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Practical Conflict Graphs in the Wild
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Abstract—Today, most spectrum allocation algorithms use con-
flict graphs to capture interference conditions. The use of conflict
graphs, however, is often questioned by the wireless community for
two reasons. First, building accurate conflict graphs requires sig-
nificant overhead, and hence does not scale to outdoor networks.
Second, conflict graphs cannot properly capture accumulative
interference. In this paper, we use large-scale measurement data
as ground truth to understand how severe these problems are
and whether they can be overcome. We build “practical” con-
flict graphs using measurement-calibrated propagation models,
which remove the need for exhaustive signal measurements by
interpolating signal strengths using calibrated models. Calibrated
models are imperfect, and we study the impact of their errors
on multiple steps in the process, from calibrating propagation
models, predicting signal strengths, to building conflict graphs.
At each step, we analyze the introduction, propagation, and final
impact of errors by comparing each intermediate result to its
ground-truth counterpart. Our work produces several findings.
Calibrated propagation models generate location-dependent pre-
diction errors, ultimately producing conservative conflict graphs.
While these “estimated conflict graphs” lower spectrum utiliza-
tion, their conservative nature improves reliability by reducing
the impact of accumulative interference. Finally, we propose a
graph augmentation technique to address remaining accumulative
interference.

Index Terms—Conflict graphs, dynamic spectrum access,
interference.

I. INTRODUCTION

T O SUPPORT the rapid growth of today's wireless tech-
nologies, current reforms in radio spectrum management

target the use of on-demand auctions and secondary markets.
These spectrum markets not only hold the promise of great
profit for spectrum owners, but also allow spectrum users (e.g.,
small cell providers) to purchase exclusive spectrum usage on
an on-demand basis. Enabling this type of spectrum reform re-
quires two tightly coupled components: a model of interference
patterns among spectrum users and an allocation algorithm that
uses this interference model to distribute spectrum efficiently.
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The goal is to maximize spectrum utilization by parallelizing
noninterfering transmissions whenever possible.
Most prior designs propose allocation algorithms using an in-

terference model called “conflict graph” [1]. As the name sug-
gests, a conflict graph is a simple graphical representation of the
interference condition between any two spectrum users.1 This
model simplifies spectrum allocation design, leading to a series
of highly efficient allocation algorithms with bounded perfor-
mance and polynomial-time complexity [3]–[9]. In contrast, al-
ternative physical interference models are complex and entail
unbounded performance loss when used to develop allocation
algorithms [10]–[12].
Despite their popularity, the practical value of conflict graphs

is often questioned by the wireless community for two key rea-
sons.First, building an accurate conflict graph is difficult. Given
the complex nature of wireless propagation, it requires detailed
measurements covering all combinations of sender/receiver lo-
cations. This type of per-link signal measurement is feasible for
indoor WLANs [8], [13]–[18], but impractical for outdoor net-
works targeted by spectrum markets. Existing proposals build
artificial conflict graphs using a simple distance-based crite-
rion [3], [19]–[21] or using signal strengths generated by simple
RF propagationmodels with rule-of-thumb parameters [6], [22].
These simplifications, however, produce incorrect interference
estimates that lead to poor performance [23], [24].
Second, because conflict graphs only define interference

conditions between any two spectrum users, they cannot cap-
ture the impact of interference accumulated from multiple
concurrent transmissions on the same frequency band. Such
“mismatch” leads to unpredicted, harmful interference at allo-
cated users [25], breaking the exclusive usage promised by the
spectrum market. Without guarantees that their transmissions
operate without interference, users would have little incentive
to purchase spectrum from the spectrum market.
In this paper, we use a data-driven approach to understand

the severity of these two issues.We usemeasurements as ground
truth to quantify the severity of errors produced by building con-
flict graphs without exhaustive measurements and to determine
if these errors impact users in the form of poor spectrum allo-
cations. We also seek to identify solutions to minimize these
errors, addressing the community's concerns and promoting the
continued use of conflict graphs in practice.
In our study, we build conflict graphs usingmeasurement-cal-

ibrated propagation models. Instead of collecting exhaustive
measurements, this approach only measures a subset of loca-
tions. These sampled measurements are used to calibrate a prop-
agation model, which can predict signal values for all locations
in the area. These predictions are used in lieu of exhaustive

1For a specific frequency band, if two users can operate concurrently without
visible performance degradation, then they do not conflict. Otherwise, they con-
flict and are connected with an edge (of the specific band) [2].
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Fig. 1. Our high-level methodology. We build estimated conflict graphs using a small number of signal measurements at randomly selected locations. We use
these samples to calibrate a propagation model, predict signal strength values, and construct conflict graphs. We examine the accuracy of estimated conflict graphs
by comparing them to measured conflict graphs built from exhaustive signal measurements, using graph similarity and spectrum allocation benchmarks.

measurements to build the conflict graph. This approach has
two advantages. First, prior works have shown that measure-
ment-calibrated propagation models are much more accurate
than those with rule-of-thumb parameters [26]–[29]. Second,
because measurements are collected by sensors or trusted net-
work subscribers, this approach incurs low overhead and can
offer continuous measurements in real time. This allows conflict
graphs to adapt to network changes. We recognize, however,
that calibrated propagation models are imperfect and will intro-
duce errors in predicted signal maps [30]–[33]. Thus, we must
understand whether these errors propagate to resulting conflict
graphs and if they affect the efficacy of spectrum allocations for
users.
Our high-level methodology is as follows (Fig. 1).
• Use a relatively small number of signal measurements to
calibrate RF propagation models.

• Use calibrated models to build predicted signal maps, and
use these maps to produce “estimated conflict graphs.”

• Compare estimated graph to “measured conflict graph”
built from exhaustive measurements on graph similarity.

• Evaluate end-to-end impact by running spectrum allo-
cation on both conflict graphs and comparing allocation
results.

To the best of our knowledge, our work is the first empirical
study on the practical usability of conflict graphs for dynamic
spectrum distribution. Our work differs from existing works on
constructing conflict graphs. First, our work focuses on outdoor
networks, unlike prior efforts [8], [13]–[18] that build indoor
conflict graphs using exhaustive signal measurements. Second,
our work targets dynamic spectrum markets where users are at
unplanned places and the resulting conflict graph can be of ar-
bitrary shape. This is fundamentally different from cellular net-
works [26], [27], [34]–[36] that optimize the placement (and
transmit power) of base stations to produce conflict graphs of
specific shapes.
Our measurement study leads to four key findings.
• Calibrated propagation models produce location-depen-
dent prediction errors. They tend to underpredict signal
strengths at short distances, and overpredict them at long
distances. We observe this pattern consistently for multiple
datasets.

• These prediction errors lead to conservative conflict graphs
that rarely miss conflict edges, but commonly introduce
extraneous conflict edges.

• This leads to spectrum utilization loss compared to mea-
sured conflict graphs. These extra edges, on the other
hand, reduce the impact of accumulative interference, thus
achieving more reliable spectrum usage.

TABLE I
SUMMARY OF THE DATASETS USED IN OUR STUDY

• Our graph augmentation technique eliminates the artifact
of accumulative interference and boosts the reliability of
spectrum allocation to 96+%. Once augmented, estimated
graphs achieve 85+% of the ideal allocation's utilization.

II. METHODOLOGY

We aim to examine key issues of using conflict graphs for dy-
namic spectrum distribution. We consider conflict graphs built
from measurement-calibrated propagation models because they
require little measurement overhead and are much more accu-
rate than those built with rule-of-thumb parameters.
Our approach (Fig. 1) consists of four steps: 1) collecting

real signal maps via measurements and using them as ground
truth; 2) using sampled measurements to calibrate propagation
models and predicting network-wide signal maps; 3) building
conflict graphs using measured and predicted signal maps; and
4) quantifying the accuracy of estimated conflict graphs using
measured graphs as ground truth, via both graph similarity and
spectrum allocation benchmarks. Next, we briefly describe our
assumptions and present each step in detail.
Assumptions: Our study uses wardriving measurements of

outdoor WiFi networks. We assume that WiFi channels have
the same propagation properties. We use WiFi band as an ex-
ample of distributing spectrum in outdoor networks, where we
know base station locations. Our work can be extended to other
frequencies by adjusting the propagation model to consider fre-
quency differences [37], [38]. We do not consider the impact
of MAC protocols because in the exclusive usage scenario, a
market user can use any MAC protocol [9], [39].

A. Collecting Signal Maps
We use wardriving measurements at three outdoor munic-

ipal WiFi networks, one of which was collected by our group.
Each dataset consists of beacon RSS values of WiFi access
points (APs) measured in an outdoor area of size 3–7 km , mea-
surement GPS locations, and AP locations. We average multiple
RSS readings per location to derive a map of average signal
strengths for each AP. Table I summarizes the datasets.
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Fig. 2. Measured area in the GoogleWiFi dataset. Triangles are the APs de-
tected, and dots are measured locations on the streets.

GoogleWiFi: Collected by our research group in April 2010,
this dataset covers a 7-km residential area of the Google WiFi
network in Mountain View, CA, USA. Fig. 2 shows measure-
ment locations (as dots) and APs (as triangles). We used three
co-located laptops equipped with customized WiFi cards that
have higher receive sensitivity.2 Thus, this dataset records de-
tailed signal strength values of 78 APs at 11 447 distinct lo-
cations (with an average 5 m separation between nearby lo-
cations). More importantly, each location has signal strength
values of 6+ APs in average, 2–3 times more than the other two
datasets.
MetroFi: This dataset [40] consists of RSS values in a 7-km

area of an 802.11x municipal network in Portland, OR, USA. It
was collected by a research group from the University of Col-
orado, Boulder, CO, USA, in 2007. The dataset covers 30 991
distinct measured locations of 70 APs with known GPS loca-
tions. The average number of APs heard per location is only
2.3.
TFA: Collected by researchers from Rice University,

Houston, TX, USA, this measurement data covers 22 APs
in a 3-km area of the TFA network in Houston, TX [41]. It
includes measurements from 27 855 locations.
To use these datasets, we treat each AP as the transmitter of

a market user and measured locations in its coverage area as its
receiver locations. Our measurements are for WiFi networks,
but measured signal maps and resulting conflict graphs are in-
dependent of specific MAC protocols. This matches the exclu-
sive usage scenario, where a market user is free to use anyMAC
protocol in its authorized spectrum range.

B. Calibrating Propagation Models

To build “estimated conflict graphs,” we use samples of our
measurements to calibrate existing propagation models. We se-
lect several well-known models designed specifically for urban
street environments that match our datasets. These include the
simple uniform path-loss model and complex models that sup-
port environmental features.We now describe our high-level ap-
proach to model calibration and signal map prediction.We leave
details to Section III.

2We use WiFi cards from Wifly-City System, Inc. Equipped with a 7-dBi
external omni antenna and a dual amplifier, they double the sensing range of
standard WiFi cards. Following FCC rules, we only used the RX path of the
card to receive beacons and always turned off its TX path.

We begin with choosing samples from our exhaustive
measurements and vary sample density between 1.4 and
100 samples per km . We then use the minimum mean square
error (MMSE) fitting method to determine best-fit parameters
for each propagation model. Once a given model is calibrated,
we interpolate signal values at other locations to build the
complete signal map.

C. Constructing Conflict Graphs

We now have two signal maps, one from our exhaustive
signal measurements and the other interpolated by our cali-
brated propagation model. We use them respectively to build
a measured conflict graph, i.e., ground truth, and an estimated
conflict graph. In these conflict graphs, each node represents
a spectrum market user, and each edge represents a conflict
between two users. A user maps to a stationary transmitter,
i.e., an AP in our signal maps, and its coverage area including
its receiver locations. To determine if two users conflict,
we place their transmitters on the same spectrum channel
and examine whether they both receive “exclusive spectrum
usage.” A market user receives exclusive spectrum usage if
-percentile of its qualified transmissions have signal-to-inter-

ference-plus-noise ratio (SINR) above [5]. Here, coverage
area, transmit power, , and are operating parameters con-
figured by spectrum market users in their spectrum purchase
requests.
Consider two nodes and . Let represent

the SINR value at location in node 's coverage area:
, where is the received signal

strength at from 's transmitter, is the interference strength
from 's transmitter, is the thermal noise, and is the cov-
erage area of . We sort locations within each node's coverage
area by their SINR values and determine conflict conditions
using the bottom -percentile value. That is, nodes and
conflict if and only if for either of the two coverage areas, the

percentage of locations with is less than

(1)

where . Here, represents the
percentage of coverage holes that a spectrum user is willing to
tolerate to maximize capacity [42]. When , (1) reduces to
the minimal SINR-based criterion [10], [12], [21].
Configuring Coverage Area and : We assume each market

user's coverage area includes all measurement locations with
signal-to-noise ratio . If a location falls into coverage
areas of multiple users, we assume that it is associated with the
user with the maximal SNR. We set dB, which is the
minimal SNR required to decode beacons in GoogleWiFi mea-
surements. This allows us to use all measurement locations in
our graph analysis. We also experimented with other values
(8–20 dB). Since they lead to the same trend, we omit the results
for brevity.

D. Evaluating Graph Accuracy

Finally, we examine the accuracy of estimated conflict graphs
and the artifact of accumulative interference not captured by
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these graphs. To do so, we compare the estimated (measure-
ment-calibrated) conflict graph against the measured conflict
graph built directly from measurements. We uses both graph
similarity metrics and spectrum allocation benchmarks.
For graph similarity, we compare edges in the estimated and

measured conflict graphs, using the measured graph as ground
truth. The edge differences are classified as “extraneous edges”
and “missing edges.” We analyze patterns of extraneous and
missing edges and explain their appearance based on errors in
signal map prediction.
To understand how graph errors effect spectrum users, we

feed estimated and measured conflict graphs to two well-known
spectrum allocation algorithms and compare allocation results.
These end-to-end tests answer two questions: Will graph errors
translate to significant loss in spectrum efficiency and reliability,
and will the “uncaptured” accumulative interference lead to sig-
nificant loss?
Next, we present detailed results from each step of our anal-

ysis. We start by the accuracy of signal prediction using cali-
brated models (Section III). Then, we build and compare mea-
sured and estimated graphs on graph similarity (Section IV) and
spectrum allocation performance (Section V).

III. SIGNAL PREDICTION ACCURACY

We first examine errors introduced when we use incomplete
measurements to calibrate propagation models and predict
signal strengths. We aim to understand whether there are error
patterns that are likely to manifest in resulting conflict graphs.
We take several representative propagation models, calibrate
them using controlled measurement samples, and evaluate their
signal predictions using the full dataset as ground truth.

A. Propagation Models and Calibration

We choose four representative propagation models, which
capture urban street environments that best match our datasets.
They range from the simplest uniform path-loss model to so-
phisticated models that incorporate terrain features.We focus on
understanding whether existing propagation models can offer
accurate signal predictions, rather than refining existing propa-
gation models or proposing new models (we leave these to fu-
ture works).
Uniform Path-Loss Model (Uniform) [30]: As the simplest

and most-used model, it captures signal attenuation using a
single path-loss exponent. Calibration is straightforward: Use
MMSE to determine the best-fit path-loss exponent.
Two-Ray Model (Two-Ray) [30]: This model uses two path-

loss exponents to capture the dual-slope signal propagation in
urban environments, i.e., signal attenuates faster after a certain
distance [43]. To calibrate this model, we partition sample mea-
surements into two sets using a distance threshold. To set the
distance threshold, we apply exhaustive search to identify the
optimal threshold that minimizes the overall MMSE. For each
set, we use a separate MMSE fitting to determine the best-fit
path-loss exponent.
Terrain-Based Model (Terrain) [29]: This model uses ter-

rain information to capture the nonuniformity of radio prop-
agation caused by different terrains. It divides a transmitter's

coverage area into sectors and applies a terrain-specific shad-
owing factor in each sector. Our calibration follows the proce-
dure in [29]. Since we do not have terrain information (street,
buildings, etc.) for MetroFi and TFA datasets, we only provide
results for GoogleWiFi dataset.
Street Model (Street) [44]: This model targets urban mi-

crocell networks and assumes that signals mostly propagate
along the streets, with minor reflection and/or diffraction across
streets. To calibrate this model, we categorize signal propa-
gation into three types based on the number of reflections it
encounters (no reflection, one reflection, and multiple reflec-
tions). We divide measurement samples into these categories
and train parameters for each propagation type separately. Like
Terrain, this model requires street information, and thus can
only be calibrated using the GoogleWiFi dataset.

B. Signal Prediction Results
Wequantify signal prediction errors as the difference between

the predicted signal strength (in dBm) and the measured signal
strength (in dBm). We observe prediction errors that range from
30 dB (underprediction) to 30 dB (overprediction). Our key

findings are as follows.
Impact of Sensor Placement: We deploy sensors to collect

measurement samples. The search for optimal sensor placement
is still an open problem [45], so we compare two known strate-
gies to place sensors: random [29] and intersection-based place-
ment. The latter is recommended for the Street model because
street intersections have direct paths to nearby APs [44]. Our
results show that intersection-based placement only helps the
Street model, achieving 0.2 dB reduction in average prediction
error. Hence, for all later results, we apply intersection-based
placement only for the Street model. In addition, we observe a
small variance across prediction results obtained from different
sensor placement instances. This indicates that a small number
of measurements are sufficient to calibrate propagation models
to a reasonable level of stability.
Impact of Sampling: We calibrate our models using mea-

surement samples collected by sensors. We vary the density
of samples/sensors from 1.4 to 100 samples per km , or 10
to 700 total samples for an area of size 7 km . For all four
models, we observe that increasing density beyond 34 samples
per km (239 total samples) leads to negligible gain in perfor-
mance. Thus, we use this sampling density for all our later tests.
We also observe that calibration yields surprising results, e.g.,
we find that the calibrated path-loss exponent for the Uniform
model varies between 1.15 and 2.20 for our three datasets, while
typical rule of thumb suggests 2 or 3.
Impact of Models: We observe that prediction errors are

visible, but they do not vary significantly across models (the
Street model performs slightly better). This matches prior
work [30]–[33]. Specifically, prediction error varies across
locations and can be approximated by a zero-mean Gaussian
distribution. Fig. 3 shows the probability density function (PDF)
of prediction errors and its Gaussian approximation using the
GoogleWiFi dataset and the Street model. The same trend
holds for other datasets and models [46], and we omit those
results for brevity. Table II lists the standard deviation of the
prediction error under each model and dataset.
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Fig. 3. Probability density distributions of prediction errors using calibrated
Street model. The reference zero-mean Gaussian curve is also displayed for the
calibrated model. Prediction errors approximately follow zero-mean Gaussian
distributions with standard deviation of 6.

TABLE II
STANDARD DEVIATION OF PREDICTION ERROR

Impact of Receiver Location: When examining the correla-
tion between prediction error and location, we observe that all
four propagation models tend to underpredict signal strength
in area near the transmitter, and overpredict signal strength in
area far from the transmitter.
We illustrate this pattern in Fig. 4 by plotting the measured

signal strength distribution of a randomly selected AP and levels
of signal overprediction and underprediction at different loca-
tions. We define signal overprediction (underprediction) to be
when the predicted signal strength is larger (smaller) than the
actual value by more than 1 dB. This result shows a strong cor-
relation between locations (in terms of their distance to the AP)
and the type of expected error.
A closer look shows that this effect is consistent across all

four propagation models and all three datasets. In Fig. 5, we sort
each AP's measurement locations by their distances to the AP
and group them into buckets of 0.05 km. For each interval, we
calculate the occurrence of accurate signal prediction (absolute
error dB), overprediction, and underprediction.We observe
that the trend is consistent across all settings.3
One possible explanation is that these propagation models

still cannot fully capture how RF signals attenuate more
quickly after traveling a certain distance in urban street envi-
ronments [30], [43], [47]. Although both the Terrain and Street
models seek to capture the nonuniform signal propagation,
they still use the single-slope path-loss model and cannot
fully reflect the dual-slope feature of signal propagation. Thus,
the dual-slope effect is more evident on these models. The
Two-Ray model considers this feature, but is limited by the
use of a uniform breakpoint distance that does not exist in
practice [47]. Thus, we still observe errors for this model.
This observation also motivates the need for new propagation

3While we show one propagation model for each dataset, the other models
lead to the same trend [46]. We omit those results for brevity.

TABLE III
CONFLICT GRAPH STABILITY AT

models that better capture the dual-slope effect. This is outside
of the scope of this paper, and we leave it to future work.
Summary: We observe that propagation models, even after

careful calibration, introduce visible but location-dependent er-
rors in signal prediction. This naturally leads to the question:
How will these signal prediction errors translate into errors in
estimated conflict graphs? We explore this question next.

IV. CONFLICT GRAPH ACCURACY

We now examine the accuracy of “estimated conflict graphs”
built from predicted signal maps using calibrated models. We
ask the question:What is the impact of imperfect signal strength
predictions on the accuracy of resulting conflict graphs? As be-
fore, we use our measurement data as ground truth to produce
“measured conflict graphs” and use them to gauge the accuracy
of “estimated conflict graphs.”
We use graph similarity as a measure of the accuracy of esti-

mated conflict graphs. Since both types of conflict graphs share
the same vertices, graph similarity in this context reduces to a
measure of overlap in the set of edges between graphs. In addi-
tion, our analysis is limited to the GoogleWiFi dataset because
lower receiver sensitivity in the other datasets resulted in ex-
tremely sparse conflict graphs with less than 20 edges.

A. Graph Stability Results

Before examining the accuracy of estimated conflict graphs,
first we need to understand whether estimated graphs change
significantly when we vary sensor locations. To examine the sta-
bility of estimated graphs against sensor placements, we use 50
sets of random sensor locations to calibrate propagation models
and produce 50 graph instances. We then compare each pair of
graphs and calculate the statistical distribution of edge differ-
ences across all graph pair comparison.
As shown in Table III, these graphs instances are highly

similar ( edge differences). Among different propagation
models, Street model is more sensitive to changes of sensor
locations because it has more dimensions and parameters in
its configuration. Overall, our results demonstrate that given
a sensor placement strategy, different sensor locations do not
significantly affect resulting estimated graphs. Hence, we will
show average results in all our later analysis.

B. Graph Similarity Results

We compare each estimated conflict graph against the mea-
sured conflict graph and classify each edge in the estimated
graph as correct, extraneous, or missing:
• Correct edges: edges found in both estimated and mea-
sured conflict graphs;
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Fig. 4. (a) Measured RSS. Spatial distribution of measured signal strengths. Blank areas cannot be measured because of buildings or obstacles. (b) Prediction
errors. Areas of signal overprediction and underprediction and absolute error values, using the Street model.

Fig. 5. As the distance to AP increases, the main prediction error gradually switches from underprediction to overprediction. Here, each data point summarizes
prediction errors within a distance interval of 0.05 km. We show results with distances km because the number of data points above this range is insufficient
to demonstrate any trends. (a) Street model, GoogleWiFi. (b) Two-Ray model, TFA. (c) Two-Ray model, MetroFi.

Fig. 6. Accuracy of an estimated conflict graph.

• Extraneous edges: edges in the estimated conflict graph but
not in the measured graph; these errors make the estimated
graph conservative, reducing spectrum utilization;

• Missing edges: edges in the measured conflict graph but
missing in the estimated graph; these errors are more
harmful than extraneous edges because they lead to
harmful interference when conflicting nodes are assigned
to the same channel. This reduces spectrum reliability.

Fig. 6 shows an example estimated conflict graph using the
Street model. Distances between nodes are shown to scale.
Compared to the measured conflict graph with 162 edges,
the estimated graph misses only 2 edges (thick red lines) and
introduces 51 extraneous edges (blue lines). While slightly
conservative, the estimated conflict graph captures most edges.
We then compute normalized edge errors as the number of

extraneous and missing edges normalized by the total number

of edges in the measured conflict graph. Fig. 7(a) shows nor-
malized edge errors as the value of varies. We display nor-
malized extraneous edges as positive values and normalized
missing edges as negative values. We see that most edge errors
are extraneous edges. Missing edges account for less than 2%
of the edges of the measured graph. This pattern holds across
different propagation models and for different values of .
Comparing across propagation models, we see that the choice

of propagation models has only minor impact on the accuracy
of the estimated conflict graph. The Uniform model is the most
conservative and generates a slightly higher ratio of extraneous
edges, and the Street model performs the best overall. This is
likely because of the higher accuracy achieved by the Street
model, which treats reflected paths as the main components in
non-line-of-sight (NLOS) scenarios. As a result, it is more accu-
rate for urban street environments such as Mountain View and
leads to fewer edge errors.
Fig. 7(a) also shows that the normalized occurrence of

extraneous edges decreases as increases. This is because
increasing lowers the bar for two nodes to conflict with each
other, thus producing more4 edges in the measured conflict
graph, and shrinking the pool of potential extraneous edges
for the estimated graph. Thus, the ratio of extraneous edges
decreases from 40%–60% ( ) to 5%–8% ( ).
We further examine how different sensor placement strategy

affects graph accuracy. In Fig. 7(b), we compare random and
intersection-based strategy using the Street model. We see
that intersection-based placement generally provides moderate

4As grows from 0.8 to 1, the edge counts of the measured conflict graphs
are 104, 132, 162, 243, 446, respectively.
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Fig. 7. (a) Varying propagation models. (b) Varying sensor placement strategies. (a) and (b) show edge errors of estimated conflict graphs, normalized by the
number of edges in the measured conflict graph. Negative (positive) bars denote the normalized count of missing (extraneous) edges. (c) Modified estimated conflict
graphs. (c) shows edge errors of “modified” estimated conflict graphs by removing the location dependency in prediction errors. The number of extraneous edges
decreases significantly.

(15%–23%) reduction in extraneous edges. Thus overall, we
conclude that the Street model with intersection-based sensor
placement produces the most accurate estimated conflict graph.

C. Why Do Extraneous Edges Dominate?

The fact that extraneous edges dominate errors is attributed
to two factors. The first is the location-dependent pattern of
signal prediction errors (Section III). It causes underprediction
of signal strength and overprediction of interference strength.
Hence, the majority (70+%) of pairwise SINR values are un-
derpredicted, leading to many extraneous edges.
To verify this hypothesis, we build a new set of modified

estimated conflict graphs using the same model-predicted
signal maps, but make the prediction error randomly distributed
across locations. We use two methods to remove the location
dependency. The first method gathers the prediction errors of
predicted signal maps, shuffles them randomly across different
locations, and adds them back to the measured signal map. The
second method uses synthetic prediction errors following a
zero-mean Gaussian distribution with standard deviation of 6.5
and adds them to the measured signal map. Fig. 7(c) shows that
these modified estimated graphs have much fewer extraneous
edges than their unmodified counterparts, only 5%–15% versus
5%–60%. This confirms our hypothesis.
The second factor contributing to more extraneous edge er-

rors is the fact that missing edge errors occur under more strin-
gent conditions, i.e., it takes more signal errors to miss an edge
than to add an edge. To miss an edge between and , both pre-
dicted ratios of conflict-free locations [ and , defined by (1)]
must exceed . In contrast, erroneously adding an edge between
and requires only one of these two estimates to fall below .

This factor explains why extraneous edges still outrun missing
edges even after removing the location dependency in predic-
tion errors [Fig. 7(c)].
We note that these extraneous edges are not due to possible

undermeasurement of interference in our dataset, i.e., some
weak interference signals may not be captured by our measure-
ment receivers. This is because when computing SINR values
used to build estimated graphs, we ignore interferers whose
signals are not captured by the dataset.
Can We Identify Extraneous Edges?: Since extraneous edges

make up most of our observed edge errors, it is tempting to iden-
tify those edges in the estimated conflict graph and correct them.
After carefully examining our traces, we found no distinctive

Fig. 8. Values of for both correct and extraneous edges in the estimated
conflict graph, using the Street model and . We denote the two kinds
of edges with different markers and spread them out vertically using random
values.

characteristics that distinguish extraneous edges from correct
edges. For example, Fig. 8 plots the value of [defined by
(1)] for each node pair and , calculated from the predicted
signal strength distribution. We use different markers to sepa-
rate correct and extraneous edges. We see that there is no clear
distinction between the two sets.

D. Summary of Findings

Our graph accuracy analysis reveals two key findings.
1) Estimated graphs are conservative. Extraneous edge errors

dominate; estimated graphs rarely miss edges ( ).
2) Location-dependent signal prediction errors are the main
cause of extraneous edges. The location-dependent pattern
in signal prediction errors causes 70+% of SINR values
underpredicted, and is the main cause of extraneous edges.

V. IMPACT ON SPECTRUM ALLOCATION

After examining the accuracy of estimated conflict graphs at
graph level, we now quantify the impact of these graph errors
on spectrummarket users. Also, given the lack of representation
of accumulative interference in conflict graphs, we aim to un-
derstand how this artifact affects the quality of spectrum usage.
For this, we distribute spectrum using measured and estimated
conflict graphs and evaluate end-to-end performance in terms
of the efficiency of spectrum utilization and link reliability of
allocated spectrum.

A. Spectrum Allocation Benchmarks

To translate conflict graphs into actual spectrum allocations,
we use two representative allocation algorithms: single channel
allocation (SCA) andmultichannel allocation (MCA). They ef-
ficiently distribute a given spectrum range across market users,
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while ensuring that no conflicting users receive the same spec-
trum band. SCA allocates equal amount of continuous spectrum
frequencies to each user. This problem reduces to the graph-col-
oring problem, which uses the minimal number of channels to
ensure that each user receives a channel and does not conflict
with another [7]. The fewer the required channels, the larger
the channel bandwidth. In comparison, MCA divides the spec-
trum range into a number of channels. A user can receive mul-
tiple channels even if they are not continuously aligned in fre-
quency [3]. MCA allocates channels to maximize a predefined
system utility, e.g., proportional fairness [3].
We evaluate the resulting spectrum allocation based on

two metrics. First, spectrum efficiency represents the average
amount of spectrum received per market user, normalized by
available spectrum. Next, we use spectrum reliability to capture
whether each market user receives exclusive spectrum usage. A
user receives exclusive usage if on each assigned channel, the
percentage of receivers with actual SINRs is no less than
. For our purposes, we use network-level spectrum reliability,

which is the percentage of users receiving exclusive spectrum
usage.
Given a spectrum allocation, we use our full dataset to calcu-

late actual SINRs at each user's receiver locations. The actual
SINRs include interference accumulated from all other users
on the same channel. This captures the true performance per-
ceived by allocated users. While it is well known that conflict
graphs fail to cover accumulative interference and this will af-
fect spectrum allocations, we aim to understand the severity of
this problem, and seek solutions to address it.

B. Spectrum Allocation Results
Spectrum Efficiency: Fig. 9 compares the spectrum efficiency

of using the measured and estimated conflict graphs in allo-
cating spectrum. Because extraneous conflict edges will pre-
vent some nonconflicting users from reusing spectrum, spec-
trum efficiency using estimated graphs is lower than that of
the measured graph. The efficiency loss, however, never ex-
ceeds 30%, even for cases where estimated graphs introduce
40%–60% extra edges (those with ). As increases, the
efficiency loss goes down because extraneous edges decrease
significantly. As before, the Street model outperforms the others
because of its higher accuracy in signal prediction, which leads
to less edge errors in the resulting conflict graph.
Spectrum Reliability: Using the actual SINR as the metric,

we now examine the link reliability of the allocated spectrum.
As expected, we see from Fig. 10 that the reliability is not 100%
for both allocation algorithms. Unless , the measured
conflict graph makes 10%–50% of market users unsatisfied. In
comparison, the estimated graphs lead to more reliable spectrum
usage because of extraneous edges. In this regard, extraneous
edges improve spectrum reliability.
The results demonstrate that accumulative interference

causes noticeable impact on spectrum usage. Because inter-
ference experienced by a receiver is the sum of signals from
transmitters operating on the same frequency, the higher the
spectrum reuse in the neighborhood, the higher the level of
accumulative interference. When using the measured conflict
graph, the spectrum reuse level is very high, e.g., 30 market

Fig. 9. Spectrum efficiency using measured and estimated conflict graphs to
distribute spectrum. The use of estimated conflict graphs leads to spectrum
efficiency loss, which is bounded by 30% and becomes negligible as
approaches 1.

users per channel for . Therefore, the effect of accumu-
lative interference is significant. As increases, the reuse level
decreases, and so does the effect of accumulative interference.
For estimated conflict graphs, their conservative allocation
has lower spectrum reuse, and thus the level of accumulative
interference. This effect motivates us to examine the conditions
under which accumulative interference is a prevalent effect.
How Prevalent Is Accumulative Interference?: In contrast to

our results, prior work on a 32-node network reports that ac-
cumulative interference has negligible effect on wireless trans-
missions [48]. Their network is set up in an indoor environment,
where rich obstacles limit signal propagation and hence the im-
pact of accumulative interference. This begs the question: In an
outdoor network, under what conditions will accumulative in-
terference matter?
To answer this question, we first examine spatial locations of

the market users with reliability violations in the GoogleWiFi
dataset. We see that most of them are clustered in the area center
with high density. This indicates that node density is a large con-
tributing factor. To examine the impact of node density, we build
new market configurations by sampling APs in the GoogleWiFi
dataset uniformly, while keeping each AP's coverage area the
same. For each new configuration, we build a conflict graph
from exhaustive signal measurements and examine its reliability
using the MCA allocation. Our results show that the percentage
of users with reliability violations grows with AP density. For
the current GoogleWiFi network, the average density is 11 APs
per km , which is common for municipal wireless networks.
Thus, we conclude that accumulative interference does matter
in many current and future wireless deployments. To use con-
flict graphs in practice, we must address this artifact.

VI. GRAPH AUGMENTATION

In this section, we seek solutions to eliminate the artifact of
accumulative interference for estimated and measured conflict
graphs. This ensures exclusive spectrum usage with reasonable
level of reliability, addressing key concerns on conflict graphs
and promoting their practical usage.

A. Challenges
To reduce the impact of accumulative interference, one intu-

itive method is to add edges into existing conflict graphs tomake
them more conservative. This essentially reduces the number of
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Fig. 10. Spectrum reliability when using measured and estimated conflict graphs to distribute spectrum. The reliability is between 80%–98% for the estimated
graph and drops to 50% for the measured conflict graph. This indicates that the impact of accumulative interference is noticeable, and it is not captured by these
conflict graphs. (a) SCA. (b) MCA.

Fig. 11. Performance of graph augmentation. The estimated graphs are generated using the Street model. (a) Spectrum reliability (measured CG) and (b) spectrum
reliability (estimated CG) before and after graph augmentation, using different augmentation algorithms. Greedy-Feedback outperforms the other two. (c) Spectrum
efficiency before and after graph augmentation via Greedy-Feedback.

users allocated with the same spectrum channel, thus the amount
of accumulative interference. However, adding edges inevitably
leads to loss in spectrum efficiency. Hence, the key challenge is
to minimize the number of edge additions while eliminating the
artifact of accumulative interference.
To show the level of difficulty of this task, let us begin with

two straw-man solutions. The first solution is to add edges ran-
domly to unconnected node pairs (referred to as Random). A
smarter alternative is to sort unconnected node pairs by their
physical distances, and only add edges to the top- closest node
pairs.We refer to this approach as Locality-based augmentation.
While simple, these two solutions face two drawbacks: 1) an
added edge might not effectively reduce accumulative interfer-
ence; and 2) it is difficult to determine the necessary number of
edge additions.

B. Greedy-Feedback Graph Augmentation
We overcome the above challenges by proposing a greedy al-

gorithm to add edges gradually and intelligently. Our algorithm
stops adding edges when the (estimated) reliability reaches
100%, assuming wireless interference is the only source of
reliability loss. Because the level of accumulative interference
depends on the spectrum allocation algorithm, we integrate
graph augmentation with spectrum allocation.
More specifically, the augmentation procedure works as fol-

lows. After allocating spectrum using the current conflict graph,
we examine the reliability of each node and identify the node
with the lowest reliability and its worst channel . Next, we
find node , who is currently allocated with channel and
whose removal will lead to the largest reliability improvement
at . We then add an edge between nodes and and repeat the

above process until all nodes have met the reliability require-
ment . The augmentation converges because as we add edges,
the number of users allocated on each channel decreases mono-
tonically. This reduces accumulative interference and improves
each user's reliability.
We use this approach to augment both measured and esti-

mated conflict graphs. The only difference is that when aug-
menting a measured graph, we compute reliability using mea-
sured signal maps. In contrast, to augment estimated graphs, we
estimate reliability using predicted signal maps.

C. Evaluation Results

We evaluate the effectiveness of our augmentation algorithm
by comparing spectrum reliability and efficiency before and
after augmentation. We use MCA allocation since it suffers
more accumulative interference. We have two key observations.
Augmentation Boosts Spectrum Reliability: Our proposed

greedy-feedback augmentation is highly effective to address
accumulative interference. Fig. 11(a) and (b) compares three
augmentation techniques on spectrum reliability. For a fair com-
parison, we apply Random and Locality-based augmentation
to add the same number of edges as that of Greedy-Feedback.
We see that Greedy-Feedback significantly outperforms the
others. It removes the impact of accumulative interference on
the measured graph, and boosts the reliability of estimated
graphs to 96+%. The reliability of estimated graphs is not 100%
because its augmentation relies on imperfect signal predictions
to estimate reliability. In contrast, Random has no visible
improvement on reliability, while Locality-based augmentation
is halfway between Random and Greedy-Feedback.
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Fig. 12. Accuracy of augmented estimated conflict graphs using the four propagation models, compared to the ideal conflict graph. (a) Graph edge errors. Edge
errors reduce considerably with graph augmentation. (b) Spectrum reliability. Reliability of using estimated graphs in spectrum allocation increases to 96+%.
(c) Spectrum efficiency. Efficiency loss of using estimated graphs reduces to no more than 21%.

By adding edges, graph augmentation does lead to lower
spectrum efficiency. From Fig. 11(c), we see that by using
Greedy-Feedback, we get efficiency loss between 0%–25%
for the measured graph and 0%–15% for estimated graphs.
The loss for estimated graphs is lower because it adds fewer
edges. We see that the proposed graph augmentation is effective
against accumulative interference.
Augmentation Improves Graph Accuracy: Augmenting the

measured conflict graph produces an ideal conflict graph, which
captures real conflicts and the impact of accumulative interfer-
ence.We now look at the accuracy of augmented, estimated con-
flict graphs relative to this ideal graph. Fig. 12(a) plots normal-
ized edge errors of estimated graphs after augmentation. The
ratios of extraneous edges reduce from 5%–60% [Fig. 7(a)] to
5%–40%, while the ratios of missing edges remain similar. This
is because augmentation adds edges to the measured graph, and
some added edges are already in estimated graphs. This reduces
extra edge errors.
In addition, we see that augmentation also improves spectrum

efficiency and reliability of estimated graphs relative to the ideal
graph. Fig. 12(b) and (c) shows that the use of estimated conflict
graphs achieves nearly 100% spectrum reliability and only leads
to loss in spectrum efficiency. Overall, the Street model
is the most efficient ( efficiency loss, 96+% reliability)
among the four propagation models.

VII. PRACTICAL CONSIDERATIONS

In this section, we discuss practical issues when building
measurement-calibrated conflict graphs in outdoor networks.
Deploying Sensors: Building measurement-calibrated graphs

relies on sensors for collecting signal measurements. Planning
the sensor deployment will involve determining sensor loca-
tions, density, and sensing range, all while taking into account
propagation environments, radio frequency, transmitter loca-
tions, coverage, and density. For our experiments, we conduct
small-scale on-site tests to identify the saturation point where
further increase in the sensor density leads to diminishing
returns. In practice, optimizing sensor count and placement
might become a location-specific optimization problem.
Collecting Signal Strength: Our current design assumes that

each spectrum user's transmitter periodically sends beacon sig-
nals on a specific frequency band that has identical propaga-
tion property as the other bands. Sensors extract received signal

strength values from these beacons, which are then used to cal-
ibrate propagation models and estimate conflict graphs. When
frequency bands in the spectrum market have different propa-
gation property, the system will need a beaconing scheme for
each band without disrupting data transmissions.
Capturing Temporal Variations: To capture the impact of

long-term temporal variations in signal strength, we need to
adapt conflict graphs using periodical sensor measurements.
For applications that must consider short-term signal fading,
we can build the conflict graph based on the outage SINR, i.e.,
the bottom of SINR observed within a certain time period.
This is an ongoing work for our study.

VIII. RELATED WORK

Conflict Graphs and Interference Models:We divide existing
works into two categories based on the type of conflict graphs
they use. The first category uses conflict graphs that capture
interference conditions between link pairs. They build conflict
graphs using either a simple distance-based criterion [19], [20]
or exhaustive per-link measurements in an active [8], [13]–[17],
[24], [49] or passive [18], [50]–[52] manner. These link-based
conflict graphs are for indoorWiFi networks where transmission
links are known. They become impractical for outdoor mobile
networks that spectrum markets target.
The second category builds coverage-based conflict graphs

based on propagation models, either with rule-of-thumb param-
eters [6], [21], [22] or calibrated by on-site measurements [53].
However, no one has used real-world measurements to eval-
uate the conflict graph accuracy. Our work is the first mea-
surement study on this problem. We use both graph and spec-
trum allocation analysis to understand the feasibility of building
accurate coverage-based conflict graphs for dynamic spectrum
distribution.
Aside from conflict graphs, researchers have looked into

other interference models such as the SINR model [10]–[12].
Most works target cellular networks and jointly opti-
mize the placement (and transmission power) of base sta-
tions [26], [27], [34]–[36]. Our work differs in that we target
spectrum markets where spectrum users come from indepen-
dent entities with unplanned locations. We use conflict graphs
as the interference model because they are simple and com-
monly used by existing spectrum allocation solutions.
While the limitations of conflict graphs have been recog-

nized [25], [34], no study has used real-world, large-scale
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measurements to examine the severity of these limitations in
practice. Our work aims to bridge this gap and to further ex-
amine whether these limitations can be overcome/compensated
by modifying the process of constructing conflict graphs. Re-
cent work examines the accuracy of general interference models
for small-scale networks using per-link measurements [23].
Our work was inspired by this work, yet we focus on large-scale
outdoor networks where per-link measurement is infeasible.
Measurement-Calibrated Propagation Models: Mea-

surement studies show that RF propagation models with
rule-of-thumb parameters introduce large errors in signal pre-
diction [30]–[32]. When calibrated using on-site measurements,
however, these propagation models offer higher accuracy and
have been used in cell planning [26], [27], interference man-
agement [33], and coverage prediction [28], [29]. Our work
complements these prior works and is also inspired by prior
work on measurement-calibrated models for social network
graphs [54].

IX. CONCLUSION

Using large-scale signal measurements, we examined the
severity of two key concerns on using conflict graphs for
dynamic spectrum distribution. We focused on conflict graphs
built from measurement-calibrated propagation models and
studied their accuracy and end-to-end impact on spectrum
allocation. We found that resulting “estimated conflict graphs”
are conservative compared to precise conflict graphs built
from exhaustive signal measurements. Yet surprisingly, these
extraneous edges improve link reliability by alleviating the
impact of accumulative interference, an artifact not captured by
conflict graphs. We proposed a graph augmentation technique
to suppress the impact of accumulative interference. With this
new technique, estimated conflict graphs can produce spectrum
allocations that provide near-perfect link reliability, with spec-
trum efficiency less than 15% away from the ideal allocation.
We believe that for WiFi frequencies studied by this paper
(and their nearby frequencies), our proposed techniques pro-
vide a scalable and accurate end-to-end solution for spectrum
allocation.
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