Adaptive Rendering

a posteriori methods

Fabrice Rousselle
fabrice.rousselle@disneyresearch.com
Adaptive rendering: two strategies

Higher sampling rate: Sharp but expensive

Larger reconstruction filter: Cheap but blurry
Plan

Adaptive Framework

Joint NL-Means

Other Implementations
Framework overview

ADAPTIVE SAMPLING

Sample set
Additional samples
Error estimation

ADAPTIVE RECONSTRUCTION

Black box!

Reconstruction
Framework overview

ADAPTIVE SAMPLING

- Sample set
- Additional samples
- Error estimation

ADAPTIVE RECONSTRUCTION

- Scale decomposition
- Scale selection
- Reconstruction
Framework overview

ADAPTIVE SAMPLING

Sample set + Additional samples → Error estimation

Scale decomposition + Scale selection → Reconstruction

Eurographics 2015
Framework overview

ADAPTIVE SAMPLING

Sample set ➔ Additional samples ➔ Error estimation

ADAPTIVE RECONSTRUCTION

Scale decomposition ➔ Scale selection ➔ Reconstruction
Framework overview – scale selection

Goal: minimize Mean Squared Error
\[\text{MSE} = \text{Var} + \text{Bias}^2 \]

Binary decision
\[\text{MSE} (\text{fine} \rightarrow \text{coarse}) > 0 \]
Framework overview – results
Framework overview – results

GEM – 32 spp, 68s
RND – 50 spp, 69s
Framework overview – results

GEM – 32 spp, 68s

Ground truth – 4000 spp
Framework overview

ADAPTIVE SAMPLING
- Sample set
- Additional samples
- Error estimation

ADAPTIVE RECONSTRUCTION
- Scale decomposition
- Scale selection
- Reconstruction
Plan

Adaptive Framework

Joint NL-Means

Other Implementations
Image-based denoising

Noisy

Reference

Ideal weights

Eurographics 2015
Image-based denoising

- Use a **flexible** and **robust** filter
 - Flexible: irregular weights
 - Robust: few denoising artifacts

Noisy data Bilateral Filter Non-Local Means Filter

Buades et al. 2006
NL-Means Filter

- Per pixel weight $w(p, q)$
- Generalized distance d
 - spatial (in pixels, exact)
 - range (difference in value u, noisy)

$$d^2(p, q) = \frac{(u(p) - u(q))^2 - 2\sigma^2}{\epsilon + k^2 2\sigma^2}$$

- Weights
 - decrease exponentially with the distance
NL-Means

128 samples per pixel
NL-Means – Non-uniform variance

128 samples per pixel

Variance
NL-Means – Non-uniform variance

• Uniform variance

\[d^2(p, q) = \frac{(u(p) - u(q))^2}{\epsilon + 2k^2\sigma^2} - 2\sigma^2 \]

• Non-uniform variance

\[d^2(p, q) = \frac{(u(p) - u(q))^2}{\epsilon + 2k^2\text{Var}[p]} - \frac{(\text{Var}[p] + \min(\text{Var}[q], \text{Var}[p]))}{\epsilon + 2k^2\text{Var}[p]} \]
NL-Means – Variance estimation

• Independent samples: sample mean variance

\[\text{Var}[p] = \left(\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2 \right) / n \]
NL-Means Filter – Variance Estimation

• Correlated samples: use buffer difference
 • Stratified sampling, low-discrepancy sampling, etc.
 • Generate two images using independent seeds

\[
\left(\begin{array}{c}
\text{image 1} \\
\text{image 2}
\end{array} \right)^2 / 4 = \text{max}
\]
NL-Means

128 samples per pixel

Variance
NL-Means

128 samples per pixel

Denoised
NL-Means

128 samples per pixel

Denoised
NL-Means – Leveraging Scene Info

- Normal buffer
- Albedo buffer
NL-Means – Leveraging Scene Info

Joint filtering

Standard filtering
NL-Means Filter – Leveraging Scene Information
Framework overview

ADAPTIVE SAMPLING

Sample set \[\rightarrow\] Additional samples \[\rightarrow\] Error estimation

ADAPTIVE RECONSTRUCTION

Black box!
MSE estimation using SURE

SURE-based Optimization for Adaptive Sampling and Reconstruction

Li et al., ACM SIGGRAPH Asia 2012
MSE estimation using SURE

• Stein’s Unbiased Risk Estimate (SURE)

 • \(\text{MSE}(p) = (\hat{u}(p) - f(p))^2 \), where \(f(p) \) is the converged pixel value

 • \((\hat{u}(p) - u(p))^2 \), where \(u(p) \) is the noisy pixel value
MSE estimation using SURE

- Stein’s Unbiased Risk Estimate (SURE)
 - $\text{MSE}(p) = (\hat{u}(p) - f(p))^2$, where $f(p)$ is the converged pixel value
 - $\text{SURE}(p) = (\hat{u}(p) - u(p))^2 + 2\frac{\delta \hat{u}(p)}{\delta u(p)} \text{Var}[u(p)] - \text{Var}[u(p)]$
 - 0, if $\text{Var}[u(p)] = 0$
MSE estimation using SURE

\[
SURE(p) = \left(\hat{u}(p) - u(p) \right)^2 + 2 \frac{\delta \hat{u}(p)}{\delta u(p)} \operatorname{Var}[u(p)] - \operatorname{Var}[u(p)]
\]

\[
\begin{align*}
\text{SURE}(p) &= (\hat{u}(p) - u(p))^2 + 2 \frac{\delta \hat{u}(p)}{\delta u(p)} \operatorname{Var}[u(p)] - \operatorname{Var}[u(p)] \\
&= 0 + 2 \frac{\delta \hat{u}(p)}{\delta u(p)} \operatorname{Var}[u(p)] - \operatorname{Var}[u(p)]
\end{align*}
\]

• Identity filter

\[
\hat{u}(p) = u(p), \quad \frac{\delta \hat{u}(p)}{\delta u(p)} = 1
\]

\[
SURE(p) = \operatorname{Var}[u(p)]
\]
MSE estimation using SURE

\[
S\text{URE}(p) = \left(\hat{u}(p) - u(p) \right)^2 + 2 \frac{\delta \hat{u}(p)}{\delta u(p)} \text{Var}[u(p)] - \text{Var}[u(p)] - \text{Var}[u(p)]
\]

• Identity filter

\[
\hat{u}(p) = u(p), \quad \frac{\delta \hat{u}(p)}{\delta u(p)} = 1
\]

\[
S\text{URE}(p) = \text{Var}[u(p)]
\]

• Constant filter

\[
\hat{u}(p) = C, \quad \frac{\delta \hat{u}(p)}{\delta u(p)} = 0
\]

\[
S\text{URE}(p) = \left(\hat{u}(p) - u(p) \right)^2 - \text{Var}[u(p)]
\]
Multiscale NL-Means using SURE

Most sensitive to

color details

Most sensitive to

features details
Multiscale NL-Means – results

Denoising – 16 spp, 19s

LDS – 33s, 19s
Multiscale NL-Means – results

Denoising – 16 spp, 19s

Ground truth – 4000 spp
Multiscale NL-Means – results
Plan

Adaptive Framework

Joint NL-Means

Other Implementations
Robustness

Pixel color
Normal buffer
Albedo buffer
Position buffer
Robustness

On Filtering the Noise from the Random Parameters in Monte Carlo Rendering
Sen and Darabi, TOG 2014

• Problem: what differences should be preserved?
• Solution: use mutual dependency to assess how relevant a buffer is
Robustness

On Filtering the Noise from the Random Parameters in Monte Carlo Rendering
Sen and Darabi, TOG 2014

- Problem: how to weight the color and features contributions?
- Solution: use mutual dependency with color and random parameters
Robustness – new features

Robust Image Denoising using a Virtual Flash Image

Moon et al., CGF 2013

Input image

Virtual flash image
Robustness – new features

Robust Image Denoising using a Virtual Flash Image

Moon et al., CGF 2013
Robustness – new features

Robust Image Denoising using a Virtual Flash Image

Moon et al., CGF 2013
Robustness – new features

Robust Image Denoising using a Virtual Flash Image
Moon et al., CGF 2013
Robustness – new features

Robust Denoising using Features and Color Information
Rousselle et al., Pacific Graphics 2013
Robustness – new features

Boosting Monte Carlo Rendering by Ray Histogram Fusion

Delbracio et al., TOG 2014
Robustness – new features

Boosting Monte Carlo Rendering by Ray Histogram Fusion

Delbracio et al., TOG 2014

176 spp
NL-Means – 168spp
RHF – 128 spp
Reference
Robustness – new features

Boosting Monte Carlo Rendering by Ray Histogram Fusion

Delbracio et al., TOG 2014

176 spp
NL-Means – 168spp
Reference
Robustness – new features

Boosting Monte Carlo Rendering by Ray Histogram Fusion
Delbracio et al., TOG 2014

176 spp

RHF – 128spp

Reference
Robustness – new features

Boosting Monte Carlo Rendering by Ray Histogram Fusion

Delbracio et al., TOG 2014

LD – 353 spp, 89s
NLM – 316 spp, 89s
RHF – 256 spp, 89s
Reference
Other denoising schemes
Other denoising schemes

Adaptive Rendering based on Weighted Local Regression
Moon et al., TOG 2014

\[y = f(x) + \epsilon \quad x = (Px, Py) \]
Other denoising schemes

Adaptive Rendering based on Weighted Local Regression

Moon et al., TOG 2014

\[y = f(x) + \epsilon \quad \text{x} = (P_x, P_y, A_r, A_g, A_b) \]

Pixel color

Albedo buffer
Other denoising schemes

Adaptive Rendering based on Weighted Local Regression
Moon et al., TOG 2014

\[y = f(\mathbf{x}) + \epsilon \]
\[\mathbf{x} = (P_x, P_y, A_r, A_g, A_b, D) : \]

Pixel color Albedo buffer Depth buffer
Other denoising schemes

Adaptive Rendering based on Weighted Local Regression
Moon et al., TOG 2014

\[y = f(\mathbf{x}) + \epsilon \]
\[\mathbf{x} = (P_x, P_y, A_r, A_g, A_b, D, N_x, N_y, N_z) \]

- Pixel color
- Albedo buffer
- Depth buffer
- Normal buffer
Other denoising schemes

Adaptive Rendering based on Weighted Local Regression
Moon et al., TOG 2014

\[y = f(x) + \epsilon \]

\[x = (P_x, P_y, A_r, A_g, A_b, D, N_x, N_y, N_z) \Rightarrow \text{TSVD} \Rightarrow z \]
Other denoising schemes

Adaptive Rendering based on Weighted Local Regression

Moon et al., TOG 2014
Other denoising schemes

Adaptive Rendering based on Weighted Local Regression
Moon et al., TOG 2014
Other denoising schemes

Removing the Noise in Monte Carlo Renderings with General Image Denoising Algorithms
Kalantari and Sen, Eurographics 2013

• Problem: general filters assume uniform variance
• Idea: multi-scale filtering over a range of variances

\[
\begin{align*}
\sigma^2 &= 0.0 \\
\sigma^2 &= 28.73 \\
\sigma^2 &= 43.16 \\
\sigma^2 &= 57.46 \\
\sigma^2 &= 64.44 \\
\sigma^2 &= 118.2
\end{align*}
\]
Other denoising schemes

Removing the Noise in Monte Carlo Renderings with General Image Denoising Algorithms

Kalantari and Sen, Eurographics 2013

Input – 8 spp

Denoised using BM3D
Interactive applications
Interactive applications

Edge-Avoiding A-Trous Wavelet Transform for Fast Global Illumination Filtering

Dammertz et al., HPG 2010

Input – 1 spp

Denoised

Reference

Filtering time: 5.6ms
Interactive applications

Sample-Based Manifold Filtering for Interactive Global Illumination and Depth of Field

Bauszat et al., CGF 2014
Conclusion

• Image-space adaptive rendering
 • Very effective
 • Low computational overhead
 • Preserve the generality of Monte Carlo rendering

• Applications
 • Facilitate the deployment of Monte Carlo rendering in production
 • Key to enable interactive/realtime Monte Carlo rendering
Production use
Plan

LD SBF RFC WLR Reference
Interactive applications

Specular Lobe-Aware Filtering and Upsampling for Interactive Indirect Illumination

Tokuyoshi, CGF 2015

Normal-aware

MSE: 0.0069

Lobe-aware

MSE: 0.0069

Ground truth
Interactive applications

Specular Lobe-Aware Filtering and Upsampling for Interactive Indirect Illumination

Tokuyoshi, CGF 2015

MSE: 0.0549 MSE: 0.0158

Normal-aware Lobe-aware Ground truth
Interactive applications

Specular Lobe-Aware Filtering and Upsampling for Interactive Indirect Illumination

Tokuyoshi, CGF 2015

MSE: 0.0549
Interactive applications

Specular Lobe-Aware Filtering and Upsampling for Interactive Indirect Illumination
Tokuyoshi, CGF 2015

Lobe-aware

MSE: 0.0158
Introduction

- Monte Carlo path tracing
 - Physically based
 - Very general
 - Guaranteed convergence (except pathological cases)

- Disadvantages
 - Noise, slow convergence

32000 samples per pixel, 12h
Introduction

• Monte Carlo path tracing
 • Physically based
 • Very general
 • Guaranteed convergence (except pathological cases)

• Disadvantages
 • Noise, slow convergence

32 samples per pixel, 42s
Introduction – curse of dimensionality

→ Anti-aliasing – 2D
Introduction – curse of dimensionality

→ Anti-aliasing – 2D
→ Area-lighting – 2D
Introduction – curse of dimensionality

→ Anti-aliasing – 2D
→ Area-lighting – 2D
→ Single-bounce indirect illumination – 2D
Introduction – curse of dimensionality

→ Anti-aliasing – 2D
→ Area-lighting – 2D
→ Single-bounce indirect illumination – 2D
→ Depth-of-field – 2D
Introduction – curse of dimensionality

→ Anti-aliasing – 2D
→ Area-lighting – 2D
→ Single-bounce indirect illumination – 2D
→ Depth-of-field – 2D
→ Single-scattering participating media – 1D

Total: 9D