

Eurographics 2015

The 36th Annual Conference of the European Association for Computer Graphics

Light Field Structure Analysis

With material courtesy of Jaakko Lehtinen

Key observation

- Light rays are highly coherent
 - Rays originating from same surface point vary smoothly over angle
- Represent light rays in light field parameterization
 - Rays correspond to points in a 4D position-direction space
- Exploit coherent, anisotropic structure of light fields

Motion blur and depth of field

Requires lots of samples

Depth of field (defocus blur)

Depth of field (defocus blur)

Depth of field (defocus blur)

Light field parameterization

Anisotropy

Defocus blur: integration over lens

Naive approach

Input: sparse sampling

- Input: sparse sampling
- Upsampling
 - Extrapolation along known slopes

- Input: sparse sampling
- Upsampling
 - Extrapolation along known slopes
- Core challenge: visibility

- Input: sparse sampling
- Upsampling
 - Extrapolation along known slopes
- Core challenge: visibility
- Visibility events produce intersections
 - Detect by locally triangulating foreground samples

Summary

- Input: sparse sampling
- Upsampling
 - Extrapolation along known slopes
 - Resolve visibility
- For each pixel, usual Monte Carlo integration of upsampled data

Results (depth of field, motion blur)

Results (depth of field, motion blur)

Extension to indirect illumination

 Challenge: at each pixel, compute incident indirect illumination over hemisphere

Extension to indirect illumination

- **Challenge**: at each pixel, compute incident indirect illumination over hemisphere
- Key idea: interpolate incident rays from sparsely sampled, scattered ray segments

Light field parameterization

 Represent incident rays using light field parameterization

Approach

- Input: path tracing with sparse samples
- Store path segments

for indirect illumination

Query incident ray

by interpolating in light-field parameterization

Interpolation

- Reproject input sample rays into light field parameterization at query location
- Interpolate at query ray
- Challenges
 - Visibility
 - Non-diffuse surfaces

Visibility

 Detect occlusions using a coarse point-based scene representation

Glossy surfaces

- Store glossy BRDF lobe
- Use as weight when extrapolating sample

Results: diffuse indirect illumination

Reconstruction

PBRT 512spp

Results: ambient occlusion

Input 4spp

Reconstruction

Conclusions

- Light field parameterization reveals anisotropic structure of incident light
- Convenient representation for upsampling and interpolation
 - Easy to preserve light field structure
- Good results from very sparse input
- Challenges
 - Visibility
 - Glossy surfaces
 - Memory requirements

