
Phrase-Gesture Typing on Smartphones 
Zheer Xu Yankang Meng 

Dartmouth College Huazhong University of Technology and Science 
zheer.xu.gr@dartmouth.edu u201810824@hust.edu.cn 

Xiaojun Bi Xing-Dong Yang 
Stony Brook University Simon Fraser University 

xiaojun@cs.stonybrook.edu xingdong_yang@sfu.ca 

Figure 1: Phrase-gesture typing allows text to be entered phrase by phrase. (a) The phrase “do not worry about this” can be 
entered by swiping through all the letters of the words in the phrase without the need to use the space key between words. (b) 
to (d) Alternatively, the phrase can be entered via a mixture of word- and phrase-level gestures, e.g., a phrase gesture of “do 
not” followed by a phrase gesture of “worry about”, and a word gesture of “this”. The user can select the intended text from 
the candidate list shown above the phrase-gesture keyboard. The items in the list are shown in descending order with the 
top-ranked candidate placed at the bottom to make it closer for the fnger to select. 

ABSTRACT 
We study phrase-gesture typing, a gesture typing method that al-
lows users to type short phrases by swiping through all the letters 
of the words in a phrase using a single, continuous gesture. Unlike 
word-gesture typing, where text needs to be entered word by word, 
phrase-gesture typing enters text phrase by phrase. To demonstrate 
the usability of phrase-gesture typing, we implemented a prototype 
called PhraseSwipe. Our system is composed of a frontend interface 
designed specifcally for typing through phrases and a backend 
phrase-level gesture decoder developed based on a transformer-
based neural language model. Our decoder was trained using fve 
million phrases of varying lengths of up to fve words, chosen ran-
domly from the Yelp Review Dataset. Through a user study with 
12 participants, we demonstrate that participants could type using 
PhraseSwipe at an average speed of 34.5 WPM with a Word Error 
Rate of 1.1%. 
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1 INTRODUCTION 
Gesture typing is a common text input method on touchscreen 
devices. Since its introduction in the early 2000s [36], gesture typ-
ing has gained wide adoption in commercial products including 
Gboard, SwiftKey, ShapeWriter, Swype, SlidIt, and TouchPal. Unlike 
typing by tapping keyboard keys (tap typing), gesture typing allows 
intended words to be expressed via fnger stroke shapes that can be 
drawn less precisely on a touchscreen, where the tactile feedback of 
the keys is lacking. With practice, skill transition may occur from 
the novice model of visually guided tracing to the expert mode of 
recall-based gesturing that is quicker and can be performed with-
out visual attention. The development of gesture typing over the 
years has led to variations suitable for new device form factors, 
such as laptops [13] or TV remote trackpads [41], and new use 
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scenarios where both hands are available [7] or visual attention is 
not guaranteed [41]. 

In this paper, we study a new variation of gesture typing, called 
phrase-gesture typing. Unlike the existing approach, where an 
input phrase is typed through individual gestures, each represent-
ing an intended word, the phrase-gesture typing allows users to 
type not only words but also phrases through a single, continuous 
gesture composed of concatenated segments for each word of a 
short phrase, similar to handwritten signatures with a single stroke. 
Phrase-gesture typing has several benefts. First, users now have the 
choice not to lift the fnger of the touchscreen and reengage for the 
next word and can swipe on the screen as long as they are willing 
to. This means after each word, users can immediately move the 
fnger to the frst letter of the next word once the current word is 
completed, or they can break as usual by lifting their fnger. Phrase-
gesture typing is a natural extension of the basic word-gesture 
typing and can be useful, especially for typing frequent phrases 
(e.g., “on my way”, “thank you”) and recall-based gesturing. Further, 
with phrase-gesture typing, text input speed can increase without 
the need to disengage and engage the touchscreen for every other 
word. Lastly, from the decoding perspective, with more contextual 
information in the input data, the keyboard decoder can better 
determine the users’ intended words. 

Despite these benefts, enabling phrase-gesture typing is chal-
lenging from both technical and interface design perspectives. Con-
sidering the technical challenge, it is hard to decode a long input 
stroke into a meaningful phrase without the user explicitly specify-
ing delimiters (spaces to separate the words). None of the existing 
keyboard decoders supports phrase-level decoding for gesture typ-
ing. Further, the noises in the input data could accumulate with the 
concatenation of word gestures, making it even harder to correctly 
decode the users’ intended words. From the interface design per-
spective, the usability of phrase-gesture typing relies on several 
design parameters that need to be carefully considered, including 
how long a phrase is allowed to type, how the feedback of the 
entered text is given, and how editing is supported. 

To address these challenges, we developed PhraseSwipe, a ges-
ture keyboard prototype that allows users to type via phrase-level 
gestures on smartphones (Figure 1). With PhraseSwipe, a user can 
swipe through all the letters of the words in an intended phrase 
of diferent lengths up to fve words with a single continuous ges-
ture. Alternatively, the user can type using a mixture of word- and 
phrase-level gestures. Switching among gesture typing of words 
and phrases with diferent lengths can occur at any point and the 
system can decode them accordingly without any knowledge about 
the number of words in the input. For example, a user can type 
“happy to see you” using a phrase gesture “happy to see”, followed 
by a word gesture “you”, or just a single phrase gesture “happy to 
see you”. 

The core of PhraseSwipe is a phrase-gesture decoder, devel-
oped using a transformer-based, end-to-end neural decoder that 
is capable of translating an input gesture directly into an ordered 
sequence of words. Unlike the existing neural language models in 
non-keyboard applications where both input and output are text, 
our decoder takes touch gestures as input and can work on any 
smartphone keyboard of diferent sizes and key ratios. While the 
typical approach of developing a massive neural language model 

involves a signifcant amount of time and efort, we demonstrate 
that an existing large language representation model, like BERT, 
can be fne-tuned with simple adaptions to enable phrase-gesture 
decoding without the huge model to be built and trained completely 
from scratch. 

The efectiveness of our decoder still relies on a training dataset 
of phrase gestures, which, unfortunately, does not exist. To over-
come this challenge, we trained our model with phrase gestures 
simulated based on minimum-jerk theory [27]. Our model was 
trained with over fve million phrases randomly chosen from the 
Yelp Review Dataset [40] with the length of each training phrase 
ranging from one to fve words. The decoder runs on a local server 
and generates real-time output, shown to the user on the phone 
through a list of top candidate phrases ranked based on confdence. 

Through a system evaluation, we demonstrate the accuracy of 
our decoder and show that it’s more efcient when phrases are 
entered using a single gesture than using several shorter ones. Fur-
ther, to evaluate the usability of PhraseSwipe, we conducted a user 
study with 12 participants. Our results revealed that participants 
could achieve an average speed of 34.5 WPM with 1.1% uncorrected 
errors, which is 2.5 WPM faster than a baseline word-gesture typing 
method. 

The main contributions of this work include: (1) a phrase-gesture 
typing keyboard developed for smartphones and a decoder trained 
for phrase-gesture typing; and (2) a user study demonstrating the 
efectiveness and usability of our implementation. 

2 RELATED WORK 
Text input as a part of HCI research has been widely studied in the 
past several decades. Work has been done on a variety of diferent 
topics, including interaction techniques and keyboard layout opti-
mization for new use scenarios and device form factors. Our review 
of the existing literature primarily focuses on the state-of-the-art 
in gesture typing and decoding methods. 

2.1 Gesture typing 
Gesture typing was frst introduced by Zhai and Kristensson in the 
early 2000s for mobile touchscreen devices [19, 36-38]. Unlike tap 
typing, where the letters in a word are entered by a user selecting the 
corresponding key on the keyboard, gesture typing allows uses to 
enter the word directly (rather than individual letters) by gesturing 
through the desired keyboard keys. Aside from its wide adoption 
on smartphone products, gesture typing has been extended by the 
research community to new use scenarios and device platforms. 
For example, Bi, et al. [7] converted the original gesture keyboard 
into a split keyboard suitable for larger devices like tablets to allow 
two thumbs to work together to enter a word. Zhu, et. al. [41] 
presented a method to enable gesture typing on a trackpad of a TV 
remote. Unlike gesturing on a touchscreen device, the keyboard is 
not visible on a TV remote but their method allows gesture typing to 
be carried out without the need for the users to pay visual attention 
to the keyboard or fnger movement. 

While much of the existing work focuses on touch surface de-
vices, gesture typing is not limited to touch input. For example, 
Markussen, et al. demonstrated that gesture typing can be per-
formed in the mid-air with a system capable of tracking the hand 
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movement projections on a vertical display [22]. Chen et al. [12]’s 
work demonstrates that gesture typing can also be carried out us-
ing a pair of handheld controllers, making it a good candidate for 
text input in VR environments. Within the same space, Yu, et al. 
[35] studied how to develop interactions and decoding methods to 
enable gesture typing on VR headsets using the movement of the 
user’s head. Aside from the head, the tile motion of a user’s wrist 
[34] or fnger [17] can also provide control for performing gesture 
typing, allowing text input to be carried out on small wearable 
devices using only one hand. 

Among all the existing methods, what appears to be similar to 
our approach is a feature provided by SwiftKey [4], with which, 
the users can enter a sequence of words through a single gesture. 
The diference, however, is signifcant in two ways: (1) From a 
user’s perspective, SwiftKey requires the user to specify a delimiter 
between two adjacent words by gesturing through the space key. 
Crossing the space key for every other word inherently increases 
swiping distance, which is an extra efort that may lead to fatigue 
over time and may unnecessarily impact typing speed. Our work 
difers in the way that no delimiter is needed when a phrase gesture 
is drawn, meaning that the burden is on the system (not the user) 
to handle the ambiguity in the input data. (2) Beyond the input 
method, the decoding principle of SwiftKey is also diferent. It uses 
a word-level decoder, which could be less accurate than a phrase-
level decoder because the context of the entire input phrase is 
not used for decoding [30, 32]. In contrast, with our method, the 
decoding result of the earlier words is constantly updated for better 
accuracy as the gesture continues. To the best of our knowledge, 
our research is the frst in the literature to study phrase-gesture 
typing and decoding. 

2.2 Keyboard Decoder 
One of the most signifcant challenges in developing text input 
methods for touchscreen devices is that user input data is noisy. To 
address this problem, keyboard decoders were developed. A typical 
keyboard decoder is composed of a spatial model, which provides 
the probability distribution over all keys on a keyboard, and a 
language model, which provides the probability distributions of a 
sequence of words for a certain language. Goodman and colleagues 
[15] were the frst who studied how tap typing errors can be reduced 
by combining the spatial model and language model through the 
Bayes’ rule. This approach has been widely adopted in modern 
commercial keyboards. Gboard [3], as an example, contains a spatial 
model and a low order n-grams language model, that was designed 
to be compact to handle real-time processing on mobile devices 
[24]. 

Keyboard decoders are far from perfect. As such, work has also 
been done to address some of the most signifcant issues. For ex-
ample, Gunawardana et al. [16] demonstrated that an aggressive 
spatial model could sometimes prevent users from typing their de-
sired text. Their approach using an anchored key-target method 
could efectively address this problem. Concerning the language 
model, accuracy is also an issue but recent studies have shown that 
the accuracy of language models can be largely improved using ma-
chine learning methods based on neural networks [10, 11, 14]. With 
some of the new deep language models, the contextual information 

in the input data can now be better used to determine the intended 
text. Machine learning methods have also been used to develop 
better decoders for word-gesture typing. For example, Alsharif and 
colleagues [5] showed that combining recurrent networks such 
as Long Short Term Memories [18] with conventional Finite State 
Transducer decoding [23] could lead to an improvement of accuracy 
up to 22% over the existing shape-matching-based approach. 

While most popular keyboard decoders rely on delimiters, re-
searchers have investigated ways to allow users to type contiguous 
words without using spaces. Thus, the systems need to handle 
phrase-level decoding [30-32, 39]. An example of the existing re-
search in the phrase-level decoder is the work from Vertanen, et al. 
[32]. Their tap-typing keyboard is composed of a spatial model, a 
12-gram character language model, and a 4-gram word language 
model. Through a user study, the authors showed that omitting the 
space key between words led to a faster entry rate. They also found 
that even novice users could adapt to writing sentences quickly 
without intermediate feedback for each word. Aside from the tech-
nical aspect, Zhang and Zhai [39] studied user interface design 
options for tap-typing keyboards with a phrase-level decoder and 
demonstrated that poorly designed interfaces could hinder user 
performance. The authors showed that the feedback design that 
could avoid cognitive overhead is key to the success of phrase-
level typing. Again, unlike our work, the previous decoders were 
developed only for tap typing. 

In summary, our review shows that within the existing literature, 
most, if not all, eforts have been made to develop better methods 
for word-gesture typing or better phrase-level decoders for tap 
typing. Our research advances the existing knowledge by studying 
phrase-gesture typing and decoding methods. 

3 PHRASESWIPE INTERFACE DESIGN 
We start by presenting our design of the PhraseSwipe interface on 
a smartphone and discuss the unique user experience of phrase-
gesture typing introduced by the way how text is entered, commit-
ted, viewed, and edited. 

3.1 Typing 
Typing using PhraseSwipe is performed by swiping through all 
the letters of the words in an intended phrase. However, drawing 
a gesture that covers all the words in the phrase is not the only 
option that the users can type. This is because the users may some-
times have to stop at a random word within a phrase and resume 
to complete the remaining words. This could happen especially in 
mobile scenarios, where the users can be easily interrupted. Ad-
ditionally, our implementation also allows the users to gesture a 
single word, meaning that the users can type using a mixture of 
word- and phrase-level gestures. As an example, the phrase “I trust 
your judgment” could be typed using a single phrase or a mixture 
of shorter phrases, such as “I trust”, followed by “your judgment” 
or a phrase “I trust your”, followed by a word “judgment”. This 
provides the users with the fexibility needed in the mobile context. 

An important consideration of phrase-gesture typing is the 
length of the phrases allowed for the users to type. In principle, 
phrases of any length should be allowed. However, an ideal design 
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should consider optimizing both user experience and system imple-
mentation. We chose fve in our implementation because a study 
investigating the usability of phrase-level decoding showed that 
showing phrases longer than fve words could be harder for the 
users to follow and may introduce a sense of uncertainty about 
decoding progress [39]. From the system perspective, while longer 
phrases may, in contrast, lead to better decoding accuracy due to 
more available context, studies have found that phrases longer than 
fve words may not necessarily lead to signifcant improvements in 
decoding accuracy [32]. 

3.2 Feedback 
Aside from showing the trajectory of the fnger movement, the 
output of the decoder needs to be shown to the user as feedback 
of their input. Several diferent strategies can be used to control 
when the feedback is shown. One option is to show the real-time 
decoding output of an ongoing gesture whenever the fnger moves. 
With this strategy, the users get the most frequent update on the 
fy but the cost of frequent attention to the output could impair 
typing speed [26]. An opposite approach presents the feedback only 
after the gesture is completed (e.g., the user lifting the fnger from 
the touchscreen). The downside is that the user will not see any 
output candidate when drawing a gesture but the advantage is that 
they will not be distracted, which may lead to faster typing speed 
[26] without sacrifcing input accuracy [32]. However, this strategy 
might not be preferred by the user due to the lack of transparency 
of the decoding progress [39]. We took a midground approach, 
where feedback is given only when the system thinks the user is 
swiping across a target letter. This is determined by comparing 
the real-time speed/jerk with the average speed/jerk of the current 
gesture. When the current speed is below average (i.e., the user 
moves signifcantly slower) and the jerk is below 1/3 of the average 
jerk (i.e., the user is not actively accelerating/deaccelerating) (value 
determined through a pilot study), the decoding output of the ongo-
ing swipe is shown to the user on the screen. Our feedback consists 
of three candidate phrases/words in a vertical layout (Figure 2) 
ordered by the probability calculated by the decoder (details in the 
next section). The top-ranked candidate is placed at the bottom of 
the list to make it closer to the keyboard for the user to see and 
select. 

3.3 Committing Input Text 
Tapping one of the three candidates commits the input text (Figure 
3a-b). This is the same as the current word-gesture typing inter-
face. Alternatively, the users can skip this action and start the next 
gesture directly. This way, the top-ranked phrase/word will be 
committed automatically. 

3.4 Editing and Deleting 
Editing is needed when an error occurs or when the committed 
text needs to be revised. With our implementation, the users can 
frst select a target word or multiple adjacent ones and then draw 
the gesture of a new word to replace the selected one(s). As an 
attempt to save the users’ time from drawing a new gesture, we 
implemented an auto-correction feature, with which, the system 
provides the users with a list of candidate words that are similar 

Figure 2: The PhraseSwipe interface is composed of (a) a text 
feld; (b) a list of candidates; and (c) a QWERTY keyboard 
supporting phrase gesture input. 

to the selected one (ranked based on the minimum word distance 
[6]). If the user’s intended word is in the list, the user can simply 
select it without the need to draw a new gesture (Figure 3c). Lastly, 
if the user wants to delete the selected word(s), they can simply tap 
the delete button. If no word is selected, tapping the delete button 
removes the last word. 

4 PHRASESWIPE DECODER 
We developed our decoder via a machine-learning-based approach. 
Our goal was to investigate if an existing neural language model 
developed for non-keyboard applications can be fne-tuned to sat-
isfy our needs as a phrase gesture decoder. Repurposing an existing 
model is benefcial because it saves the massive resources needed 
for a huge model to be built and trained from scratch. In our imple-
mentation, our model was built upon a powerful transformer-based 
neural language model. More specifcally, we designed the decoder 
as an end-to-end framework that translates an input gesture di-
rectly into an ordered sequence of words. We aimed to transfer 
the strong representation capabilities of a neural model proved in 
other natural language tasks (e.g., GLUE) to keyboard decoding to 
efectively handle the noises widely existing in users’ input gestures 
and the inherent ambiguity of non-delimiter phrase input. 

4.1 Neural Language Model 
Decoding a phrase-level input gesture is essentially a sequence-to-
sequence task (Seq2Seq), which, in our case, aims at transforming a 
sequence of touch points into a sequence of English words. To solve 
the Seq2Seq problem, we adopted an encoder-decoder architec-
ture in our system. The encoder of this architecture turns an input 
gesture into a hidden vector representation in a continuous space, 
whereas the decoder reverses the process by turning the vector into 
an ordered sequence of output words. To boost the performance of 
our model, we further adopted a pre-trained transformer-based lan-
guage model, BERT [14], and used it for both encoder and decoder 
[28]. We chose BERT for its exceptional capabilities of language 
representation proved in many NLP applications. However, the 
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Figure 3: (a) – (b) After a phrase gesture is entered by the user, they can tap one of the items in the candidate list to commit the 
input text. (c) Auto-correction candidates appear if the user selects a word in the committed text. 

Figure 4: The gesture trajectory of the word “sea” passes the 
keys “s”. “e”, “w”, and “a” so our system converts the x,y 
representation of the trajectory into a series of “s”, followed 
by a series of “e”, a series of “w”, and then a series of “a”. 

issue is that like many other massively trained language models, 
BERT was designed to handle language tokens as input, whereas, 
the input data from PhraseSwipe is touch point from Euclidean 
space. Our approach to this problem is to use an ordered sequence 
of English characters instead of integer coordinates as input for the 
language model. When a user enters a gesture, our system converts 
the x and y coordinates of the gesture trajectory into a series of 
nearest keys on the keyboard, represented by an ordered sequence 
of characters. All 26 characters are set as special tokens to the tok-
enizer and the encoder of BERT, meaning that each character in the 
input sequence is an individual special token input to the model. In 
the example shown in Figure 4, the gesture for the word “sea” was 
translated into a series of “s”, followed by a series of “e”, a series 
of “w”, and then a series of “a”. The number of each letter that ap-
pears in this representation is determined by the number of touch 
points sampled inside the corresponding key as well as the speed, 
at which, a gesture is drawn at a certain time and location. Note 
that a signifcant advantage of using letter sequences is that letter 
sequences are independent of keyboard size and ratio. Therefore, 
our decoder works on any smartphone keyboard. 

model. While such a dataset can be created over time with people’s 
real typing gestures, it is impractical at the current stage of the 
research, where our goal is to show feasibility. Therefore, we opted 
to simulate phrase gestures and generate a dataset. 

Our method is based on a gesture production model developed 
by Quinn and Zhai [27] for gesture typing. While the model was 
initially developed for word gestures, the principle remains appli-
cable to phrase gestures. To produce a phrase gesture, our system 
frst generates a set of intermediate points (via-points) around the 
center of the keys involved in the gesture. Noises were introduced 
to the location of the via-points as ofsets to the key centers, which 
were generated under bivariate Gaussian distribution established 
for tap typing [9]. The trajectory segments connecting two adjacent 
via-points were generated by following the minimum jerk theory 
of motor control to minimize the total amount of jerk (the third 
time derivative of a point) in the produced trajectory [29]. 

Using our method, we generated 5 million phrase gestures using 
the Yelp Review Dataset [40]. Each phrase used in our training sam-
ples contains up to 5 consecutive words, randomly segmented from 
the review text. This way, our dataset contained phrases that were 
semantically incomplete (e.g., instead of “better late than never”, we 
might have “better late than”), increasing the generalizability of the 
decoder to handle the situation where the user may break a sentence 
into chunks at will (i.e., no grammatical or semantical principle). 
We included a million samples for each phrase length ranging from 
two to fve. Further, to allow for word-level gesture decoding, we 
included a million single words, also randomly selected from the 
Yelp review dataset. Non-alphabetic characters were removed from 
the training samples. Each produced gesture contained 500 points 
generated based on the default Android keyboard on a Nexus 6P 
smartphone with a 5.7-inch touchscreen (phones of other sizes will 
also work). We then converted the trajectories into the sequences 
of nearest characters using the method described above. 

Typing errors are inevitable as the users may accidentally skip 
a key, include an extra key, or substitute a letter for another. To 
handle these situations and increase the robustness of our decoder 
against human errors, we alerted the training phrases by randomly 4.2 Data Collection 
injecting these three types of errors. To do so, we traversed all the 

Data collection is another challenge due to the lack of phrase ges- letters in a phase, and for each letter, we assigned a probability (5%) 
tures available at a massive scale needed to train a neural language 
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Table 1: The percentage of the target words appeared in the top 1 and top 3 entries of the candidate list. The data was obtained 
with testing phrases picked randomly from the Amazon review dataset, Movie dialog, and Yelp review dataset. The number 
inside the parentheses indicates the length of the testing phrases. Word Error Rate was calculated using the data from the 
top-ranked candidates with decoding errors. 

Dataset (Phrase length) Top-1 Top-3 Top-1 Word Error Rate 

Movie (1) 89% 93.4% 10.9% 
Movie (2) 80.5% 88.1% 13.3% 
Movie (3) 76.5% 85.7% 11.9% 
Movie (4) 71.7% 82% 11.8% 
Movie (5) 65.7% 75% 12.5% 
Amazon (1) 89.5% 93.3% 10.4% 
Amazon (2) 79.7% 86.5% 13.6% 
Amazon (3) 75.4% 82.9% 12.6% 
Amazon (4) 69.4% 78.8% 12.5% 
Amazon (5) 64.5% 75.6% 12.4% 
Yelp (1) 94.8% 97.2% 5.2% 
Yelp (2) 88.7% 94.5% 7.5% 
Yelp (3) 86.9% 93.1% 6.2% 
Yelp (4) 85.1% 91.4% 5.6% 
Yelp (5) 82.4% 90.4% 5.5% 
Average 80% 87.2% 10% 

for that letter to be either missed, substituted, or inserted with an 
unwanted prefx. The characters used to create the substitution and 
insertion errors were randomly sampled from adjacent characters. 

4.3 Model Training 
Both the encoder and decoder of our model architecture were ini-
tialized with a pre-trained BERT-base model. Our keyboard decoder 
was then fne-tuned on our training data for 3 epochs, with an 
AdamW optimizer [20] at a learning rate of 5e-5. The training was 
conducted on a 4-GPU machine (NVIDIA Tesla V100), with a total 
batch size of 32 (8 per device). Our software was implemented using 
an open-source transformers library [33]. Initial testing showed 
that the entire system runs at a latency of around 120ms to 160ms 
including the latencies caused by computation and network commu-
nications. This is fast enough to provide real-time feedback needed 
for PhraseSwipe. 

4.4 Evaluation 
We tested our decoder with 30000 phrases, within which, 10000 were 
randomly sampled from the Yelp Review Dataset [40], 10000 were 
sampled from the Amazon Review Dataset [40], and the remaining 
10000 from the Movie Dialog Dataset [2]. Including the testing 
phrases from the Amazon Review Dataset and Movie Dialog Dataset 
allowed us to measure how well the decoder can handle out-of-
domain input. Within each dataset, we had 2000 samples for each 
phrase length from two to fve words. We also included another 
2000 single words. To measure the robustness of our decoder against 
human errors, we randomly included three types of human errors 
in the testing phrases as well. We show the results in Table 1. 

By averaging the results across all the phrase lengths and tested 
datasets, we found that 80% of the intended phrases appeared as 
the top-ranked candidate provided by the decoder. So theoretically 

speaking, most of the time, the users can directly accept the top can-
didate without encountering any error. Even with the errors, over 
87% of the intended phrases ended up within the top-3 candidates, 
meaning that users can still fnd their target words quickly in the 
suggestion area. Looking deep into the top-ranked candidates with 
decoding errors, we found a Word Error Rate of around 10% per 
phrase. The Word Error Rate was calculated by dividing the smallest 
number of word deletions, insertions, or replacements needed to 
correct the input text by the number of words in the phrase [8]. The 
error rate is not high considering our testing phrases were all quite 
short with no more than fve words. When a decoding error occurs, 
the users can fx it using the editing tools described in Section 3.4. 

With the input from the Movie and Amazon dataset, the perfor-
mance of our decoder was not as good when compared to that of 
the Yelp dataset but it is still reasonably good. Concerning the ques-
tion regarding whether a higher level of accuracy can be achieved 
when a given phrase is entered using a single gesture versus several 
short ones (i.e., more vs fewer words in the input data). Our result 
suggests that the answer is yes. Using the results from the Movie 
data as an example, when the phrases of fve words were entered 
using a single continuous gesture, 65.7% of the targets appeared 
as the top-ranked candidate (see Table 1 second column), whereas 
in theory, when entering fve consecutive words one by one, the 
number (score) will drop down to 55.8% (89%5 = 55.8%, where, 89% 
is the percentage of the intended words appeared as the top candi-
date with word-gesture typing). This fnding remains mostly true 
for both top-1 and top-3 scores. For example, we found that typing 
a phrase of any length using a single gesture led to a top-1 score 
of 75%, which is 3% higher than typing using a mixture of shorter 
phrases or phrases and words. Figure 5 shows the top-1 and top-3 
scores obtained for all the possible mixtures of gesture length to 
type phases of up to fve words. 
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Figure 5: The percentage of the target words appeared in 
the top 1 and top 3 entries of the candidate list obtained for 
all the possible mixtures of gestures length to type phrases 
of up to fve words. The x-axis labels show unordered mix-
tures of phrase and word gestures. For example, “1+1” indi-
cates typing a phrase of two words using two separate word 
gestures. Similarly, “1+1+1+1+1” indicates typing a phrase 
of fve words using fve separate word gestures. “1+3” in-
dicates typing a phrase of four words using a word ges-
ture followed by a phrase gesture of three words. “2+3” in-
dicates typing a phrase of fve words using a phrase ges-
ture of two words followed by another phrase gesture of 
three words. 

5 USER STUDY 
To further understand the usability of PhraseSwipe, we conducted 
a user study. The goal of the study was to measure how well people 
could enter text using our implementation of phrase-gesture typing 
on a smartphone. We were also interested in learning the users’ typ-
ing behaviors with this new type of text input method, concerning 
how they type phrases and coordinate phrase and word gestures 
to input text. To set a reference for us to better understand the 
benefts and costs of gesture typing via phrases, we also included 
word-gesture typing as a baseline. 

5.1 Participants 
We recruited 12 right-handed participants (9 male and 3 female) 
aged between 20 and 26. All the participants are familiar with 
smartphone keyboards and QWERTY layout. One of them has 
previous experience with word-gesture typing. 

5.2 Apparatus and Task Conditions 
The study was conducted using a Huawei Nova 8 smartphone 
with a keyboard of 70.4mm wide and 40mm high. The sampling 
rate of the touchscreen is 240Hz. All the collected gestures were 
resampled to 500 points to match the training set of the neural 
decoder. Redundant touch points caused by pauses were removed. 
Our phrase-level gesture decoder ran on a separate machine with a 
GTX 1050TI graphics card (4GB). The smartphone and the machine 
were connected through WiFi. 

During the study, participants sat in a chair in a comfortable 
position and performed a transcription task with their right index 
fnger under one of the three conditions: (1) Phrase-Gesture Typing; 
(2) Free-Style Typing; and (3) Word-Gesture Typing. In the Phrase-
Gesture Typing condition, participants were asked to enter a testing 
phrase using a single gesture. An experimenter supervising the 
study made sure that each phrase was entered in this way. In the 
Free-Style Typing condition, participants were not restricted to ei-
ther method, meaning that they could choose to complete a testing 
phrase using a single gesture, a series of word gestures, a series of 
shorter phrase gestures, or a mixture of phrase and word gestures 
in whatever way they wanted. Lastly, in the Word-Gesture Typing 
condition, participants entered a testing phrase word by word. We 
implemented word-gesture typing by following the method de-
scribed in SHARK2 [19]. Note that we didn’t include other phrase 
input methods in the study (e.g., VelociTap [31] or PhraseFlow [38]) 
as none of them supports gesture typing. There are other variations 
of word gesture decoder (e.g., SwiftKey [4]) but we chose SHARK2 
because it is the most widely adopted gesture typing method. For 
the corpus, we used the top 15,000 words from the American Na-
tional Corpus [1], which covers over 95% of common English words. 
All the information, including the testing phrases, text entered by 
participants, and the top three candidates generated by our system, 
were shown on the smartphone screen above the keyboard (Figure 
6). In all the conditions, editing was performed using our editing 
tool described in the previous section. 

5.3 Procedure and Design 
Prior to the experiment, participants were given time to practice 
until they felt confdent to type using the methods. During the 
study, participants transcribed 60 phrases (20 per condition) picked 
randomly from MacKenzie’s phrase set [21]. Since the data set does 
not have single words or phrases of less than 3 words, our testing 
phrases are all 3 to 5 words long. The same set of 60 phrases was 
used for all participants. The three testing conditions were coun-
terbalanced among participants. The experimental session lasted 
around 60 minutes. Participants were encouraged to take breaks 
whenever they wanted during the study. In total, we collected 12 par-
ticipants × 20 phrases × 3 conditions = 720 phrases. Upon comple-
tion of the study, participants flled out a post-experiment question-
naire where they indicated subjective ratings for Efciency, Accu-
racy, Demanding, and Learnability (1: very low, 5: very high) using a 
continuous numeric scale. Decimal ratings like 2.8 were permitted. 

5.4 Result 
We analyzed the data using a series of one-way repeated-measures 
ANOVA and Bonferroni corrections for pair-wise comparisons. 
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Figure 6: The software interface used in our study. 

Mauchly’s test did not indicate any violation of sphericity for text 
entry speed (X2 (2)=0.59, p=0.74) or error rate (X2 (2)=2.99, p=0.22). 

5.4.1 Text-Entry Speed. ANOVA yielded a signifcant efect of the 
typing conditions (F2, 22 = 12.7, p < 0.001, �p2 = 0.5). Post-hoc pair-
wise comparisons revealed signifcant diferences between Word-
Gesture Typing and Phrase-Gesture Typing, Word-Gesture Typing 
and Free-Style Typing (both p < 0.05). There was no signifcant 
diference between Phrase-Gesture Typing and Free-Style Typing (p 
= 1). 

Overall, the average text entry speed across all the tested condi-
tions was 33.5 WPM (s.d. = 5.5). In particular, participants achieved 
31.9 WPM (s.d. = 4.3) using Word-Gesture Typing, 34.5 WPM (s.d. 
= 3.4) using Phrase-Gesture Typing, and 34 WPM (s.d. = 3.2) using 
Free-Style Typing. 

The speed of Word-Gesture Typing was close to what was re-
ported from a large-scale feld study (32.2 WPM) in the literature 
[25]. It was approximately 2.5 WPM slower than phrase-gesture 
typing. One of the main reasons is that when typing phrase by 
phrase, the participants did not need to lift their fnger from the 
screen as often as typing word by word, which saved time. Fur-
ther, we found that the speed of Free-Style Typing is on a par with 
the speed of Phrase-Gesture Typing. To understand the reason, we 
examined the data closely and found that most of the phrases in 
the Free-Style Typing condition were entered using a single gesture 
despite their length (average number of gestures per phrase is 1.12). 
After talking to our participants, we realized that most of them 
found it handy enough to simply draw a single gesture instead of 
breaking it down into small pieces. Note that the fnding of this 
typing behavior is preliminary as it may not be generalizable to 
longer phrases but, at least, our result suggests that phrase gestures 
of up to fve words can be performed with ease. 

5.4.2 Word Error Rate. As in Section 4.4, Word Error Rate was 
calculated by dividing the smallest number of word deletions, inser-
tions, or replacements needed to correct the input text by the length 
of the phrase in word [8]. ANOVA did not show any signifcant 
efect of the typing conditions (F2, 22 = 2.1, p = 0.1, �p2 = 0.1). Over-
all, the average error rate across all the tested conditions was 1% 
(s.d. = 6). In particular, the error rate for the Word-Gesture Typing, 

Phrase-Gesture Typing, and Free-Style Typing conditions were 0.3% 
(s.d. = 0.6), 1.1% (s.d. = 2.1), and 1.6% (s.d. = 2.1) respectively. 

Note that the word error rate reported in Section 4.4 appears to 
be higher than what was found in the user study. This is because 
Section 4.4 compares the ground truth with the top prediction from 
the decoder, while in our user study, the participants could choose 
the best input from multiple candidates. Many tested phrases in 
the simulation study were semantically incomplete (explained in 
Section 4.2). This could have also led to a lower performance for 
the decoder. We did the simulation again using MacKenzie’s phrase 
set and got a 1.5% word error rate. This is well aligned with the 
uncorrected word error rate reported here. 

To better understand the cause of the errors in the Phrase-Gesture 
Typing condition, we looked carefully into how errors were missed 
by the participants. An important fnding was that errors were not 
obvious to catch in a phrase. This can be explained by the following 
example, where the intention is to enter the phrase “prescription 
drugs require a note” but “s” was missed in the word “drugs” in one 
of the three candidates alongside the correct one. Unless the user 
inspects them carefully, it was easy to slip. Most errors recorded 
in our data are of this type. Other examples include typing “his” 
instead of “this” or typing “broke” instead of “broken”. 

When an error was caught, editing could be performed by ei-
ther redrawing a gesture to replace the selected word or using the 
auto-correction feature if the intended word was provided by the 
decoder. We found that out of 84 edits that occurred in the Phrase-
Gesture Typing and Free-Style Typing conditions, over 88% of them 
were carried out using the auto-correction feature, which suggests 
that our decoder was able to efectively identify the users’ target 
words and provided them to the users if it knew where the error 
was. The time saved to perform another gesture to fx the error 
also contributed to the faster typing speed in the Phrase-Gesture 
Typing condition. Considering that the error rates and the number 
of edits were both low, the decoder seems to do well on handling 
the gestures from the users, even as our model was trained using 
artifcial gestures. 

5.4.3 Typing Behavior. Phrase-gesture typing typically requires 
the user to swipe longer than word-gesture typing, which may 
impose extra cognitive overhead on the user, especially when plan-
ning for the next movement, because there is more to recall, search, 
and draw. For example, when a user does not know where to strike 
next, they may slow down or pause the fnger to mentally or vi-
sually search for the next key. To assess the cognitive overhead of 
phrase-gesture typing, we analyzed the participants’ typing behav-
iors using average Finger Movement Speed and Pause Rate. The 
Finger Movement Speed of a gesture was calculated as the length 
of the gesture trajectory divided by the corresponding gesture com-
pletion time. The Pause Rate of a gesture was calculated as the 
percentage of the period when the fnger moved slower than 1/10 
of the fnger movement speed. 

Our result showed that, on average, the Finger Movement Speed 
for the Word-Gesture Typing, Phrase-Gesture Typing, and Free-Style 
Typing conditions was 64.2 mm/s (s.d. = 6.1), 59.4 mm/s (s.d. = 6.4), 
and 61.2 mm/s (s.d. = 6.6) respectively, showing that participants 
were 7.5% and 4.6% slower in the Phrase-Gesture Typing and Free-
Style Typing conditions than in the Word-Gesture Typing condition. 
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ANOVO showed there was a signifcant diference among the three 
tested conditions (F2, 22 = 8.6, p < 0.05, �p2 = 0.4). The Pause Rate 
for the Word-Gesture Typing, Phrase-Gesture Typing, and Free-Style 
Typing conditions was 13.9% (s.d. = 1.6), 13.2% (s.d. = 0.9), and 13.4% 
(s.d. = 1.3) respectively. No signifcant diference was found among 
the three tested conditions (F2, 22 = 2.1, p = 0.1, �p2 = 0.1). This 
result suggests that participants moved their fnger slower with the 
increase of gesture length but didn’t stop or hesitate in the middle 
of a gesture. Although phrase gesture typing seems to introduce 
extra cognitive overhead on the participants, the impact does not 
seem to outweigh the beneft as text entry speeds were faster in 
the two conditions where phrase-gesture typing was used, than in 
the word-gesture typing condition. 

5.4.4 Subjective Feedback. The post-experiment questionnaire 
flled out by all the participants shows that the users welcomed the 
unique experience provided by PhraseSwipe. They also indicated a 
high level of interest in using phrase gesture typing if it was made 
available on smartphone keyboards. Below, we report our fndings 
in detail. The continuous numeric scale data was analyzed using 
one-way repeated-measures ANOVA and Bonferroni adjustment 
for pairwise comparison. 

The participants gave an average of around 3.8 (5 being most 
efcient) to Phrase-Gesture Typing and Free-Style Typing as the two 
most efcient methods. These ratings were signifcantly higher than 
the ratings for Word-Gesture Typing (avg. 3.4; both p < 0.05). All 
the participants told us that they felt faster when typing phrase by 
phrase than word by word. This is consistent with our quantitative 
results described in the previous section. In contrast, the partici-
pants gave an average of 3.9 (5 being most accurate) to Word-Gesture 
Typing as the most accurate method among the three. This rating 
was signifcantly higher than both Phrase-Gesture Typing (avg. 3.6; 
p < 0.05) and Free-Style Typing (avg. 3.5; p < 0.05) as the participants 
were more confdent that fewer errors were left uncorrected when 
typing word by word. 

Additionally, the participants found that none of the three meth-
ods were physically demanding to use but they rated Phrase-Gesture 
Typing signifcantly less demanding (avg. 2.1 with 1 being the least 
demanding) than Word-Gesture Typing (avg. 2.6). Over half of the 
participants explicitly said that they found phrase gestures easy 
to draw. For example, P1 said that “I liked that I could type with-
out raising my fnger between words”. P12 told us that “It was very 
handy to type without worrying about using the space key”. P6 and 
P9 mentioned that drawing phrase gestures reminded them of hand-
writing, which was a part of the reasons why they liked it. Finally, 
the participants gave Word-Gesture Typing an average of 3.9 (5 be-
ing the most learnable) in response to “rate each method for its 
learnability”. The rating was signifcantly higher than the rating 
of Phrase-Gesture Typing (avg. 3.4; p < 0.05). As expected, learning 
how to use phrase-gesture typing may be a burden at the beginning 
for some users but for the others, they found it easy and fun to 
learn. 

6 DISCUSSION, LIMITATIONS, AND FUTURE 
WORK 

We present insights we learned from the execution of this research, 
discuss the limitations, and propose future work. 

6.1 Usability and Practicality 
Phrase-gesture typing as a less understood text input method war-
rants deeper investigations in the future. In this work, we took 
an initial step toward demonstrating its technical feasibility and 
understanding its usability. Through our experiment, we show that 
users could quickly enter phrases of up to fve words using phrase 
gestures. Beyond the knowledge provided in this work, an inter-
esting avenue for future research is to investigate how gesture 
length may have an impact on the performance and usability of 
this type of text input method. Questions related to the efciency, 
accuracy, learnability, or fatigue caused by phrase gestures of dif-
ferent lengths are all important and need to be answered before 
the user experience can be better optimized. One of the unique 
benefts of typing using gestures, at least word by word, is skill 
acquisition over time, which allows the users to eventually develop 
themselves into experts for faster typing speed. Thus, an exciting 
research question to be answered in the future concerns whether 
the transition of expertise occurs in phrase-gesture typing and how 
to facilitate skill transition to better serve the needs of the users. 

Our current implementation runs the decoder on a server. 
Though our study participants didn’t report any noticeable net-
work delay, it could be a problem in practical settings as the infer-
ence time of a large model and network delay may occur at a scale 
large enough to impact their typing experience. We are currently 
investigating methods that could deliver the promise for on-device 
inference (e.g., model compression, structure search). 

6.2 Interface Design 
As a key infuencer of usability, the interface design of a phrase 
gesture keyboard also warrants more investigation. Our immediate 
future research concerns the optimal number of candidates that 
should be shown to the user. Our current implementation follows 
the standard developed for tap and word-gesture typing by showing 
three candidates. The tradeof is obvious as extra screen real estate 
needs to be occupied to accommodate the increasing amount of 
text in the output phrases. While it is less of an issue for today’s 
smartphones as the screens are large, it may potentially become 
a problem on devices with smaller screens, such as smartwatches. 
As a part of our future research, we will investigate how much the 
size of the candidate list shown to the user may afect their typing 
performance and whether an optimal size exists for the general 
population. 

Aside from the candidate list, we are also interested in investi-
gating the ways, in which, how feedback is provided may impact 
the performance of phrase-gesture typing. While our current imple-
mentation shows intermediate feedback during the execution of a 
gesture, the study shows that the users often chose to wait until the 
completion of a gesture to examine the output of the system. While 
a part of the reason was that maintaining close attention to the 
output may slow down their typing speed, another possible reason 
could be the lack of auto-complete in our current prototype. Thus, 
the participants had no motivation to check the feedback during 
typing. So more research needs to be done in this space to better 
understand the impact of intermediate feedback and its timing. 

The current implementation of PhraseSwipe supports word-
level editing for correction and deletion. In some situations, 
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character-level editing may be needed for additional fexibility and 
efciency. While not included in our current prototype, character-
level editing can be supported with an addition of a cursor that is 
triggerable through a long touch, similar to what is widely available 
in smartphone keyboards. 

6.3 Decoder 
Our decoder was trained with artifcial gestures generated using 
a computer. Through the controlled user study, we showed that 
it was a cost-efcient method for the rapid development of an ef-
fective neural decoder. However, the limit is that it is unlikely for 
our current model to be able to handle individual variances among 
diferent users or user groups without training data from real users. 
A personalized keyboard decode could, in theory, improve the per-
formance of our system for individual users. Future work will focus 
on data collection using our prototype to acquire phrase gesture 
data at scale. We are also interested in developing an adaptive al-
gorithm that can efectively shift a general decoder to a personal 
one. Further, including the committed text as input to the decoder 
may potentially improve the decoding accuracy. It is our plan for 
the future to investigate ways to improve our decoding methods 
by including the data beyond the scope of the current phrases. 

In principle, our decoder could work on phrases of any length. 
While in this current study, we only focused on phrases of fve 
words or less, we see it as an interesting opportunity in the future to 
investigate the decoding performance and user behaviors on longer 
phrases. Possible research questions include how to maintain a high 
decoding accuracy despite the length of input phrases, and whether 
and when users would prefer typing using long phrase gestures. 

Some of the obvious language issues were not well handled by 
the current decoder. As such, grammatically wrong phrases could 
be found in the candidate list. For example, the phrase “the treasury 
department its broke” (“its” is the error) was shown alongside the 
correct one, in which, “its” was replaced by the correct word “is”. 
As shown in our study, we cannot rely on the users to capture such 
errors as they are often not obvious inside a phrase. If the users 
picked the candidates with errors, they may end up spending extra 
time fxing the errors or in the worst case, the errors may be left 
uncorrected. Future research will investigate methods to improve 
the accuracy of our decoder. 

Lastly, we acknowledge that phrase gesture typing can be per-
formed on Gboard [3] in Chinese. Our work provides insights into 
decoding phrase gestures in English, which has unique challenges. 
For example, in the most used Hanzi characters for Simplifed Chi-
nese (6763 from GB2312), there are only 413 distinct Pinyin syllables. 
In contrast, there are 15831 in English. Further, unlike English, most 
Pinyin syllables consist of initials and fnals that are very diferent 
from each other (e.g., in “zhan”, “zh” is initial, “an” is fnal). Both 
make it relatively easy to segment a non-delimiter letter sequence 
into separate Pinyin syllables and decode them with a language 
model. We see that other languages may have similar characteristics 
as English and may beneft from our research. 

7 CONCLUSION 
In this paper, we created a new gesture typing method that al-
lows the users to enter text using phrase gestures. We call this 

method phrase-gesture typing. Unlike word-gesture typing, where 
text is entered word by word, phrase-gesture typing allows text to 
be entered phrase by phrase. Through a prototype developed for 
smartphones, we were able to demonstrate the technical feasibility 
of phrase-gesture decoding and understand the usability of text 
input through phrase gestures. Our prototype is composed of a 
frontend interface designed specifcally for phrase-gesture typing 
and a backend decoder developed based on a transformer-based 
neural language model. We showed that phrase-level decoding can 
achieve higher accuracy than word-level decoding in gesture typing. 
We also showed that training the model using artifcial gestures 
generated using a computer is a cost-efcient way to develop an 
efective neural decoder for phrase-gesture keyboards. Lastly, the 
result from our user study shows that users were able to type faster 
using phrase gestures than word gestures. Our fndings provide 
the important groundwork for the future development of new text 
input methods on mobile devices. 
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