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Abstract Much of the stress and strain of student life remains hidden.
The StudentLife continuous sensing app assesses the day-to-day and week-by-week
impact of workload on stress, sleep, activity, mood, sociability, mental well-being
and academic performance of a single class of 48 students across a 10 weeks term at
Dartmouth College using Android phones. Results from the StudentLife study show
a number of significant correlations between the automatic objective sensor data
from smartphones and mental health and educational outcomes of the student body.
We propose a simple model based on linear regression with lasso regularization
that can accurately predict cumulative GPA. We also identify a Dartmouth term
lifecycle in the data that shows students start the term with high positive affect and
conversation levels, low stress, and healthy sleep and daily activity patterns. As the
term progresses and the workload increases, stress appreciably rises while positive
affect, sleep, conversation and activity drops off. The StudentLife dataset is publicly
available on the web.
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Introduction

Many questions arise when we think about the academic performance of college
students. Why do some students do better than others? Under similar conditions,
why do some individuals excel while others fail? Why do students burnout, drop
classes, even drop out of college? What is the impact of stress, mood, workload,
sociability, sleep and mental well-being on educational performance? In this paper,
we use smartphones carried by students to find answers to some of these pressing
questions.

Consider students at Dartmouth College, an Ivy League college in a small
New England college town. Students typically take three classes over a 10-week
term and live on campus. Dartmouth classes are generally demanding where
student assessment is primarily based on class assignments, projects, midterms and
final exams. Students live, work and socialize on a small self-contained campus
representing a tightly-knit community. The pace of the 10 week Dartmouth term is
fast in comparison to a 15 week semester. The atmosphere among the students on
campus seems to visibly change from a relaxed start of term, to an intense midterm
and end of term. Typically classes at Dartmouth are small (e.g., 25–50 students),
but introductory classes are larger (e.g., 100–170), making it difficult for a faculty
to follow the engagement or performance of students on an individual level. Unless
students contact a student dean or faculty about problems in their lives, the impact
of such challenges on performance remains hidden.

To shine a light on student life we develop the StudentLife [51] smartphone
app and sensing system to automatically infer human behavior in an energy-
efficient manner. The StudentLife app integrates MobileEMA, a flexible ecological
momentary assessment [45] (EMA) component to probe students’ states (e.g., stress,
mood) across the term. We administer a number of well-known pre-post health
and behavioral surveys at the start and end of term. We present the results from
a deployment of StudentLife on Google Nexus 4 Android phones at Dartmouth
College.

StudentLife makes a number of contributions. First, to the best of our knowledge
we are the first to use automatic and continuous smartphone sensing to assess mental
health, academic performance and behavioral trends of a student body. Second,
we identify strong correlation between automatic sensing data and a broad set of
well-known mental well-being measures, specifically, PHQ-9 depression, perceived
stress (PSS), flourishing, and loneliness scales. Results indicate that automatically
sensed conversation, activity, mobility, and sleep have significant correlations with
mental well-being outcomes. we propose for the first time a model that can
predict a student’s cumulative GPA using automatic behavioral sensing data from
smartphones. We use the Lasso (Least Absolute Shrinkage and Selection Operator)
[48] regularized linear regression model as our predictive model. Our prediction
model indicates that students with better grades are more conscientious, study more,
experience positive moods across the term but register a drop in positive affect after
the midterm point, experience lower levels of stress as the term progresses, are less
social in terms of conversations during the evening period, and experience change
in their conversation duration patterns later in the term. Third, we observe trends
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in the sensing data, termed the Dartmouth term lifecycle, where students start the
term with high positive affect and conversation levels, low stress, and healthy sleep
and daily activity patterns. As the term progresses and the workload increases, stress
appreciably rises while activity, sleep, conversation, positive affect, visits to the gym
and class attendance drop.

Related Work

There is a growing interest in using smartphone sensing [9, 10, 12, 13, 17, 38, 50]
to infer human dynamics and behavioral health [8, 20, 24, 26, 29, 34, 36, 41, 42].
The StudentLife study is influenced by a number of important behavioral studies:
(1) the friends-and-families study [8], which uses Funf [4] to collect data from 130
adult members (i.e., post-docs, university employees) of a young family community
to study fitness intervention and social incentives; and (2) the reality mining
project [22], which uses sensor data from mobile phones to study human social
behavior in a group of students at MIT. The authors show that call records, cellular-
tower IDs, and Bluetooth proximity logs accurately detect social networks and daily
activity.

There is little work on correlations between continuous and automatic sensing
data from smartphones and mental health outcomes such as PHQ-9. However, the
authors in [41] use wearable sensors (i.e., Intel’s mobile sensing platform) to study
the physical and mental well-being of a group of 8 seniors living in a continuing care
retirement community over a single week. The retirement community study [41] is
the first to find correlations with depression and continuous sensing measures from
wearables. In [40], the authors monitor bipolar disorder in patients using wearable
sensors, but the project does not enable continuous sensing data. In [11, 25],
the authors present an approach that collects self-assessment and sensor data on
a smartphone as a means to study patients’ mood. They find that self-reported
activity, stress, sleep and phone usage are strongly correlated with self-reported
mood. Health Buddy [28] asks patients a series of questions about symptoms of
depression to help mental health service providers monitoring patients’ symptoms.
No continuously sensing is used. Mobilyze is an intervention system [14] that
uses smartphones to predict self-reported states (e.g., location, alone, mood) using
machine learners. Results indicate that Mobilyze can predict categorical contextual
states (e.g., location, with friends) with good accuracy but predicting internal states
such as mood show poorer predictive power.

There is a considerable interest in studying the health and performance of
students. However, no study has used smartphone sensing to study these issues.
In [49], the authors study the effect of behaviors (i.e., social support, sleep habits,
working hours) on grade points based on 200 randomly chosen students living on the
campus at a large private university. However, this study uses retrospective survey
data manually entered by users to assess health and performance. Watanabe [53, 54]
uses a wearable sensor device to investigate the correlation between face-to-
face interaction between students during break times and scholastic performance.
Previous research [23] aimed at predicting performance has used a neural network
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model to predict student’s grades from their placement test scores. Various data
collected from entering students are used in [37] to predict student academic
success using discriminant function analysis. Kotsiantis and Pintelas [31] proposes
a regression model to predict the student’s performance from their demographic
information and tutor’s records. Romero et al. [43] applies web usage mining in
e-learning systems to predict students’ grades in the final exam of a course. In
[57], the authors propose an approach based on multiple instance learning to predict
student’s performance in an e-learning environment. Recent work [46] showed that
they can predict a student is at risk of getting poor assessment performance using
longitudinal data such as previous test performance and course history. To the best
of our knowledge there is no work on using passive sensor data from smartphones
as a predictor on academic success.

Study Design

In this section, we discuss how participants were recruited from the student body,
and then describe our data collection process. We also discuss compliance and data
quality issues in this longitudinal study.

Participants

All participants in the study were voluntarily recruited from the CS65 Smartphone
Programming class [1], a computer science programming class at Dartmouth
College offered to both undergraduate and graduate students during Spring term
in 2013. This study is approved by the Institutional Review Board at Dartmouth
College. Seventy five students enrolled in the class and 60 participants joined the
study. As the term progressed, 7 students dropped out of the study and 5 dropped
the class. We remove this data from the dataset analyzed in section “Results”.
Among the 48 students who complete the study, 30 are undergraduates and 18
graduate students. The class demographics are as follows: 8 seniors, 14 juniors,
6 sophomores, 2 freshmen, 3 Ph.D students, 1 second-year Masters student, and 13
first-year Masters students. In terms of gender, 10 participants are female and 38
are male. In terms of race, 23 participants are Caucasians, 23 Asians and 2 African-
Americans. Forty eight participants finished the pre psychological surveys and 41
participants finished all post psychological surveys.

All students enrolled in the class were offered unlocked Android Nexus 4s to
complete assignments and class projects. Many students in the study had their own
iPhones or Android phones. We denote the students who use their own Android
phones to run the StudentLife sensing system as primary users and those who use
the Nexus 4s as secondary users. Secondary users have the burden of carrying both
their own phones and the Nexus 4s during the study. We discuss compliance and
data quality of users in section “Compliance and Data Quality”.
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Table 1 Mental well-being
and personality surveys

Survey Measure

Patient health questionnaire (PHQ-9) [32] Depression level

Perceived stress scale (PSS) [19] Stress level

Flourishing scale [21] Flourishing level

UCLA loneliness scale [44] Loneliness level

Big five inventory (BFI) [27] Personality traits

Study Procedure

The StudentLife study consists of orientation, data collection and exit stages.
In addition, we deployed a number of management scripts and incentive mecha-
nisms to analyze and boost compliance, respectively.

Entry and Exit During the orientation stage, participants sign the consent form to
join the study. Each student is given a one-on-one tutorial of the StudentLife system
and study. Prior to signing the consent form, we detail the type of data to be collected
by the phone. Students are trained to use the app. Students do not need to interact
with the background sensing or upload functions. They are shown how to respond
to the MobileEMA system. A series of entry health and psychological baseline
surveys are administered using SurveyMonkey as discussed in section “Results”
and shown in Table 1. As part of the entry survey students provide demographic
and information about their spring term classes. All surveys are administered using
SurveyMonkey [7]. These surveys are pre measures which cover various aspects
of mental and physical health. Outcomes from surveys (e.g., depression scale) are
used as ground truth in the analysis. During the exit stage, we administered an exit
survey, interview and the same set of behavioral and health surveys given during the
orientation stage as post measures.

Data Collection The data collection phase lasted for 10 weeks for the complete
spring term. After the orientation session, students carried the phones with them
throughout the day. Automatic sensing data is collected without any user interaction
and uploaded to the cloud when the phone is being recharged and under WiFi.
During the collection phase, students were asked to respond to various EMA
questions as they use their phones. This in-situ probing of students at multiple times
during the day provides additional state information such as stress, mood, happiness,
current events, etc. The EMA reports were provided by a medical doctor and a
number of psychologists on the research team. The number of EMAs fired each
day varied but on average 8 EMAs per day were administered. For example, on
days around assignment deadlines, we scheduled multiple stress EMAs. We set up
EMA schedules on a week-by-week basis. On some days we administer the same
EMA (e.g., PAM and stress) multiple times per day. On average, we administer
3–13 EMA questions per day (e.g., stress). The specific EMAs are discussed in
section “StudentLife Dataset”.
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Data Collection Monitoring StudentLife includes a number of management
scripts that automatically produce statistics on compliance. Each time we notice
students’ phones not uploading daily data (e.g., students left phones in their dorms
during the day), or gaps in weekly data (e.g., phones powered down at night), or no
response to EMAs, we sent emails to students to get them back on track.

Incentives To promote compliance and data quality, we offer a number of incen-
tives across the term. First, all students receive a StudentLife T-shirt. Students could
win prizes during the study. At the end of week 3, we gave away 5 Jawbone UPs
to the 5 top student collectors randomly selected from the top 15 collectors. We
repeated this at week 6. We defined the top collectors as those providing the most
automatic sensing and EMA data during the specific period. At the end of the study,
we gave 10 Google Nexus 4 phones to 10 collectors who were randomly selected
from the top 30 collectors over the complete study period.

Privacy Considerations Participants’ privacy is a major concern of our study.
In order to protect participants’ personal information, we fully anonymize each
participant’s identity with a random user id and kept the user id map separate from
all other project data so that the data cannot be traced back to individuals. Call
logs and SMS logs are one-way hashed so that no one can get phone numbers
or messages from the data. Participants’ data is uploaded using encrypted SSL
connections to ensure that their data cannot be intercepted by third-parties. Data
is stored on secured servers. When people left the study their data was removed.

Compliance and Data Quality

The StudentLife app does not provide students any feedback by design. We do not
want to influence student behavior by feedback, rather, we aim to unobtrusively
capture student life. Longitudinal studies such as StudentLife suffer from a drop
in student engagement and data quality. While automatic sensor data collection
does not introduce any burden other than carrying a phone, collecting EMA data
can be a considerable burden. Students typically are compliant in responding to
survey questions at the start of a study, but as the novelty effect wears off, student
compliance drops.

There is a 60/40 split of iPhone/Android users in the study group. Of the 48
students who completed the study, 11 are primary phone users and 37 secondary
users. One concern is that the burden of carrying two phones for 10 weeks would
result in poorer data quality from the secondary users compared to the primary
users. Figure 1a shows the average hours of sensor data we have collected from each
participant during the term. As expected, we observe that primary users are better
data sources, but there is no significant difference. We can clearly see the trend of
data dropping off as the term winds down. Achieving the best data quality requires
24 h of continuous sensing each day. This means that users carry their phones and
power their phones at night. If we detect that a student leaves their phone at the
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Fig. 1 Compliance and quality of StudentLife data collected across the term. (a) Automatic
sensing data quality over the term. (b) EMA data quality over the term

dorm during the day, or it is powered down, then we remove that data from the
dataset. The overall compliance of collecting automatic sensing data from primary
and secondary users over the term is 87% and 81%, respectively.

Figure 1b shows the average number of EMA responses per day for primary
and secondary users. The figure does not capture compliance per se, but it shows
that secondary users are slightly more responsive to EMAs than primary users. On
average we receive 5.8 and 5.4 EMAs per day per student across the whole term
from secondary and primary users, respectively. As the term progresses there is a
drop in both administered EMAs and responses. However, even at the end of term,
we still receive over 2 EMAs per day per student. Surprisingly, secondary users
(72%) have better EMA compliance than primary users (65%). During the exit
survey, students favored short PAM-style EMAs (see Fig. 3a), complained about
the longer EMAs, and discarded repetitive EMAs as the novelty wore off. By
design, there is no notification when an EMA is fired. Participants need to actively
check their phone to answer scheduled EMA questions. The EMA compliance data
(see Fig. 1b) shows that there are no significant differences between primary and
secondary phone users. It indicates that secondary phone users also used the study
phone when they were taking the phone with them. Therefore, the study phone can
capture the participants’ daily behavior even it was not their primary phone.

In summary, Fig. 1 shows the cost of collecting continuous and EMA data
across a 10-week study. There is a small difference between primary and secondary
collectors for continuous sensing and EMA data, but the compliance reported above
is promising and gives confidence in the analysis discussed in section “Results”.

StudentLife App and Sensing System

In what follows, we describe the design of the StudentLife app and sensing system,
as shown in Fig. 2.
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Fig. 2 StudentLife app, sensing and analytics system architecture

Automatic and Continuous Sensing

We build on our prior work on the BeWell App [33] to provide a framework for
automatic sensing in StudentLife. The StudentLife app automatically infers activity
(stationary, walking, running, driving, cycling), sleep duration, and sociability (i.e.,
the number of independent conservations and their durations). The app also collects
accelerometer, proximity, audio, light sensor readings, location, colocation, and
application usage. The inferences and other sensor data are temporarily stored
on the phone and are efficiently uploaded to the StudentLife cloud when users
recharge their phones under WiFi. In what follows, we discuss the physical
activity, sociability/conversation and sleep inferences computed on the phone which
represent important heath well-being indicators [33].

Activity Detection We use the physical activity classifier from our prior work
[33, 35] to infer stationary, walking, running, driving and cycling based on features
extracted from accelerometer streams. The activity classifier extracts features from
the preprocessed accelerometer stream, then applies a decision tree to infer the
activity using the features. The activity classifier achieves overall 94% of accuracy
[35]. (Note, we conducted our study before Google announced the availability of
an activity recognition service for Android phones). We extend our prior work
to compute a daily activity duration, and indoor and outdoor mobility measures,
discussed as follows. The activity classifier generates an activity label every 2 s.
We are only interested in determining whether a participant is moving. For each
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10-min period, we calculate the ratio of non-stationary inferences. If the ratio is
greater than a threshold, we consider this period active, meaning that the user is
moving. We add up all the 10-min active periods as the daily activity duration.
Typically, students leave their dorms in the morning to go to various buildings on
campus during the day. Students spend a considerable amount of time in buildings
(e.g., cafes, lecture rooms, gym). We consider the overall mobility of a student
consists of indoor and outdoor mobility. We compute the outdoor mobility (aka
traveled distance) as the distance a student travels around campus during the day
using periodic GPS samples. Indoor mobility is computed as the distance a student
travels inside buildings during the day using WiFi scan logs. Dartmouth College
has WiFi coverage across all campus buildings. As part of the study, we collect
the locations of all APs in the network, and the Wi-Fi scan logs including all
encountered BSSIDs, SSIDs, and their signal strength values. We use the BSSIDs
and signal strength to determine if a student is in a specific building. If so, we use
the output of activity classifier’s walk inference to compute the activity duration as
a measure of indoor mobility. Note, that Dartmouth’s network operations provided
access to a complete AP map of the campus wireless network as part of the IRB.

Conversation Detection StudentLife implements two classifiers on the phone for
audio and speech/conversation detection: an audio classifier to infer human voice,
and a conversation classifier to detect conversation. We process audio on the fly to
extract and record features. We use the privacy-sensitive audio and conversation
classifiers developed in our prior work [33, 41]. Note, the audio classification
pipeline never records conversation nor analyses content. We first segment the
audio stream into 15-ms frames. The audio classifier then extracts audio features,
and uses a two-state hidden Markov model (HMM) to infer speech segments.
Our classifier does not implement speaker identification. It simply infers that the
user is “around conversation” using the output of the audio classifier as an input
to a conservation classifier. The output of the classification pipeline captures the
number of independent conversations and their duration. We consider the frequency
and duration of conversations around a participant as a measure of sociability.
Because not all conservations are social, such as lectures and x-hours (i.e., class
meetings outside lectures), we extend our conservation pipeline in the cloud to
remove conversations associated with lectures and x-hours. We use student location
to determine if they attend lectures and automatically remove the conservation data
correspondingly from the dataset discussed in section “StudentLife Dataset”. We
also keep track of class attendance for all students across all classes, as discussed in
section “Results”.

Sleep Detection We implement a sleep classifier based on our previous work
[16, 33]. The phone unobtrusively infers sleep duration without any special inter-
action with the phone (e.g., the user does not have to sleep with the device). The
StudentLife sleep classifier extracts four types of features: light features, phone
usage features including the phone lock state, activity features (e.g., stationary),
and sound features from the microphone. Any of these features alone is a weak
classifier for sleep duration because of the wide variety of phone usage patterns.
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Our sleep model combines these features to form a more accurate sleep model and
predictor. Specifically, the sleep model assumes that sleep duration (Sl) is a linear
combination of these four factors: Sl D

P4
iD1 ˛i � Fi; ˛i � 0 where ˛i is the weight

of the corresponding factor. We train the model using the method described in [16]
with an accuracy of C=�32 min to the ground truth. We extend this method to
identify the sleep onset time by looking at when the user is sedentary in term of
activity, audio, and phone usage. We compare the inferred sleep onset time from
a group of 10 students who use the Jawbone UP during the study to collect sleep
data. Our method predicts bedtime where 95% of the inferences have an accuracy
ofC=�25 min of the ground truth. The output of our extended sleep classifier is the
onset of sleep (i.e., bedtime), sleep duration and wake up time.

MobileEMA

We use in-situ ecological momentary assessment (EMA) [45] to capture additional
human behavior beyond what the surveys and automatic sensing provide. The user
is prompted by a short survey (e.g., the single item [47] stress survey as shown in
Fig. 3b) scheduled at some point during their day. We integrate an EMA component

Fig. 3 MobileEMA: first the PAM popup fires followed by one of the StudentLife EMAs—in this
example the single item stress EMA. (a) PAM EMA. (b) Stress EMA
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into the StudentLife app based on extensions to Google PACO [5]. PACO is an
extensible framework for quantified self experiments based on EMA. We extend
PACO to incorporate:

• photographic affect meter (PAM) [39] to capture participant’s instantaneous
mood;

• pop-up EMAs to automatically present a short survey to the user when they
unlock or use the phone; and,

• EMA schedule and sync feature to automatically push a new EMA schedule to
all participants and synchronize the new schedule with StudentLife cloud.

PACO is a self-contained and complex backend app and service. We extend and
remove features and integrate the EMA component into the StudentLife app and
cloud. We set up EMA questions and schedules using the PACO server-side code [5].
The cloud pushes new EMA questions to the phones. The StudentLife app sets up
an alarm for each EMA in the list and fires it by pushing it to the users’ phone
screen as a pop-up. We implement PAM [39] on the Nexus 4 as part of the EMA
component. PAM presents the user with a randomized grid of 16 pictures from a
library of 48 photos. The user selects the picture that best fits their mood. Figure 3a
shows the PAM pop-up asking the user to select one of the presented pictures. PAM
measures affect using a simple visual interface. PAM is well suited to mobile usage
because users can quickly click on a picture and move on. Each picture represents
a 1–16 score, mapping to the Positive and Negative Affect Schedule (PANAS) [55].
PAM is strongly correlated with PANAS (r D 0:71; p < 0:001) for positive affect.
StudentLife schedules multiple EMAs per day. We took the novel approach of firing
PAM before showing one of the scheduled EMAs (e.g., stress survey). Figure 3b
shows an EMA test after the PAM pop-up. We are interested in how students’ mood
changes during the day. By always preceding any EMA with PAM, we guarantee a
large amount of affect data during the term.

StudentLife Dataset

Using the StudentLife system described in section “StudentLife Sensing System
Section”, we collect a dataset from all subjects including automatic sensor data,
behavioral interferences, and self-reported EMA data. Our ground truth data
includes behavioral and mental health outcomes computed from survey instruments
detailed in Table 1, and academic performance from spring term and cumulative
GPA scores provided by the registrar. We discuss three epochs that are evident
in the StudentLife dataset. We uses these epochs (i.e., day 9 am–6 pm, evening
6 pm–12 am, night 12 am–9 am) as a means to analyze some of the data, as
discussed in section “Results”. The StudentLife dataset is publicly available [6].
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Fig. 4 Statistics on class meeting times and sleep onset time (i.e., bedtime). (a) Meeting time for
all classes over the term. (b) Sleep onset time distribution for all students over the term

Automatic Sensing Data We collect a total of 52.6 GB of sensing inference data
from smartphones over 10 weeks. The data consist of: (1) activity data, including
activity duration (total time duration the user moves per day), indoor mobility and
the total traveled distance (i.e., outdoor mobility) per day; (2) conversation data,
including conversation duration and frequency per day; (3) sleep data, including
sleep duration, sleep onset and waking time; and finally (4) location data, including
GPS, inferred buildings when the participant is indoors, and the number of co-
located Bluetooth devices.

Epochs Students engage in different activities during the day and night. As one
would expect, sleep and taking classes dominate a student’s week. Figure 4a shows
the collective timetable of class meetings for all the classes taken by the students in
the study. The darker the slot, the greater proportion of students taking classes in the
slot. We can observe that Monday, Wednesday, Friday slots from 10:00–11:05 am
and the x-period on Thursday 12:00–12:50 pm are dominant across the week; this is
the teaching time for the CS65 Smartphone Programming class which all students
in the study are enrolled in. Figure 4a clearly indicates that the timetable of all
classes ranges from 9 am to 6 pm—we label this as the day epoch. Students are not
taking classes for the complete period. Many class, social, sports, and other activities
take place during the day epoch but class is dominant. The next dominant activity
is sleep. Students go to bed at different times. Figure 4b shows the distribution of
bedtime for all students across the term. We see that most students go to bed between
12 am and 4 am but the switch from evening to night starts at 12 am, as shown in
Fig. 4b. We label the period between 12 am and 9 am as the night epoch, when most
students are working, socializing or sleeping—but sleep is the dominant activity. We
consider the remaining period between the end of classes (6 pm) and sleep (12 am)
as the evening epoch. We hypothesize that this is the main study and socialization
period during weekdays. We define these three epochs as a means to analyze data,
as discussed in section “Results”. We appreciate that weekdays are different from
weekends but consider epochs uniformly across the complete week. We also look
for correlations in complete days (e.g., Monday) and across epochs (i.e., Monday
day, evening and night).



StudentLife: Using Smartphones to Assess Mental Health and Academic. . . 19

EMA Data Students respond to psychological and behavioral EMAs on their
smartphones that are scheduled, managed, and synchronized using the MobileEMA
component integrated into StudentLife app. We collect a total of 35,295 EMA
and PAM responses from 48 students over 10 weeks. EMA and PAM data are
automatically uploaded to the cloud when students recharge their phones under
WiFi. Students respond to a number of scheduled EMAs including stress (stress
EMA), mood (mood EMA), sleep duration (sleep EMA)(which we use to confirm
the performance of our sleep classifier), the number of people students encountered
per day (social EMA), physical exercise (exercise EMA), time spent on different
activities (activity EMA), and short personality item (behavior EMA). All EMAs
were either existing validated EMAs (e.g., single item stress measure [47]) found in
the literature, or provided by psychologist on the team (e.g., mood EMA).

Survey Instrument Data Table 1 shows the set of surveys for measuring behav-
ioral and mental well-being and personality traits we administer as part of our
pre-post stages, as discussed in section “Study Design”. These questionnaires
provide an assessment of students’ depression, perceived stress, flourishing (i.e.,
self-perceived success), loneliness, and personality. Students complete surveys
using SurveyMonkey [7] 1 day prior to study commencement, and complete them
again 1 day after the study. Surveys are administered on the phone and stored in
the StudentLife cloud (Fig. 2). In what follows, we overview each instrument. The
Patient Health Questionnaire (PHQ-9) [32] is a depression module that scores each
of the 9 DSM-IV criteria as 0 (not at all) to 3 (nearly every day). It is validated for
use in primary care. Table 2 shows the interpretation of the scale and the number of
students that fall into each category for pre-post assessment. The perceived stress
scale (PSS) [19] measures the degree to which situations in a person’s life are
stressful. Psychological stress is the extent to which a person perceives the demands
on them exceed their ability to cope [19]. Perceived stress is scored between 0 (least
stressed) to 40 (most stressed). The perceived stress scale can only be used for
comparisons within a sample—in our case 48 students. The flourishing scale [21]
is an 8-item summary measure of a person’s self-perceived success in important
areas such as relationships, self-esteem, purpose, and optimism. The scale provides
a single psychological well-being score. Flourishing is scored between 8 (lowest) to
56 (highest). A high score represents a person with many psychological resources
and strengths. The UCLA loneliness (version 3) [44] scale scores between 20 (least
lonely) to 80 (most lonely). The loneliness scale is a 20-item scale designed to

Table 2 PHQ-9 depression scale interpretation and pre-post class outcomes

Depression severity Minimal Minor Moderate Moderately severe Severe

Score 1–4 5–9 10–14 15–19 20–27

Number of students (pre-survey) 17 15 6 1 1

Number of students (post-survey) 19 12 3 2 2
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Table 3 Statistics of mental well-being surveys

Survey Pre-study Post-study

outcomes Participants Mean Std Participants Mean Std

Depression 40 5.8 4.9 38 6.3 5.8

Flourishing 40 42.6 7.9 37 42.8 8.9

Stress 41 18.4 6.8 39 18.9 7.1

Loneliness 40 40.5 10.9 37 40.9 10.5

measure a person’s subjective feelings of loneliness as well as feelings of social
isolation. Low scores are considered a normal experience of loneliness. Higher
scores indicate a person is experiencing severe loneliness. Table 3 shows the pre-
post measures (i.e., mean and standard deviation) for each scored survey for all
students. We discuss these assessments in section “Results”.

Academic Data We have access to transcripts from the registrar’s office for all
participants as a means to evaluate their academic performance. We use spring and
cumulative GPA scores as ground truth outcomes. Undergraduates can receive an
A–E grade or I (incomplete). Students who get an Incomplete must agree to
complete the course by a specific date. GPA ranges from 0 to 4. For the CS65
smartphone programming class we had all the assignment and project deadlines—
no midterms or finals are given in this class. Students provide deadlines of their
other classes at the exit interview from their calendars or returned assignments or
exams.

Results

In what follows, we discuss the main results from the StudentLife study. We
identify a number of significant correlations between objective sensor data from
smartphones and mental well-being and academic performance outcomes. We
also identify a Dartmouth term lifecycle that captures the impact of the term on
behavioral measures representing an aggregate term signature experienced by all
students.

Correlation with Mental Health

We first consider correlations between automatic and objective sensing data from
smartphones and mental well-being. We also discuss results from correlations
between EMA data. Specifically, we report on a number of significant correlations
between sensor and EMA data and pre-post survey ground truth outcomes for
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Table 4 Correlations between automatic sensor data and PHQ-9 depression scale

Automatic sensing data r p-value

Sleep duration (pre) �0.360 0.025

Sleep duration (post) �0.382 0.020

Conversation frequency during day (pre) �0.403 0.010

Conversation frequency during day (post) �0.387 0.016

Conversation frequency during evening (post) �0.345 0.034

Conversation duration during day (post) �0.328 0.044

Number of co-locations (post) �0.362 0.025

depression (PHQ-9), flourishing, perceived stress, and loneliness scales, as dis-
cussed in section “StudentLife Dataset” and shown in Table 3. We calculate the
degree of correlation between sensing/EMA data and outcomes using the Pearson
correlation [18] where r (�1 � r � 1) indicates the strength and direction of the
correlation, and p the significance of the finding.

PHQ-9 Depression Scale Table 2 shows the pre-post PHQ-9 depression severity
for the group of students in the study. The majority of students experience
minimal or minor depression for pre-post measures. However, 6 students experience
moderate depression and 2 students are moderately severe or severely depressed at
the start of term. At the end of term more students (4) experience either moderately
severe or severely depressed symptoms. We find a number of significant correlations
(p � 0:05) between sleep duration, conversation frequency and duration, colocation
(i.e., number of Bluetooth encounters) and PHQ-9 depression, as shown Table 4.
An inability to sleep is one of the key signs of clinical depression [3]. We find a
significant negative correlation between sleep duration and pre (r D �0:360; p D
0:025) and post (r D �0:382; p D 0:020) depression; that is, students that sleep
less are more likely to be depressed. There is a known link between lack of
sleep and depression. One of the common signs of depression is insomnia or an
inability to sleep [3]. Our findings are inline with these studies on depression [3].
However, we are the first to use automatic sensor data from smartphones to confirm
these findings. We also find a significant negative association between conversation
frequency during the day epoch and pre (r D �0:403; p D 0:010) and post
(r D �0:387; p D 0:016) depression. This also holds for the evening epoch where
we find a strong relationship (r D �0:345; p D 0:034) between conversation
frequency and depression score. These results indicate that students that have
fewer conversational interactions are more likely to be depressed. For conversation
duration, we find a negative association (r D �0:328; p D 0:044) during the day
epoch with depression. This suggests students who interact less during the day
period when they are typically social and studying are more likely to experience
depressive symptoms. In addition, students that have fewer co-locations with other
people are more likely (r D �0:362; p D 0:025) to have a higher PHQ-9 score.
Finally, we find a significant positive correlation (r D 0:412; p D 0:010) between
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Table 5 Correlations
between automatic sensor
data and flourishing scale

Automatic sensing data r p-value

Conversation duration (pre) 0.294 0.066

Conversation duration during evening (pre) 0.362 0.022

Number of co-locations (post) 0.324 0.050

Table 6 Correlations between automatic sensor data and perceived stress scale (PSS)

Automatic sensing data r p-value

Conversation duration (post) �0.357 0.026

Conversation frequency (post) �0.394 0.013

Conversation duration during day (post) �0.401 0.011

Conversation frequency during day (pre) �0.524 0.001

Conversation frequency during evening (pre) �0.386 0.015

Sleep duration (pre) �0.355 0.024

the validated single item stress EMA [47] and the post PHQ-9 scale. This indicates
that people that are stressed are also more likely to experience depressive symptoms,
as shown in Table 7.

Flourishing Scale There are no literal interpretation of flourishing scale, perceived
stress scale (PSS) and UCLA loneliness scale instruments, as discussed in sec-
tion “StudentLife Dataset”. Simply put, however, the higher the score the more
flourishing, stressed and lonely a person is. We find a small set of correlations (see
Table 5) between sensor data and flourishing. Conversation duration has a weak
positive association (r D 0:294; p D 0:066) during the 24 h day with flourishing.
With regard to conversation during the evening epoch we find a significant positive
association (r D 0:362; p D 0:022) with flourishing. We also find that students
with more co-locations (r D 0:324; p D 0:050) are more flourishing. These results
suggest that students that are more social and around people are more flourishing.
Finally, positive affect computed from the PAM self-report has significant positive
correlation (r D 0:470; p D 0:002) with flourishing, as shown in Table 7. This is as
we would imagine. People who have good positive affect flourish.

Perceived Stress Scale Table 6 shows the correlations between sensor data and
perceived stress scale (PSS). Conversation frequency (r D �0:394; p D 0:013) and
duration (r D �0:357; p D 0:026) show significantly negative correlation with
post perceived stress. In addiction, we see more significant negative associations
if we just look at the day epoch. Here, conversation frequency (r D �0:524,
p D 0:001) and duration (r D �0:401; p D 0:011) exhibit significant and strong
negative correlations with pre and post measure of perceived stress, respectively.
This suggests students in the proximity of more frequent and longer conversations
during the day epoch are less likely to feel stressed. We cannot distinguish between
social and work study conversation, however. We hypothesize that students work
collaborative in study groups. And these students make more progress and are
less stressed. There is also strong evidence that students that are around more
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Table 7 Correlations between EMA data and mental well-being outcomes

Mental health outcomes EMA r p-value

Flourishing scale (pre) Positive affect 0.470 0.002

Loneliness (post) Positive affect �0.390 0.020

Loneliness (post) Stress 0.344 0.037

PHQ-9 (post) Stress 0.412 0.010

Perceived stress scale (pre) Positive affect �0.387 0.012

Perceived stress scale (post) Positive affect �0.373 0.019

Perceived stress scale (pre) Stress 0.458 0.003

Perceived stress scale (post) Stress 0.412 0.009

Table 8 Correlations
between automatic sensor
data and loneliness scale

Automatic sensing data r p-value

Activity duration (post) �0:388 0:018

Activity duration for day (post) �0:326 0:049

Activity duration for evening (post) �0:464 0:004

Traveled distance (post) �0:338 0:044

Traveled distance for day (post) �0:336 0:042

Indoor mobility for day (post) �0:332 0:045

conversations in the evening epoch are less stressed too. Specifically, there is strong
negative relationship (r D �0:386; p D 0:015) between conversation frequency in
the evening epoch and stress. There is also a link between sleep duration and stress.
Our results show that there is a strong negative association (r D �0:355; p D 0:024)
between sleep duration and perceived stress. Students that are getting more sleep
experience less stress. Finally, we find significant positive (r D 0:458; p D 0:003)
and negative correlations (r D �0:387; p D 0:012) between self-reported stress
levels and positive affect (i.e., PAM), respectively, and the perceived stress scale.
There is a strong connection between daily reports of stress over the term and the
pre-post perceived stress scale, as shown in Table 7. Similarly, students that report
higher positive affect tend to be less stressed.

Loneliness Scale We find a number of links between activity duration, distance
travelled, indoor mobility and the loneliness scale, as shown in Table 8. All our
results relate to correlations with post measures. Activity duration during a 24 h day
has a significant negative association (r D �0:388; p D 0:018) with loneliness.
We can look at the day and evening epochs and find correlations. There is a negative
correlation (r D �0:464; p D 0:004) between activity duration in the evening epoch
and loneliness. Distance traveled during the complete day (r D �0:338; p D 0:044)
and the day epoch (r D �0:336; p D 0:042) show trends with being lonely. Indoor
mobility during the day epoch has strong negative links (r D �0:332; p D 0:045)
to loneliness. Indoor mobility is a measure of how much a student is moving in
buildings during the day epoch. Students that are less active and therefore less
mobile are more likely to be lonely. It is difficult to speculate about cause and
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effect. Maybe these students move around less are more isolated (e.g., stay in
their dorm) because they have less opportunity to meet other students outside of
class. These students could feel lonely and therefore more resigned not to seek out
the company of others. There is also no evidence that people who interact with
others regularly do not experience loneliness. This supports our lack of findings
between conversation and loneliness. The PAM EMA data (positive affect) has
a strong negative association (r D �0:390; p D 0:020) with positive affect. In
addition, stress self-reports positively correlate (r D 0:344; p D 0:037) with
loneliness. Students who report higher positive affect and less stress tend to report
less loneliness, as shown in Table 7.

Predicting Academic Performance

We uses a subset of the StudentLife dataset to analyze and predict academic
performance. We only use undergraduate students’ (N D 30) data because only
undergraduates have GPAs. In contrast, Dartmouth graduate students do not have
GPAs and only receive High Pass, Pass, Low Pass or No Credit in their classes. We
propose new methods to automatically infer study (i.e., study duration and focus)
and social (i.e., partying) behaviors using passive sensing from smartphones [52].
We use time series analysis of behavioral states to predict cumulative GPA. We
use linear regression with lasso regularization to identify non-redundant predictors
among a large number of input features and use these features to predict students’
cumulative GPA.

Assessing Study and Social Behavior The StudentLife dataset provides a number
of low-level behaviors (e.g., physical activity, sleep duration, and sociability based
on face-to-face conversational data) but offers no higher level data related to
study and social behaviors, which are likely to impact academic performance. We
attribute meanings or semantics to locations—called behavioral spaces [52] as a
basis to better understand study and social behaviors. That is, we extract high
level behaviors, such as studying (e.g., study duration and focus) and social (e.g.,
partying) behaviors by fusing multiple sensor streams with behavioral spaces.

We use behavioral space information to determine study behavior [52]. Each
student takes three classes, which are scheduled at specific periods during the
week [2]. Students’ transcripts indicate what classes they took. The registrar office
has the schedule and location for each class. We use location, date (i.e., weekday M-
F) and time to automatically determine if a student attends a class or not, checking
the dwell time at the location at least equals 90% of the scheduled period (e.g.,
110 min). Using this approach the phone can automatically determine the classes a
student is taking and their attendance rates.

We heuristically determine if a student’s dwell time at a study areas (e.g.,
library, labs, study rooms, cafes where student primarily work) is at least 20 min.
We consider periods shorter that 20 min are less likely to be real study periods.
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In addition to dwell time, we use activity and audio attributes to determine a
student’s level of focus at a study area. The value of activity indicates how often the
phone moves—the person is either moving around in the study area or stationary
but using the phone. We consider a number of scenarios. If a student is in a study
(e.g., a library) and moves around we consider this contributes to a lack of focus.
If the phone is mostly stationary in a study area, we consider this contributes to
focus. We also use the audio attribute to determine the level of ambient noise in
study areas. We consider quiet environments may contribute to study focus and
noisy environments do not. In term of focus, a higher activity value indicates that
the student moves around less and thus is more focused and a higher audio value
indicates that the student is in a quieter environment which is more conducive
to being focused. We do not combine these values but use them as independent
variables in the analysis section.

We consider behavioral spaces (e.g., Greek houses, dorms) and their attributes to
infer if a student is partying [52]. If a student is in a party we assume that they will
be moving and around acoustic sound of conversation or music. We also consider
the day of the week as being significant for the fraternity and sorority parties (i.e.,
Wednesday, Friday and Saturday). We discard dwell times under 30 min at partying
locations.

We partition each Greek house dwell periods (i.e., visit or stay) into 10-min
windows and calculate audio and activity attributes. We hypothesize that the audio
and the activity attributes should be significantly different when the student is
partying or not partying. We use k-means clustering [56] to find the partying
thresholds for both the audio (e.g., music or being surrounded by a large group
of people) and activity (e.g., dancing) attributes.

Capturing Behavioral Change We extract behavioral change features from the
low-level automatic sensing (e.g., sleep duration) and EMA data (e.g., stress) and
high-level study and social behaviors discussed in the previous section. We create
time series of each behavior for each student. The behavior time series samples each
behavior each day. Each time series summarizes a different behavior (e.g., physical
activity, conversation frequency and duration, sleep, social behavior, and study
behaviors). In order to understand behavior changes across the term, we propose
two features [52]: behavioral slope, which captures the magnitude of change (e.g.,
increase or decrease in sleep) over the complete term as well as the first and second
half of the term for all students—from the start of term to the midterm point, and
then from the midterm point to the end of term; and behavioral breakpoints, which
capture the specific points in the term where individual behavior change occurs—
the number of breakpoints a student experiences indicates the rate of change that
occurs. The method to extract these behavioral change features are described in
detail in [52].

Predicting Cumulative GPA Predicting GPA is a regression problem; that is,
predicting an outcome variable (i.e., GPA) from a set of input predictors (i.e.,
features). We evaluate various regression models such as regularized linear regres-
sion, regression trees, and support vector regression using cross-validation. We
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select the Lasso (Least Absolute Shrinkage and Selection Operator) [48] regularized
linear regression model as our predictive model. Lasso is a method used in linear
regression; that is, Lasso minimizes the sum of squared errors, with a bound on
the sum of the absolute values of the coefficients. Considering we have a large
number of features, collinearity needs to be addressed. There are two categories
of methods that address collinearity: feature selection and feature transformation.
Lasso regularization is one of the feature selection methods. Lasso solves the
following optimization problem:

min
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where N is the number of observations; yi is the ground truth of observation i; xi

is the p degree feature vector at observation i; � is a nonnegative regularization
parameter, which controls the number of nonzero components of ˇ (i.e., number
of the selected features); ˇ0 is the intercept; and ˇ is the weight vector. The
regularization parameter � is selected using cross-validation. The optimization
problem is essentially to minimize the mean square error 1
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fitting while keeping the model as simple as possible (i.e., select a minimal number
of features to avoid overfitting). Thus, Lasso automatically selects more relevant
features (i.e., predictors) and discards redundant features to avoid overfitting.

We use the mean absolute errors (MAE), the coefficient of determination
(R2) [15], and Pearson correlation to measure the performance of outcome predic-
tion. MAE measures how close predictions are to the outcomes. The mean absolute
error is given by MAE D 1

n

PN
iD1 jyi�ˇ0�xT

i ˇj. Smaller MAE is preferred because
it indicates that the predictions are closer to the ground truth. R2 is a another statistic
that measures the goodness of fit of a model and indicates how much of the variance
our model explains. R2 ranges from 0 to 1, where 1 indicates that the model perfectly
fits the data. R2 can be seen to be related to the unexplained variance where R2 D 0 if
the feature vector X tells us nothing about the outcome. We use Pearson correlation
to measure the linear relations between the ground truth and the predictive outcome.

We apply leave-one-subject-out cross validation [30] to determine the parameters
for Lasso and the weights for each feature. In order to make the weight regu-
larization work properly, each feature is scaled within the range Œ0; 1�. Selected
features have non-zero weights. The MAE of our predicted cumulative GPA is
0.179, indicating that the predictions are within ˙0:179 of the groundtruth. The R2

is 0.559, which indicates that the features can explain 55.9% of the GPA variance.
The predicted GPA strongly correlates with the ground truth with r D 0:81 and
p < 0:001, which further indicates that our predictions can capture outcome
differences using the given features.

Table 9 shows the selected features to predict the cumulative GPAs and their
weights. Interestingly, lasso selects a single long term measure (i.e., conscientious
personality trait), two self-report time series features (i.e., affect and stress), and
three automatic sensing data behaviors (i.e., conversational and study behavior).
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Table 9 Lasso selected GPA predictors and weights

Features Weight

Sensing Conversation duration night breakpoint 0.3467

Conversation duration evening term-slope �0.6100

Study duration 0.0728

EMA Positive affect 0.0930

Positive affect post-slope �0.1215

Stress term-slope �2.6832

Survey Conscientiousness 0.0449

The weights indicate the strength of the predictors. Students who have better GPAs
are more conscientious, study more, experience positive moods (e.g., joy, interest,
alertness) across the term but register a drop in positive affect after the midterm
point, experience lower levels of stress as the term progresses, are less social in
terms of conversations during the evening period between 6–12 pm, and experience
later change (i.e., a behavioral breakpoint) in their conversation duration pattern.

Dartmouth Term Lifecycle

We analyze the Dartmouth term lifecycle using both sensing data and self-reported
EMA data. Figure 5a–c shows key behavioral measures and activities over the
complete term. Figure 5a shows EMA data for stress and positive affect (PA), and
automatic sensing data for sleep duration. Figure 5b shows continuous sensing
trends specifically activity duration, and conversation duration and frequency.
Finally, Fig. 5c shows location based data from GPS and WiFi, specifically,
attendance across all classes, the amount of time students spent in their dorms
or at home, and visits to the gym. We hypothesize that these sensing, EMA and
location based curves collectively represent a “Dartmouth term lifecycle”. Whether
these trends could be observed across a different set of students at Dartmouth
or more interestingly at a different institution is future work. In what follow we
discuss workload across the term, mental well-being using EMA data (i.e., stress
and positive affect) and automatic sensing data measures.

Academic Workload We use the number of assignment deadlines as a measure of
the academic workload of students. We collect class deadlines during exit interviews
and validate them against students’ calendars and returned assignments dates.
Figure 5 shows the average number of deadlines for all student across each week
of the term. The number of deadlines peaks during the mid-term period in weeks
4 and 5. Interestingly, many classes taken by the students do not have assignment
deadlines during week 8. Final projects and assignments are due in the last week of
term before finals, as shown in Fig. 5a. As discussed before, all study participants
take the same CS65 Smartphone Programming class, for which they share the same
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Fig. 5 Dartmouth term lifecycle: collective behavioral trends for all students over the term. (a)
EMA and sleep data. (b) Automatic sensing data. (c) Location-based data

deadlines. Among all CS65’s lab assignment, Lab 4 is considered to be the most
challenging programming assignment. In the last week of term the students need
to give final presentations and live demos of group projects for the smartphone
programming class. The students are told that app developed for the demo day has
to work to be graded. The demo is worth 30% of their overall grade.

Self Reported Stress and Mood Figure 5a shows the average daily stress level
and positive affect over the term for all subjects as polynomial curves. Students are
more stressed during the mid-term (days 22–36) and finals periods. The positive
affect results show a similar trend. Students start the term with high positive affect,
which then gradually drops as the term progresses. During the last week of term,
students may be stressed because of finals and class projects, with positive affect
dropping to its lowest point in the term. Overall, the results indicate that the 10-
week term is stressful for students as workload increases. Figure 5a clearly shows
that students return to Dartmouth after spring break feeling the most positive about
themselves, the least stressed, the most social in terms of conversation duration and
the most active (as shown in Fig. 5b). As the term progresses toward mid-term week,
positive affect and activity duration plunge and remain at low levels until the final
weeks where positive affect drops to its lowest point.

Automatic Sensing Data We also study behavioral patterns over the term by
analyzing automatic sensing data. We plot the polynomial fitting curves for sleep
duration, activity duration, conversation duration, conversation frequency, as shown
Fig. 5b, and location visiting patterns in Fig. 5c. Our key findings are as follows. We
observe from Fig. 5a that sleep peaks at the end of the first week and then drops
off and is at its lowest during the mid-term exam weeks. Sleep then improves until
the last week of term when it plummets to its lowest point in the cycle. As shown in
Fig. 5b students start the term with larger activity duration, which gradually drops as
they become busier with course work and other term activities. Finally, the activity
duration increases a little toward the end of term. Activity duration reaches its lowest
point on day 36 when students are focused on completing the Lab 4 assignment—
considered the most demanding assignment in the smartphone programming class.

The student’s level of face-to-face sociability starts high at the start of term,
then we observe an interesting conservation pattern, as shown in Fig. 5b. As the
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term intensifies, conversation duration drops almost linearly until week 8, and then
rebounds to its highest point at the end of term. Conversely, the frequency of
conservation increases from the start of term until the start of midterms, and then
it drops and recovers toward the end of term. We speculate that sociability changes
from long social/study related interactions at the start of term to more business-like
interactions during midterms when students have shorter conservations. At the end
of term, students are having more frequent, longer conversations.

Figure 5c provides a number of interesting insights based on location based
data. As the term progresses and deadlines mount the time students spend at the
significant places in their lives radically changes. Visits to the gym plummet during
midterm and never rebound. The time students spend in their dorm is low at the start
of term perhaps due to socializing then remains stable but drops during midterm.
At week 8 time spent in dorms drops off and remains low until the end of term.
The most interesting curve is class attendance. We use location data to determine
if students attend classes. We consider 100% attendance when all students attend
all classes and x-hours (if they exist). The term starts with 75% attendances and
starts dropping at week 3. It steadily declines to a point at the end of term were only
25% of the class are attending all their classes. Interestingly, we find no correlation
between class attendance and academic performance. We speculate that students
increasingly start missing classes as the term progresses and the work load rises.
However, absence does not positively or negatively impact their grades. We put this
down to their self learning ability but plan to study this further as part of future
work.

It is difficult in this study to be concrete about the cause and effect of this
lifecycle. For example, stress or positive affect could have nothing to do with
workload and everything to do with hardship of some sort (e.g., campus adjustment,
roommate conflicts, health issues). We speculate the intensive workload compressed
into a 10 week term puts considerable demands on students. Those that excel
academically develop skills to effectively manage workload, social life and stress
levels.

Conclusion

In this paper, we presented the StudentLife sensing system and results from a
10-week deployment. We discuss a number of insights into behavioral trends,
and importantly, correlations between objective sensor data from smartphones and
mental well-being and predicting undergraduate students’ cumulative GPA for a set
of students at Dartmouth College. To the best of our knowledge, this is the first-of-
its-kind smartphone sensing system and study. Providing feedback of hidden states
to students and other stakeholders might be beneficial, but there are many privacy
issues to resolve. Students, deans, and clinicians on campus all care about the health
and well-being of the student body. In this study, the professor running the study
had access to survey outcomes, sensing data, and EMAs for students. In two cases,
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the professor intervened and did not give failing grades to students who failed to
complete a number of assignments and missed lectures for several weeks. Rather,
they were given incomplete grades and completed assignments over the summer.
However, in other classes these students took, their professors did not have such
data available and these students received failing grades. While access to such data
is under IRB and cannot be shared, the data and intervention in grading enabled
those students to return to campus the following fall. If they had received 3 failing
grades, they would have been suspended for one term.
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