSDF component. Left: cosine-based
sampling; Middle: MISing the aperture and structure factor textures
as in Sec. 7; Right: evaluating and sampling the BSDF using a
precomputed tabulation of the product.

of the hemisphere that doesn’t attempt to importance sample the
BSDF at all. The results show that MISing the two terms is noisier
than product sampling the combined BSDF, but our MIS version
still substantially reduces variance compared to the cosine-based
sampling baseline. All three methods combine with emitter sampling
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Figure 10: Our model easily supports interpolating between different aperture shapes by controlling their mixing fraction. Here we smoothly
transition between the four-sided interference pattern of square-shaped apertures to the six-sided symmetry of triangular ones.

via MIS. Since all methods use tabulated BSDFs, the render times
are roughly equal. In all the remaining results we compare converged
renderings.

8.2. Real-world comparison with Lycopodium powder

Fig. 8 compares real-world observations with our rendered results.
We take microscope images of Lycopodium powder and binarize
them to estimate the area fraction 𝐹𝑎 (top: ≈ 0.37, bottom: ≈ 0.55).
We then photograph these two configurations back-lit by a small area
light and render corresponding images using our BSDF with the
estimated area fractions and similar scene parameters. As the area
fraction increases, both the photographs and renderings exhibit more
pronounced interference fringes. While some differences remain due
to experimental factors, the overall structure and fringe spacing are
consistent, demonstrating that our method captures the key diffraction
features governed by area fraction and spatial arrangement.

8.3. Single aperture type

Fig. 14 summarizes how the diffraction pattern changes with aperture
shape, size, area fraction, and surface orientation. Increasing the area
fraction produces sharper, more pronounced interference fringes,
while larger apertures focus energy more tightly at the center. The
aperture shape directly imprints its symmetry onto the diffraction
pattern, and tilting the surface causes directional stretching and
asymmetry.

Our modular approach allows rendering all configurations using
just four textures: one structure factor texture (shared across area
fractions, as in Fig. 7) and three diffraction textures (circle, square,
star). For a fixed aperture shape and size, higher area fractions yield
more pronounced and sharper interference fringes.

Varying the surface orientation stretches the diffraction pattern
because tilting reduces the in-plane projection of the wave vector
difference, k̃, even if the angle between incident and outgoing

directions is unchanged. This leads to the observed asymmetry:
the projection k̃ varies with outgoing direction, causing direction-
dependent distortions.

As the aperture radius increases, energy becomes more concen-
trated near the center of the diffraction pattern. This arises due to
the inverse relationship between spatial and frequency scaling in the
Fourier transform.

8.4. Mixed aperture types

In Fig. 10, we place five colored lamps on a surface with our BSDF
to visualize diffraction patterns from a mixture of triangular and
square apertures. Each shape produces a distinct pattern: triangles
yield a hexagram due to their threefold symmetry, while squares
create a four-pointed star. By gradually varying the shape ratio from
100% triangles to 100% squares, the overall diffraction transitions
smoothly between these characteristic patterns. This demonstrates
how aperture shape distribution directly affects the final diffraction
appearance.

8.5. Spheres vs. Apertures

Fig. 11 compares the diffraction patterns produced by spherical
scatterers and apertures, both with area fraction 𝐹𝑎 = 0.3 and radius
𝑎 = 0.5µm (recall also the plots in Fig. 6). For each column, the
incident plane is tilted by 0◦, 30◦, and 60◦, respectively. We observe
that the patterns resulting from spherical scatterers are brighter (for
aperture, there is more coherent component for larger 𝐹𝑎 , but this is
inverse for sphere) and also exhibit structural differences compared
to those generated by apertures.

8.6. Scene rendering results

In Fig. 1 (bottom-right), we use our BSDF model to approximate
condensation on a pair of glasses. We use a layer of circular apertures
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Figure 11: The first row shows the diffraction patterns due to
spherical scatterers, while the second row corresponds to those
generated by apertures. Here, we use the area fraction 𝐹𝑎 = 0.3.
From left to right, the plane is tilted by 0◦, 30◦, and 60◦.

(radius 𝑎 = 5µm, area fraction 𝐹𝑎 = 0.5) on a dielectric glass material
with refractive index 𝜂 = 1.5. This produces characteristic corona
patterns around each light source due to diffraction and interference,
which are also visible in reflections.

Fig. 12 also shows a glass material, but this time front-illuminated
by two strong light sources that are reflected in the glass. While
the corona is a forward-scattering phenomenon, interreflections and
refractions between the two sides of the glass lead to a visible corona
even in such front-illumination settings. Note that this is different
than Quetelet scattering [XWM23], which models the interference
between light reflected by a surface and scattering from fine particles
near the surface. Our simulation does not compute interference as
light travels between the front and back side of the glass.

Fig. 13 shows a curtain, where we use a rectangular elementary
aperture and a diffuse BSDF 𝑓 ◦𝑟 for the parts that do not hit the
diffraction holes. Here, the combination of aperture shape, occlusion,
and varying orientations leads to rainbow-like diffraction effects.

9. Conclusion and discussion

We introduced a framework for modeling wave-optical scattering
that accounts for both the shape of scatterers as well as their spatial
correlations. Importantly, by keeping these concepts distinct, users
can independently explore the visual impact of aperture shapes and
spatial correlations without expensive recomputation.

For isotropic systems such as the hard disk model, a single structure
factor texture suffices to represent a range of area fractions. We
efficiently combine this texture with a precomputed single-aperture
diffraction pattern (via FFT) to evaluate the BSDF. By adjusting
the spatial frequency coordinate, we can scale the aperture without
regenerating textures. Our importance sampling strategy leverages
these two textures for efficient rendering. We further extended the
framework to support mixtures of different aperture shapes and
spherical scatterers.

9.1. Limitations and future work

Our method cannot pre-integrate over the spectral sensitivity function
while maintaining the flexibility of combining aperture diffraction

Figure 12: Corona effects from two strong light sources reflected
and diffracted by a glass surface covered with circular apertures of
radius 0.8 µm and area fraction 𝐹𝑎 = 0.5. The substrate is dielectric
with refractive index 1.5. Both reflection and refraction contribute
to the observed patterns.

Figure 13: A sheer curtain modeled as a layer of rectangular
apertures with area fraction 𝐹𝑎 = 0.5 on a diffuse substrate BSDF.

and structure factor textures. As a result, we rely on spectral render-
ing to capture wavelength-dependent effects. Using a small set of
representative wavelengths (e.g., RGB) can mitigate this, but may
miss subtle spectral interference.

Our current approach for a monolayer of spherical scatters intro-
duces additional approximations. In contrast to apertures or discs,
spheres are not flat, and the approximations we rely on [GGB12] do
not fully account for multiple scattering or near-field interactions.
In particular, this approximation can introduce errors at large scat-
tering angles, where inter-particle interference becomes significant.
Exploring more accurate models from optics might be a promising
avenue for future work.

Our implementation is currently restricted to isotropic spatial
relationships, where the PCF depends only on distance 𝑟, as in the
hard disk system. However, the underlying theory naturally extends
to anisotropic distributions, where the PCF depends on the full 2D
vector r. The same formulation applies, requiring only changes to
texture generation and sampling.

PCFs can describe positional information in any dimension. Many
natural systems—such as animal skins, bird feathers, or chameleon
cells—exhibit particle distributions that are neither regular nor

© 2025 Eurographics - The European Association
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Figure 14: Diffraction patterns produced by our BSDF model on a back-lit rectangular interface for various aperture configurations and
viewing angles. The 9×9 grid is organized as 3×3 blocks, each corresponding to a specific aperture shape (rows: circle, square, star) and
bounding circle radius (columns: 𝑎 = 1µm, 1.5µm, 2µm). Within each block, columns represent different area fractions (𝐹𝑎 = 0.3,0.5,0.7),
and rows vary the plane orientation (30◦,60◦,90◦).

uniform. Prior work has addressed structured patterns like animal
skin textures [DTS*14], but real-world scatterers often vary in
size, spacing, or type. Anisotropic PCFs or full 3D PCFs could
more accurately describe these complex scenarios. For example,
chameleons modulate the spacing between nanocrystals in their skin

to produce dynamic color changes—a phenomenon our framework
could model using a spatially varying PCF.

© 2025 Eurographics - The European Association
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